We study a multiplicity result for the perturbed p-Laplacian equation

$$\Delta_p u - \lambda g(x) |u|^{p-2} u = f(x, u) + h(x) \quad \text{in} \quad \mathbb{R}^N,$$

where $1 < p < N$ and λ is near λ_1, the principal eigenvalue of the weighted eigenvalue problem

$$\Delta_p u = \lambda g |u|^{p-2} u \quad \text{in} \quad \mathbb{R}^N.$$

Depending on which side λ is from λ_1, we prove the existence of one or three solutions. This kind of results was firstly obtained by Mawhin and Schmitt (1990) for a semilinear two-point boundary value problem.

1. Introduction

In this paper, we study a class of p-Laplacian equations of the form

$$-\Delta_p u = \lambda g(x) |u|^{p-2} u + f(x, u) + h(x) \quad \text{in} \quad D^{1,p}(\mathbb{R}^N),$$

where $\Delta_p u = \text{div}(\nabla |u|^{p-2} \nabla u)$, $1 < p < N$, and $g \geq 0$ is a weight function. Here, $D^{1,p}(\mathbb{R}^N)$ is the closure of $C_0^\infty(\mathbb{R}^N)$ with respect to the norm

$$\|u\|_{D^{1,p}} = \left(\int_{\mathbb{R}^N} |\nabla u|^p \, dx \right)^{1/p}. \quad (1.2)$$

This space, which is motivated by the embedding $W^{1,p}(\mathbb{R}^N) \hookrightarrow L^{p^*}(\mathbb{R}^N)$, where $p^* = Np/(N - p)$, is in fact a reflexive Banach space characterized by

$$D^{1,p}(\mathbb{R}^N) = \left\{ u \in L^{p^*}(\mathbb{R}^N); \frac{\partial u}{\partial x_i} \in L^p(\mathbb{R}^N), \ 1 \leq i \leq N \right\}. \quad (1.3)$$

We refer the reader to Ben-Naoum et al. [5] for a quite complete discussion on the space $D^{1,p}(\mathbb{R}^N)$.
Our study is based on a bifurcation result by Mawhin and Schmitt [15], related to the two-point boundary value problem,

\[-u'' - \lambda u = f(x, u) + h, \quad u(0) = u(\pi) = 0. \tag{1.4}\]

By assuming that \(f \) is bounded and satisfying a sign condition, they obtained the following result. If \(\lambda \) is sufficiently near to \(\lambda_1 \) from left, where \(\lambda_1 = 1 \) is the first eigenvalue of the corresponding linear problem, then (1.4) has at least three solutions. If \(1 \leq \lambda < 4 \), then problem (1.4) has at least one solution. Some extensions and variations of their result were considered by other authors (cf. Badiale and Lupo [3], Chiappinelli et al. [7], Sanchez [18], and Ma et al. [13]). In [14], the multiplicity part of that result was extended to the \(p \)-Laplacian operator in bounded domains, using critical point theory. Our objective is to extend this problem to the \(p \)-Laplacian in \(\mathbb{R}^N \), with \(\lambda \) approaching to \(\lambda_1 \) from left and from right.

In order to state the Mawhin-Schmitt problem in the context of \(D^{1,p}(\mathbb{R}^N) \), we recall some facts about the eigenvalue problem for the weighted \(p \)-Laplacian in \(\mathbb{R}^N \)

\[-\Delta_p u = \lambda g|u|^{p-2}u \quad \text{in} \quad D^{1,p}(\mathbb{R}^N), \tag{1.5}\]

where \(g \in L^\infty(\mathbb{R}^N) \cap L^{N/p}(\mathbb{R}^N) \) is a locally Hölder continuous weight function. It is known that for \(g \geq 0 \), there exists a first eigenvalue \(\lambda_1 = \lambda_1(g) \), characterized by

\[
\lambda_1 = \inf \left\{ \|u\|_{D^{1,p}}^p; \ u \in D^{1,p}(\mathbb{R}^N), \int_{\mathbb{R}^N} g|u|^p \, dx = 1 \right\}, \tag{1.6}
\]

which is simple and positive. This implies that

\[
\int_{\mathbb{R}^N} |\nabla u|^p \, dx \geq \lambda_1 \int_{\mathbb{R}^N} g|u|^p \, dx \quad \forall \, u \in D^{1,p}(\mathbb{R}^N). \tag{1.7}
\]

Besides, the corresponding eigenfunction \(\varphi_1 \) belongs to \(D^{1,p}(\mathbb{R}^N) \cap L^{\infty}(\mathbb{R}^N) \) and may be taken positive (see a complete proof in [12]). Putting

\[
W = \left\{ w \in D^{1,p}(\mathbb{R}^N); \int_{\mathbb{R}^N} g|\varphi_1|^{p-2}\varphi_1 w \, dx = 0 \right\} \tag{1.8}
\]

and \(V = \text{span}\{\varphi_1\} \), we have from the simplicity of \(\lambda_1 \),

\[
D^{1,p}(\mathbb{R}^N) = V \oplus W. \tag{1.9}
\]

Then, since \(\lambda_1 \) is also isolated (see [11]), we have

\[
\lambda_2 := \inf \left\{ \|w\|_{D^{1,p}}^p; \ w \in W, \int_{\mathbb{R}^N} g|w|^p \, dx = 1 \right\}. \tag{1.10}
\]
which satisfies $\lambda_1 < \lambda_2$. In addition,

$$\int_{\mathbb{R}^N} |\nabla w|^p \, dx \geq \lambda_2 \int_{\mathbb{R}^N} g|w|^p \, dx \quad \forall w \in W. \quad (1.11)$$

Next, we make some basic assumptions on the function f. We assume that $f : \mathbb{R}^N \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function satisfying the growth condition

$$|f(x,u)| \leq a(x)|u|^\sigma + b(x), \quad (1.12)$$

with $1 < \sigma < p$, $a \geq 0$, $a \in L^\infty(\mathbb{R}^N) \cap L^{(p^*/\sigma)'}(\mathbb{R}^N)$, and $b \in L^{p^*}(\mathbb{R}^N)$. Some of our hypotheses are given upon the primitive $F(x,u) = \int_0^u f(x,s) \, ds$, namely, there exists $\gamma \in L^1(\mathbb{R}^N)$ such that

$$F(x,u) \geq \gamma(x) \quad \text{a.e. in } \mathbb{R}^N, \quad \forall u \in \mathbb{R}. \quad (1.13)$$

We also consider the following: there exist $\alpha \in L^\infty(\mathbb{R}^N) \cap L^1(\mathbb{R}^N) \cap L^{(p^*/\mu)'}(\mathbb{R}^N)$ and $\beta \in L^\infty(\mathbb{R}^N) \cap L^1(\mathbb{R}^N) \cap L^{p^*}(\mathbb{R}^N)$ satisfying

$$pF(x,u) - f(x,u)u \geq \alpha(x)|u|^\mu + \beta(x) \quad \text{a.e. in } \mathbb{R}^N, \quad \forall u \in \mathbb{R}, \quad (1.14)$$

and $1 < \mu \leq \sigma < p$.

Now we are in a position to state our results.

Theorem 1.1. Assume that (1.12) and (1.13) hold. If in addition

$$\lim_{|u| \to \infty} F(x,u) = +\infty \quad \text{a.e. in } \mathbb{R}^N, \quad (1.15)$$

then for any $h \in L^{p^*}(\mathbb{R}^N)$ satisfying

$$\int_{\mathbb{R}^N} h(x)\varphi_1(x) \, dx = 0, \quad (1.16)$$

problem (1.1) has at least three solutions when λ is sufficiently close to λ_1 from left.

Theorem 1.2. Assume that (1.12) and (1.14) hold with $\alpha \geq \max\{a,g\}$. Assume further that $\lambda_1 \leq \lambda < \lambda_2$. Then for any $h \in L^{p^*}(\mathbb{R}^N)$ satisfying $|h| \leq \alpha$, problem (1.1) has at least one solution.

Since (1.14) implies (1.15), under the hypotheses of Theorem 1.2, we get an extension of the original work of Mawhin and Schmitt [15] to the p-Laplacian in \mathbb{R}^N. We note that our results do not assume f bounded nor satisfying a sign condition. Theorem 1.2 is related to a class of double resonance problems.
introduced in [6] for semilinear elliptic equations. It was not considered for the p-Laplacian, even in bounded domains. Condition (1.14) was early used in [1, 8, 10] for example, as an Ambrosetti-Rabinowitz type condition [2]. A simple example of g satisfying all the hypotheses of both theorems is

$$f(x,u) = \sigma a(x) |u|^{\sigma - 2}u, \quad (1.17)$$

where $a \in L^{\infty}(\mathbb{R}^N) \cap L^1(\mathbb{R}^N) \cap L^{(p^{*}/\sigma)'}(\mathbb{R}^N)$ and $1 < \mu = \sigma < p - 1$.

The proofs of the theorems are given in Section 3. In Section 2, we present some preliminary results on the variational setting of the p-Laplacian equations in $D^{1,p}(\mathbb{R}^N)$ and the related Palais-Smale compactness.

2. Preliminaries

We begin with some standard facts upon the variational formulation of problem (1.1). Let $J_\lambda : D^{1,p}(\mathbb{R}^N) \rightarrow \mathbb{R}$ be the functional defined by

$$J_\lambda(u) = \int_{\mathbb{R}^N} \left[\frac{1}{p} |\nabla u(x)|^p - \frac{\lambda}{p} g(x) |u(x)|^p - F(x,u(x)) - h(x)u(x) \right] dx. \quad (2.1)$$

It is proved in do Ó [10], that J_λ is of class $C^1(\mathbb{R}^N)$ and

$$\langle J_\lambda'(u), \varphi \rangle = \int_{\mathbb{R}^N} |\nabla u|^p - 2 \nabla u \cdot \nabla \varphi dx - \lambda \int_{\mathbb{R}^N} g |u|^{p-2}u \varphi dx$$

$$- \int_{\mathbb{R}^N} f(x,u) \varphi dx - \int_{\mathbb{R}^N} h \varphi dx, \quad (2.2)$$

for all $\varphi \in D^{1,p}(\mathbb{R}^N)$. In addition, the critical points of J_λ are precisely the weak solutions of (1.1).

Next we recall a compactness result which is proved in [5].

Lemma 2.1 (see [5]). The functional

$$u \mapsto \int_{\mathbb{R}^N} m(x) |u(x)|^q dx \quad (2.3)$$

is well defined and weakly continuous in $D^{1,p}(\mathbb{R}^N)$, for $1 \leq q < p^*$ and $m \in L^{(p^*/q)'}(\mathbb{R}^N)$.

As a consequence, under the conditions of the lemma, there exists $C > 0$ such that

$$\int_{\mathbb{R}^N} m(x) |u(x)|^q dx \leq \|m\|_{L^{(p^*/q)'}(\mathbb{R}^N)} \|u\|_{L^{p^*}}^q \leq C \|u\|_{D^{1,p}}^q. \quad (2.4)$$
Lemma 2.2. Assume that (1.12) holds. Then the Nemytskii mapping,

$$ u \mapsto f(x,u) $$

(2.5)

is compact from $D^{1,p}(\mathbb{R}^N)$ to $L^{p^*}(\mathbb{R}^N)$.

Proof. Put $r = p^{\sigma'}$ and $q = (\sigma - 1)r$ so that $q < p^*$ and

$$ \left(\frac{p^*}{\sigma} \right) \left(\frac{p^*}{q} \right)' = r \left(\frac{p^*}{q} \right)' . $$

(2.6)

Then we get from (1.12) that $a^r \in L^{(p^*/q)'}(\mathbb{R}^N)$. Now let (u_n) be a sequence such that $u_n \rightharpoonup u$ weakly for some $u \in D^{1,p}(\mathbb{R}^N)$. Then from Lemma 2.1 we have $a^{r/q} u_n \rightharpoonup a^{r/q} u$ strongly in $L^q(\mathbb{R}^N)$. It follows that

$$ a^{r/q} u_n \rightharpoonup a^{r/q} u, \quad |a^{r/q} u_n| \leq k \quad \text{a.e. in } \mathbb{R}^N, $$

(2.7)

for some $k \in L^q(\mathbb{R}^N)$. Hence, for all n and a.e. $x \in \mathbb{R}^N$,

$$ |f(x,u_n(x))| \leq 2^r \left(|a(x)|^{(\sigma-1)r} + |b(x)|^r \right). $$

(2.8)

Since the last term is an integrable function, from Lebesgue theorem, we infer that $f(x,u_n) \rightharpoonup f(x,u)$ strongly in $L^r(\mathbb{R}^N)$.

Next, we do some remarks about the Palais-Smale condition for J_λ. We recall that J_λ is said to satisfy the Palais-Smale condition at level c, (PS)$_c$, if every sequence for which

$$ J(u_n) \to c, \quad ||J'(u_n)||_{(D^{1,p})^*} \to 0 $$

(2.9)

possesses a convergent subsequence. When J satisfies (PS)$_c$ for all $c \in \mathbb{R}^N$, we simply say that J satisfies the (PS) condition. In Theorem 1.2, we use a weaker version of the (PS) condition due to Cerami (cf. [4]). We say that J satisfies the Palais-Smale-Cerami condition, (PSC), if every sequence, for which

$$ J(u_n) \text{ is bounded,} \quad \left(1 + ||u_n||_{D^{1,p}} \right)||J'(u_n)||_{(D^{1,p})^*} \to 0, $$

(2.10)

possesses a convergent subsequence.

Lemma 2.3. Assume that condition (1.12) holds. Then any bounded sequence satisfying (2.9) or (2.10) possesses a convergent subsequence.

Proof. Let (u_n) be a bounded sequence satisfying (2.9). Then, passing to a subsequence if necessary, there exists $u \in D^{1,p}(\mathbb{R}^N)$ such that $u_n \rightharpoonup u$ weakly in $D^{1,p}(\mathbb{R}^N)$ and also in $L^{p^*}(\mathbb{R}^N)$. Consequently,

$$ \lim_{n \to \infty} \langle J'_\lambda(u_n), u_n - u \rangle = 0. $$

(2.11)
Perturbations near resonance for the p-Laplacian in \mathbb{R}^N

On the other hand, from Lemma 2.2, we know that $f(x, u_n) \to f(x, u)$ strongly in $L^{p'}(\mathbb{R}^N)$ and therefore,

$$\lim_{n \to \infty} \int_{\mathbb{R}^N} (f(x, u_n) + h)(u_n - u) \, dx = 0. \quad (2.12)$$

Noting that

$$\int_{\mathbb{R}^N} g \, |u_n|^{p-1} |u_n - u| \, dx \leq \left(\int_{\mathbb{R}^N} g \, |u_n|^p \, dx \right)^{1/p'} \left(\int_{\mathbb{R}^N} g \, |u_n - u|^p \, dx \right)^{1/p}, \quad (2.13)$$

and since $g \in L^{(p'/p)'}$, Lemma 2.1 implies that

$$\lim_{n \to \infty} \int_{\mathbb{R}^N} g \, |u_n|^{p-2} u_n (u_n - u) \, dx = 0. \quad (2.14)$$

Combining (2.11) with (2.12) and (2.14), we get

$$\lim_{n \to \infty} \int_{\mathbb{R}^N} |\nabla u_n|^{p-2} \nabla u_n \cdot \nabla (u_n - u) \, dx = 0. \quad (2.15)$$

But since we also have

$$\lim_{n \to \infty} \int_{\mathbb{R}^N} |\nabla u|^{p-2} \nabla u \cdot \nabla (u_n - u) \, dx = 0, \quad (2.16)$$

it follows that

$$\lim_{n \to \infty} \int_{\mathbb{R}^N} \left(|\nabla u_n|^{p-2} \nabla u_n - |\nabla u|^{p-2} \nabla u \right) \cdot \nabla (u_n - u) \, dx = 0. \quad (2.17)$$

Then from a well-known argument based on the Clarkson inequality (cf. Tolksdorf [19]), we conclude that

$$\lim_{n \to \infty} \int_{\mathbb{R}^N} |\nabla u_n - \nabla u|^p \, dx = 0. \quad (2.18)$$

This completes the proof since (2.10) implies (2.9).

\[\square \]

3. Proofs of Theorems 1.1 and 1.2

The proof of Theorem 1.1 is based on the Ekeland’s variational principle and the Ambrosetti-Rabinowitz Mountain-Pass theorem [2]. Theorem 1.2 is proved using the saddle point theorem of Rabinowitz [17].

Proof of Theorem 1.1. We divide the proof in several steps.

Step 1 (the coerciveness of J_λ). Since $\lambda < \lambda_1$ and (1.12) holds, from (1.7) and (2.4) we get

$$J_\lambda(u) \geq \left(\frac{\lambda_1 - \lambda}{p \lambda_1} \right) \|u\|^p_{D^{1,p}} - C \|u\|^p_{D^{1,p}} - C \|u\|_{D^{1,p}}, \quad (3.1)$$
where $C > 0$ denotes several constants. Then J_λ is coercive as a consequence of the assumption that $1 < a < p$. This implies that any sequence satisfying (2.9) must be bounded, and therefore Lemma 2.2 implies that J_λ satisfies the (PS)$_c$ for all $c \in \mathbb{R}$. Similarly, from (1.11),

$$J_{\lambda_1}(w) \geq \left(\frac{\lambda_2 - \lambda_1}{p\lambda_2} \right) \|w\|_{D^{1,p}}^p - C\|w\|_{D^{1,p}}^q - C\|w\|_{D^{1,p}},$$ \hspace{1cm} (3.2)

which shows that J_{λ_1} is coercive in W. Noting that $J_{\lambda_1} \leq J_\lambda$ for all $\lambda < \lambda_1$, we have that

$$m = \inf_W J_{\lambda_1} \leq \inf_W J_\lambda.$$ \hspace{1cm} (3.3)

Step 2 (estimating J_λ in V). From (1.16) we have for $t \in \mathbb{R}$,

$$J_\lambda(t\varphi_1) = \left(\frac{\lambda_1 - \lambda}{p} \right) \int_{\mathbb{R}^N} |t\varphi_1(x)|^p \, dx - \int_{\mathbb{R}^N} F(x, t\varphi_1(x)) \, dx.$$ \hspace{1cm} (3.4)

Now, from (1.13) there exist constants $R, C > 0$ such that

$$\int_{|x| > R} F(x, t\varphi_1(x)) \, dx \geq \int_{|x| > R} \gamma(x) \, dx \geq -C, \quad \forall t \in \mathbb{R}.$$ \hspace{1cm} (3.5)

Choosing $t^+ > 0$ sufficiently large, we get from (1.15) that

$$\int_{|x| \leq R} F(x, t^+\varphi_1(x)) \, dx > -m + C.$$ \hspace{1cm} (3.6)

Then we have

$$\int_{\mathbb{R}^N} F(x, t^+\varphi_1(x)) \, dx > -m,$$ \hspace{1cm} (3.7)

so that

$$J_{\lambda}(t^+\varphi_1) \leq \left(\frac{\lambda_1 - \lambda}{p} \right) \int_{\mathbb{R}^N} |t^+\varphi_1(x)|^p \, dx + m.$$ \hspace{1cm} (3.8)

Then for λ sufficiently near to λ_1, $J_{\lambda}(t^+\varphi_1) < m$. The same conclusion holds for a $t^- < 0$.

Step 3 (the existence of the first two solutions). Put

$$C^\pm = \{ u \in D^{1,p}(\mathbb{R}^N); \ u = \pm t\varphi_1 + w \ \text{with} \ t > 0, \ w \in W \}.$$ \hspace{1cm} (3.9)

Then from Step 2, for λ sufficiently near to λ_1,

$$-\infty < \inf_{C^\pm} I_\lambda < m.$$ \hspace{1cm} (3.10)
330 Perturbations near resonance for the p-Laplacian in \mathbb{R}^N

Now let $u_n \in \mathcal{O}^+$ be a sequence satisfying (2.9) for $c < m$. Then from coerciveness of J_λ, (u_n) has a convergent subsequence, say, (u_n) itself. Noting that $W = \partial \mathcal{O}^+$ and $\inf_W J_\lambda \geq m$ (Step 1), we conclude that (u_n) converges to an interior point $u \in \mathcal{O}^+$. This means that J_λ satisfies the (PS)$_c$ condition inside \mathcal{O}^+ for all $c < m$.

Then applying the Ekeland variational principle in \mathcal{O}^+, we set that J_λ has a critical point u^+ as a local minimum in \mathcal{O}^+. Similarly, we obtain a critical point u^- of J_λ in \mathcal{O}^-. Taking into account that $\mathcal{O}^- \cap \mathcal{O}^+ = \emptyset$, the existence of two weak solutions of (1.1) is proved.

Step 4 (the third solution). To fix ideas, suppose that $J_\lambda(u^+) \leq J_\lambda(u^-)$. If u^- is not an isolated critical point, then J_λ has at least three solutions. Otherwise, putting

$$I(u) = J_\lambda(u + u^-) - J_\lambda(u^-), \quad e = u^+ - u^-,$$

we have that $I(0) = 0, I(e) \leq 0$, and there exist $r, \rho > 0$ such that $I(u) \geq \rho$ if $\|u\|_{D^{1,p}} = r$. Then, since $I' = J'_\lambda$ and I also satisfies the (PS) condition, from the Mountain-Pass theorem, the number

$$c = \inf_{y \in \Gamma} \max_{t \in [0,1]} J_\lambda(y(t)),$$

where

$$\Gamma = \{ y \in C([0,1], D^{1,p}(\mathbb{R}^N)) ; y(0) = u^-, y(1) = u^+ \}$$

is a critical value of J_λ. Noting that all paths joining u^- to u^+ pass through W, we have $c \geq m$. Therefore we have obtained a third critical point of J_λ. The proof is now complete.

Proof of Theorem 1.2. The proof is based on the arguments from [8, 10].

Step 1 (the growth of F). We prove that for some $C_1, C_2 > 0$,

$$\int_{\mathbb{R}^N} F(x, t\varphi_1) \, dx \geq C_1 \|t\varphi_1\|_{D^{1,p}}^\mu - C_2. \quad (3.14)$$

In fact, from (1.14) we have

$$\frac{d}{du} \left(\frac{F(x, u)}{|u|^p} \right) \leq -\alpha(x)|u|^{\mu-p-2}u - \beta(x)|u|^{-p-2}u \quad (u > 0). \quad (3.15)$$

Integrating from $u > 0$ to $+\infty$, and noting that $F(x, \theta)/(\theta^p) \to 0$ as $\theta \to \infty$, we get

$$F(x, u) \geq \frac{\alpha(x)}{p-\mu} |u|^{\mu} + \frac{\beta(x)}{p}. \quad (3.16)$$
Since this inequality holds for \(u < 0 \), we have
\[
\int_{\mathbb{R}^N} F(x, t\phi_1) \, dx \geq C|t|^\mu - C_2,
\]
and inequality (3.14) follows.

Step 2 (the (PSC) condition). Let \((u_n)\) be a sequence satisfying (2.9). Then from Lemma 2.2, it suffices to prove that \((u_n)\) is bounded. In fact, first we note that \((u_n)\) satisfies
\[
\langle J'_\lambda(u_n), u_n \rangle - pJ_\lambda(u_n) = \int_{\mathbb{R}^N} \left[pF(x, u_n) - f(x, u_n)u_n + (p - 1)hu_n \right] \, dx \\
\geq \int_{\mathbb{R}^N} \alpha|u|^\mu \, dx + \int_{\mathbb{R}^N} \beta \, dx + (p - 1) \int_{\mathbb{R}^N} hu_n \, dx.
\]
(3.18)

Now, since \(|h| \leq \alpha\),
\[
\left| \int_{\mathbb{R}^N} hu_n \, dx \right| \leq \int_{\mathbb{R}^N} \alpha|u_n| \, dx \leq \|\alpha\|_{L^1}^{1/\mu} \left(\int_{\mathbb{R}^N} \alpha|u_n|^{\mu} \, dx \right)^{1/\mu}.
\]
(3.19)

Then from the boundedness of \(\langle J'_\lambda(u_n), u_n \rangle - pJ_\lambda(u_n)\), we deduce that
\[
\int_{\mathbb{R}^N} \alpha|u_n|^{\mu} \, dx \leq C + C \left(\int_{\mathbb{R}^N} \alpha|u_n|^{\mu} \, dx \right)^{1/\mu},
\]
(3.20)
so that
\[
\int_{\mathbb{R}^N} \alpha|u_n|^{\mu} \, dx \leq C.
\]
(3.21)

Now we use an interpolation inequality. Since \(0 < \mu < p < p^*\), there exists \(t \in (0, 1)\) such that
\[
1 = \frac{p(1-t)}{\mu} + \frac{pt}{p^*}.
\]
(3.22)

Then from Hölder inequality,
\[
\int_{\mathbb{R}^N} \alpha(x)|u|^p \, dx = \int_{\mathbb{R}^N} (\alpha^{1/\mu}|u|)^{p(1-t)}(\alpha^{1/p^*}|u|)^{pt} \, dx \\
\leq \left(\int_{\mathbb{R}^N} \alpha|u|^{\mu} \, dx \right)^{p(1-t)/\mu} \left(\int_{\mathbb{R}^N} \alpha|u|^{p^*} \, dx \right)^{pt/p^*}.
\]
(3.23)

Using (3.21) and (2.4),
\[
\int_{\mathbb{R}^N} \alpha(x)|u_n(x)|^p \, dx \leq C\|u_n\|_{D^{1,p}}^p.
\]
(3.24)
Perturbations near resonance for the p-Laplacian in \mathbb{R}^N

Taking into account the boundedness of $J_\lambda(u_n)$,

$$\frac{1}{p} ||u_n||_{D^{1,p}}^p \leq C + \frac{\lambda}{p} \int_{\mathbb{R}^N} g |u_n|^p \, dx + \int_{\mathbb{R}^N} F(x,u_n) \, dx + \int_{\mathbb{R}^N} h u_n \, dx,$$ \hspace{1cm} (3.25)

and since $\alpha \geq \max\{a,g\}$,

$$\frac{1}{p} ||u_n||_{D^{1,p}}^p \leq C + \frac{\lambda}{p} \int_{\mathbb{R}^N} \alpha |u_n|^p \, dx + \frac{1}{\sigma} \int_{\mathbb{R}^N} \alpha |u_n|^{\sigma} \, dx$$
$$+ \int_{\mathbb{R}^N} b |u_n| \, dx + \int_{\mathbb{R}^N} h u_n \, dx.$$ \hspace{1cm} (3.26)

Consequently, if $\mu = \sigma$ we have, from (3.24),

$$||u_n||_{D^{1,p}}^p \leq C\left(1 + ||u_n||_{D^{1,p}}^p + ||u_n||_{D^{1,p}}^{s\sigma}\right).$$ \hspace{1cm} (3.27)

Otherwise, we have $\mu < \sigma < p^*$, and as before, we get $s \in (0,1)$ such that

$$\int_{\mathbb{R}^N} \alpha |u_n|^{\sigma} \, dx \leq C ||u_n||_{D^{1,p}}^{s\sigma}. \hspace{1cm} (3.28)$$

Then

$$||u_n||_{D^{1,p}}^p \leq C\left(1 + ||u_n||_{D^{1,p}}^p + ||u_n||_{D^{1,p}}^{s\sigma} + ||u_n||_{D^{1,p}}^{s\sigma}\right).$$ \hspace{1cm} (3.29)

In both cases, we see that $||u_n||_{D^{1,p}}$ is uniformly bounded.

Step 3 (the saddle point theorem). It is well known that the (PS) condition can be replaced by the (PSC) condition in the saddle point theorem of Rabinowitz (see [4, 17]). Then to conclude that J_λ has a critical point it suffices to show that

$$\lim_{||v||_{D^{1,p}} \to \infty} J_\lambda(v) = -\infty, \hspace{1cm} \lim_{||w||_{D^{1,p}} \to \infty} J_\lambda(w) = +\infty,$$ \hspace{1cm} (3.30)

where $v \in V$ and $w \in W$, as defined in (1.9). Now, from (3.14),

$$J_\lambda(t\varphi_1) \leq -\left(\frac{\lambda - \lambda_1}{p\lambda_1}\right)||t\varphi_1||_{D^{1,p}}^p - C_1 ||t\varphi_1||_{D^{1,p}}^{\mu} + C_2 ||t\varphi_1||_{D^{1,p}}^p + C_2.$$ \hspace{1cm} (3.31)

Since $\lambda \geq \lambda_1$, the first part of (3.30) holds. Finally, since $\lambda < \lambda_2$, the argument in *Step 1* of the proof of Theorem 1.1 implies the second statement of (3.30). The proof is now complete. \(\square\)

Note 3.1. Just before the completion of this paper, we noticed that P. De Nápóli and M. C. Mariani [9] studied problem (1.1) in the same framework of our Theorem 1.1. However, they considered only the case $\lambda \to \lambda_1$ from left. Our assumptions on f are slightly more general.
Acknowledgments

T. F. Ma was partially supported by CNPq/Brazil. M. L. Pelicer was partially supported by CAPES-PICD/Brazil.

References

[9] P. De Nápoli and M. C. Mariani, Three solutions for quasilinear equations in \mathbb{R}^n near resonance, Proceedings of the USA-Chile Workshop on Nonlinear Analysis (Viña del Mar-Valparaiso, 2000), Southwest Texas State University, Texas, 2001, pp. 131–140.

Perturbations near resonance for the p-Laplacian in \mathbb{R}^N

To Fu Ma: Departamento de Matemática, Universidade Estadual de Maringá, 87020-900 Maringá, PR, Brazil

E-mail address: matofu@uem.br

Maurício Luciano Pelicer: Departamento de Ciências, Universidade Estadual de Maringá, 87360-000 Goioerê, PR, Brazil

E-mail address: mlpelicer@uem.br