ON OSCILLATION OF A FOOD-LIMITED POPULATION MODEL WITH TIME DELAY

LEONID BEREZANSKY AND ELENA BRAVERMAN

Received 1 October 2001

For a scalar nonlinear delay differential equation \(\dot{N}(t) = r(t)N(t)(K - N(h(t)))/(K + s(t)N(g(t))), r(t) \geq 0, K > 0, h(t) \leq t, g(t) \leq t \) and some generalizations of this equation, we establish explicit oscillation and nonoscillation conditions. Coefficient \(r(t) \) and delays are not assumed to be continuous.

1. Introduction

The delay logistic equation

\[
\dot{N}(t) = r(t)N(t)\left(1 - \frac{N(h(t))}{K}\right), \quad h(t) \leq t,
\]

is known as Hutchinson’s equation, if \(r \) and \(K \) are positive constants and \(h(t) = t - \tau \) for a positive constant \(\tau \). Hutchinson’s equation has been investigated by several authors (see, e.g., [13, 14, 18, 23]). Delay logistic equation (1.1) was studied by Gopalsamy and Zhang [7, 25] who gave sufficient conditions for the oscillation and the nonoscillation of (1.1). Publications [1, 2, 3, 4, 5, 6, 10, 12, 15, 16, 17, 19, 22, 24] are devoted to various generalizations of logistic equation (1.1).

In 1963, Smith [20] proposed an alternative to the logistic equation for a food-limited population

\[
\dot{N}(t) = rN(t)\frac{K - N(t)}{K + crN(t)}, \quad t \geq 0.
\]

Here \(N, r, \) and \(K \) are the mass of the population, the rate of increase with unlimited food, and value of \(N \) at saturation, respectively. The constant \(1/c \) is the rate of replacement of mass in the population at saturation (this includes both the replacement of metabolic loss and of dead organisms).
Oscillation of a food-limited model

In [8, 9, 11], Gopalsamy, Kulenovic, Ladas, Grove, and Qian considered the autonomous delay food-limited equation

$$\dot{N}(t) = rN(t) \frac{K - N(t - \tau)}{K + crN(t - \tau)}, \quad t \geq 0.$$ \hspace{1cm} (1.3)

So and Yu [21] investigated stability properties of the following nonlinear differential equation with a constant delay:

$$\dot{N}(t) = r(t)N(t) \frac{K - N(t - \tau)}{K + s(t)N(t - \tau)}, \quad t \geq 0,$$ \hspace{1cm} (1.4)

which is a generalization of food-limited equations (1.2) and (1.3).

In this paper, we consider oscillation properties of a nonautonomous food-limited equation with a nonconstant delay

$$\dot{N}(t) = r(t)N(t) \frac{K - N(h(t))}{K + s(t)N(g(t))}, \quad t \geq 0, h(t) \leq t, g(t) \leq t,$$ \hspace{1cm} (1.5)

which also generalizes (1.3). We compare oscillation properties of (1.5) and some linear delay differential equations. As a corollary, we obtain explicit oscillation and nonoscillation conditions for (1.5). For the autonomous equation (1.3), our conditions and the known ones in [8] coincide.

We also consider two generalizations of (1.5), the first one is (1.4) with a nonconstant delay and the second one is (1.5) with several delays.

Our proof of the main result is based on some application of Schauder’s fixed-point theorem which was employed for a generalized logistic equation in [4]. According to this method, the differential equation is transformed into an operator equation

$$u = AuBu,$$ \hspace{1cm} (1.6)

where operator A is a monotone increasing operator and B is a monotone decreasing one. We prove that there exist two functions v, w, $0 \leq v(t) \leq w(t)$, such that $v(t) \leq (Av)(t)(Bw)(t)$, $w(t) \geq (Aw)(t)(Bv)(t)$. Then operator $Tu = AuBu$ acts in the interval $v(t) \leq u(t) \leq w(t)$ and therefore, we can use Schauder’s fixed-point theorem. Functions w and v are the limits of two sequences \{w_n\} and \{v_n\}, respectively, and for the construction of the first approximation w_1, we apply a positive solution of some linear delay differential equation.

The paper is organized as follows. In Sections 2 and 3, we consider an equation which is obtained from (1.5) by the following substitution:

$$x(t) = \frac{N(t)}{K} - 1.$$ \hspace{1cm} (1.7)

On the base of these results, in Section 4, we investigate generalized delay logistic equation (1.5).
2. Preliminaries

Consider a scalar delay differential equation

\[\dot{x}(t) = -r(t)x(h(t)) \frac{1 + x(t)}{1 + s(t)[1 + x(g(t))]}, \quad t \geq 0, \tag{2.1} \]

under the following assumptions:

(A1) \(r(t) \) and \(s(t) \) are Lebesgue measurable locally essentially bounded functions, \(r(t) \geq 0 \) and \(s(t) \geq 0 \),

(A2) \(h, g : [0, \infty) \to \mathbb{R} \) are Lebesgue measurable functions, \(h(t) \leq t, g(t) \leq t, \lim_{t \to \infty} h(t) = \infty, \) and \(\lim_{t \to \infty} g(t) = \infty \).

Together with (2.1), we consider for each \(t_0 \geq 0 \) an initial value problem

\[\dot{x}(t) = -r(t)x(h(t)) \frac{1 + x(t)}{1 + s(t)[1 + x(g(t))]}, \quad t \geq t_0, \tag{2.2} \]
\[x(t) = \varphi(t), \quad t < t_0, \quad x(t_0) = x_0. \tag{2.3} \]

We also assume that the following hypothesis holds:

(A3) \(\varphi : (-\infty, t_0) \to \mathbb{R} \) is a Borel measurable bounded function.

Definition 2.1. An absolutely continuous, in each interval \([t_0, b]\), function \(x : \mathbb{R} \to \mathbb{R} \) is called a solution of problem (2.2) and (2.3), if it satisfies (2.2) for almost all \(t \in [t_0, \infty) \) and equalities (2.3) for \(t \leq t_0 \).

Equation (2.1) has a nonoscillatory solution if it has an eventually positive or an eventually negative solution. Otherwise, all solutions of (2.1) are oscillatory.

We present here Lemma 2.2 which will be used in the proof of the main results.

Consider the linear delay differential equation

\[\dot{x}(t) + r(t)x(h(t)) = 0, \quad t \geq 0. \tag{2.4} \]

Lemma 2.2 (see [12]). Let (A1) and (A2) hold for (2.4). Then the following hypotheses are equivalent:

(1) the differential inequality

\[\dot{x}(t) + r(t)x(h(t)) \leq 0, \quad t \geq 0, \tag{2.5} \]

has an eventually positive solution;
(2) there exists \(t_0 \geq 0 \) such that the inequality
\[
 u(t) \geq r(t) \exp \left\{ \int_{h(t)}^{t} u(s) \, ds \right\}, \quad t \geq t_0; \quad u(t) = 0, \quad t < t_0, \tag{2.6}
\]
has a nonnegative locally integrable solution;

(3) equation (2.4) has a nonoscillatory solution. If
\[
 \lim_{t \to \infty} \sup_{s \in [h(t), t]} r(s) \, ds < \frac{1}{e}, \tag{2.7}
\]
then (2.4) has a nonoscillatory solution. If
\[
 \lim_{t \to \infty} \inf_{s \in [h(t), t]} r(s) \, ds > \frac{1}{e}, \tag{2.8}
\]
then all the solutions of (2.4) are oscillatory.

3. Oscillation conditions

In this section and Section 4, we assume that (A1), (A2), and (A3) hold and consider only such solutions of (2.1) for which the following condition holds:
\[
 1 + x(t) > 0. \tag{3.1}
\]

We begin with the following lemma.

Lemma 3.1. Suppose
\[
 \int_{0}^{\infty} \frac{r(t)}{1 + s(t)} \, dt = \infty \tag{3.2}
\]
and \(x(t) \) is a nonoscillatory solution of (2.1). Then \(\lim_{t \to \infty} x(t) = 0. \)

Proof. Suppose first \(x(t) > 0, \ t \geq t_1. \) Then there exists \(t_2 \geq t_1 \) such that
\[
 h(t) \geq t_1, \quad g(t) \geq t_1, \tag{3.3}
\]
for \(t \geq t_2. \) Denote
\[
 u(t) = -\frac{x(t)}{x(t)}, \quad t \geq t_2. \tag{3.4}
\]
Then \(u(t) \geq 0, \ t \geq t_2. \) Substitute
\[
 x(t) = x(t_2) \exp \left\{ -\int_{t_2}^{t} u(s) \, ds \right\}, \quad t \geq t_2 \tag{3.5}
\]
in (2.1). After some transformations, we have the following equation:

\[
 u(t) = \frac{r(t)}{1 + s(t)} \exp \left\{ \int_{h(t)}^t u(s)ds \right\} \left[1 + s(t) \left[1 + c \exp \left\{ - \int_{h(t)}^t u(s)ds \right\} \right] \right] \left[1 + s(t) \left[1 + c \exp \left\{ - \int_{h(t)}^t g(t)u(s)ds \right\} \right] \right],
\]

(3.6)

where \(h(t) \leq t, g(t) \leq t, t \geq t_2 \), and \(c = x(t_2) > 0 \).

Hence,

\[
 u(t) \geq \frac{r(t)}{1 + s(t)} \left(1 + (1 + c) \right) \geq \frac{r(t)(1 + c)}{1 + s(t)}. \]

(3.7)

Then, by (3.2), \(\int_{h(t)}^\infty u(t)dt = \infty \).

Now suppose \(-1 < x(t) < 0, t \geq t_1 \). Then there exists \(t_2 \geq t_1 \) such that (3.3) holds for \(t \geq t_2 \). Suppose \(u(t) \) is denoted by (3.4) and \(c = x(t_2) \). Then \(u(t) \geq 0, -1 < c < 0 \). Substitute (3.5) into (2.1). Thus (3.6) yields

\[
 u(t) \geq \frac{r(t)}{1 + s(t)} \left(1 + (1 + c) \right) \geq \frac{r(t)(1 + c)}{1 + s(t)}. \]

(3.8)

Then again \(\int_{h(t)}^\infty u(t)dt = \infty \).

Equation (3.5) implies \(\lim_{t \to \infty} x(t) = 0 \).

Theorem 3.2. Suppose (3.2) holds and for some \(\epsilon > 0 \), all solutions of the linear equation

\[
 \dot{x}(t) + (1 - \epsilon) \frac{r(t)}{1 + s(t)} x(h(t)) = 0
\]

(3.9)

are oscillatory. Then all solutions of (2.1) are oscillatory.

Proof. First suppose \(x(t) \) is an eventually positive solution of (2.1). Lemma 3.1 implies that there exists \(t_1 \geq 0 \) such that \(0 < x(t) < \epsilon \) for \(t \geq t_1 \). We suppose (3.3) holds for \(t \geq t_2 \geq t_1 \). For \(t \geq t_2 \), we have

\[
 \frac{1 + s(t)}{1 + s(t)(1 + \epsilon)} \geq \frac{1 + s(t)}{1 + s(t)(1 + \epsilon)} \geq \frac{1 + s(t)}{(1 + \epsilon)(1 + s(t))} = \frac{1}{1 + \epsilon} \geq 1 - \epsilon.
\]

(3.10)

Equation (2.1) implies

\[
 \dot{x}(t) + (1 - \epsilon) \frac{r(t)}{1 + s(t)} x(h(t)) \leq 0, \quad t \geq t_2.
\]

(3.11)

Lemma 2.2 yields that (3.9) has a nonoscillatory solution. We have a contradiction.
Now suppose \(-\epsilon < x(t) < 0\) for \(t \geq t_1\) and (3.3) holds for \(t \geq t_2 \geq t_1\). Then for \(t \geq t_2\)

\[
\frac{[1 + s(t)](1 + x(t))}{1 + s(t)[1 + x(g(t))]} \geq \frac{(1 + s(t))(1 - \epsilon)}{1 + s(t)} = 1 - \epsilon.
\]

(3.12)

Hence, (3.9) has a nonoscillatory solution and we again obtain a contradiction which completes the proof. □

Corollary 3.3. If

\[
\lim_{t \to \infty} \inf \int_{h(t)}^{t} \frac{r(\tau)}{1 + s(\tau)} d\tau > \frac{1}{\epsilon'},
\]

(3.13)

then all solutions of (2.1) are oscillatory.

Theorem 3.4. Suppose for some \(\epsilon > 0\) there exists a nonoscillatory solution of the linear delay differential equation

\[
\dot{x}(t) + (1 + \epsilon) \frac{r(t)}{1 + s(t)} x(h(t)) = 0.
\]

(3.14)

Then there exists a nonoscillatory solution of (2.1).

Proof. Lemma 2.2 implies that there exist \(t_0 \geq 0\) and \(w_0(t) \geq 0, t \geq t_0; w_0(t) = 0, t \leq t_0\) such that

\[
w_0(t) \geq (1 + \epsilon) \frac{r(t)}{1 + s(t)} \exp \left\{ \int_{h(t)}^{t} w_0(s) ds \right\}.
\]

(3.15)

Suppose \(0 < c < \epsilon\) and consider two sequences:

\[
w_n(t) = r(t) \exp \left\{ \int_{h(t)}^{t} w_{n-1}(s) ds \right\} \frac{1 + c \exp \left\{ - \int_{t_0}^{t} v_{n-1}(s) ds \right\}}{1 + s(t)(1 + c \exp \left\{ - \int_{t_0}^{t} w_{n-1}(s) ds \right\})},
\]

\[
v_n(t) = r(t) \exp \left\{ \int_{h(t)}^{t} v_{n-1}(s) ds \right\} \frac{1 + c \exp \left\{ - \int_{t_0}^{t} v_{n-1}(s) ds \right\}}{1 + s(t)(1 + c \exp \left\{ - \int_{t_0}^{t} w_{n-1}(s) ds \right\})},
\]

(3.16)

where \(w_0\) was defined above and \(v_0 \equiv 0\). We have

\[
w_1(t) = \frac{r(t)}{1 + s(t)} \exp \left\{ \int_{h(t)}^{t} w_0(s) ds \right\} \frac{(1 + s(t))(1 + c)}{1 + s(t)(1 + c \exp \left\{ - \int_{t_0}^{t} w_0(s) ds \right\})} \leq w_0(t).
\]

(3.17)

It is evident that \(v_1(t) \geq v_0(t), w_0(t) \geq v_0(t)\).
Hence by induction,

$$0 \leq w_n(t) \leq w_{n-1}(t) \leq \cdots \leq w_0(t), \quad v_n(t) \geq v_{n-1}(t) \geq \cdots \geq v_0(t) = 0,$$

and $w_n(t) \geq v_n(t)$.

There exist pointwise limits of nonincreasing nonnegative sequence $w_n(t)$ and of nondecreasing sequence $v_n(t)$. If we denote $w(t) = \lim_{n \to \infty} w_n(t)$ and $v(t) = \lim_{n \to \infty} v_n(t)$, then by the Lebesgue Convergence theorem, we conclude that

$$w(t) = r(t) \exp \left\{ \int_{h(t)}^t w(s) \, ds \right\} \frac{1 + c \exp \left\{ - \int_{t_0}^t v(s) \, ds \right\}}{1 + s(t) \left(1 + c \exp \left\{ - \int_{t_0}^t w(s) \, ds \right\} \right)},$$

$$v(t) = r(t) \exp \left\{ \int_{h(t)}^t v(s) \, ds \right\} \frac{1 + c \exp \left\{ - \int_{t_0}^t w(s) \, ds \right\}}{1 + s(t) \left(1 + c \exp \left\{ - \int_{t_0}^t v(s) \, ds \right\} \right)},$$

We fix $b \geq t_0$ and define operator $T : L_\infty [t_0, b] \to: L_\infty [t_0, b]$ by the following equality:

$$(Tu)(t) = r(t) \exp \left\{ \int_{h(t)}^t u(s) \, ds \right\} \frac{1 + c \exp \left\{ - \int_{t_0}^t u(s) \, ds \right\}}{1 + s(t) \left(1 + c \exp \left\{ - \int_{t_0}^t u(s) \, ds \right\} \right)},$$

where $L_\infty [t_0, b]$ is the space of all essentially bonded on $[t_0, b]$ functions with the usual norm.

For every function u from the interval $v \leq u \leq w$, we have $v \leq Tu \leq w$. The result of [4, Lemma 3] implies that operator T is a compact operator on the space $L_\infty [t_0, b]$. Then by Schauder’s fixed-point theorem there exists a nonnegative solution of equation $u = Tu$.

Denote

$$x(t) = \begin{cases} c \exp \left\{ - \int_{t_0}^t u(s) \, ds \right\}, & t \geq t_0, \\ 0, & t < t_0. \end{cases}$$

Then $x(t)$ is a nonoscillatory solution of (2.1) which completes the proof. \qed

Corollary 3.5. If

$$\lim_{t \to \infty} \sup_{T \to \infty} \int_{h(t)}^t \frac{r(\tau)}{1 + s(\tau)} \, d\tau < \frac{1}{e},$$

then (2.1) has a nonoscillatory solution.
4. Main results

Now consider the delay logistic equation (1.5) where the parameters of this equation satisfy conditions (A1) and (A2), \(K > 0 \), and the initial function \(\psi \) satisfies (A3). There exists a unique solution of (1.5) with the initial condition

\[
N(t) = \psi(t), \quad t < t_0, \quad N(t_0) = y_0.
\] (4.1)

In this section, we assume that the following additional condition holds:

(A4) \(y_0 > 0, \psi(t) \geq 0, t < t_0 \).

Then as in the autonomous case [8, 12] the solution of (1.5) and (4.1) is positive. A positive solution \(N \) of (1.5) is said to be oscillatory about \(K \) if there exists a sequence \(t_n, t_n \to \infty \), such that \(N(t_n) - K = 0, n = 1, 2, \ldots \); \(N \) is said to be nonoscillatory about \(K \) if there exists \(t_0 \geq 0 \) such that \(|N(t) - K| > 0 \) for \(t \geq t_0 \). A solution \(N \) is said to be eventually positive (eventually negative) about \(K \) if \(N - K \) is eventually positive (eventually negative).

Suppose \(N \) is a positive solution of (1.5) and define \(x = N/K - 1 \). Then \(x \) is a solution of (2.1) such that \(1 + x > 0 \).

Hence, oscillation (or nonoscillation) of \(N \) about \(K \) is equivalent to oscillation (nonoscillation) of \(x \).

By applying Theorems 3.2 and 3.4, we obtain the following results for (1.5).

Theorem 4.1. Suppose (3.2) holds and for some \(\epsilon > 0 \), all solutions of the linear equation

\[
\dot{x}(t) + (1 - \epsilon) \frac{r(t)}{1 + s(t)} x(h(t)) = 0
\] (4.2)

are oscillatory. Then all solutions of (1.5) are oscillatory about \(K \).

Theorem 4.2. Suppose for some \(\epsilon > 0 \) there exists a nonoscillatory solution of the linear delay differential equation

\[
\dot{x}(t) + (1 + \epsilon) \frac{r(t)}{1 + s(t)} x(h(t)) = 0.
\] (4.3)

Then there exists a nonoscillatory about \(K \) solution of (1.5).

Corollary 4.3. If

\[
\liminf_{t \to -\infty} \int_{h(t)}^{t} \frac{r(\tau)}{1 + s(\tau)} d\tau > \frac{1}{\epsilon'},
\] (4.4)
then all solutions of (1.5) are oscillatory about \(K \). If

\[
\limsup_{t \to -\infty} \int_{h(t)}^{t} \frac{r(\tau)}{1 + s(\tau)} d\tau < \frac{1}{e},
\]

then (1.5) has a nonoscillatory about \(K \) solution.

Now consider a generalized delay food-limited equation

\[
\dot{N}(t) = r(t)N(t) \frac{K - N(h(t))}{K + s(t)N(g(t))} \left\| N(h(t)) \right\|^{-1},
\]

where \(l > 0 \) and for the other parameters conditions (A1) and (A2) hold.

After the substitution \(y(t) = N(t)N(t)^{-l} \), (4.6) turns into the following one:

\[
\dot{y}(t) = lr(t)y(t) \frac{K - y(h(t))}{K + s(t)y(g(t))}.
\]

It is easy to see that (4.6) has a nonoscillatory about \(K^{1/l} \) solution if and only if (4.7) has a nonoscillatory about \(K \) solution.

For (4.7), Theorems 4.1, 4.2 and their corollary can be applied. Hence, we have the following results.

Theorem 4.4. Suppose (3.2) holds and for some \(\epsilon > 0 \), all solutions of the linear equation

\[
\dot{x}(t) + (1 - \epsilon) \frac{lr(t)}{1 + s(t)} x(h(t)) = 0
\]

are oscillatory. Then all solutions of (4.6) are oscillatory about \(K^{1/l} \).

Theorem 4.5. Suppose for some \(\epsilon > 0 \) there exists a nonoscillatory solution of linear delay differential equation

\[
\dot{x}(t) + (1 + \epsilon) \frac{lr(t)}{1 + s(t)} x(h(t)) = 0.
\]

Then there exists a nonoscillatory about \(K^{1/l} \) solution of (4.6).

Corollary 4.6. If

\[
\liminf_{t \to -\infty} \int_{h(t)}^{t} \frac{lr(\tau)}{1 + s(\tau)} d\tau > \frac{1}{e},
\]

then all solutions of (1.5) are oscillatory about \(K \). If

\[
\limsup_{t \to -\infty} \int_{h(t)}^{t} r(\tau) d\tau < \frac{1}{e},
\]

then (1.5) has a nonoscillatory about \(K \) solution.
then all solutions of (4.6) are oscillatory about $K^{1/l}$. If

$$\limsup_{t \to \infty} \int_{h(t)}^{t} \frac{lr(\tau)}{1 + s(\tau)} d\tau < \frac{1}{e},$$

(4.11)

then there exists a nonoscillatory about $K^{1/l}$ solution of (4.6).

Now consider a food-limited equation with several delays

$$\dot{N}(t) = m \sum_{k=1}^{m} r_k(t)N(t) \frac{K - N(h_k(t))}{K + s_k(t)N(g_k(t))},$$

(4.12)

where the parameters of this equation satisfy conditions (A1) and (A2), $K > 0$, and the initial function ψ satisfies (A3).

Similar to the case $m = 1$, the following generalizations of Theorems 4.1 and 4.2 can be obtained.

Theorem 4.7. Suppose (3.2) holds and for some $\epsilon > 0$ all solutions of the linear equation

$$\dot{x}(t) + (1 - \epsilon) \sum_{k=1}^{m} \frac{r_k(t)}{1 + s_k(t)} x(h_k(t)) = 0$$

(4.13)

are oscillatory. Then all solutions of (4.12) are oscillatory about K.

Theorem 4.8. Suppose for some $\epsilon > 0$ there exists a nonoscillatory solution of the linear delay differential equation

$$\dot{x}(t) + (1 + \epsilon) \sum_{k=1}^{m} \frac{r_k(t)}{1 + s_k(t)} x(h(t)) = 0.$$

(4.14)

Then there exists a nonoscillatory about K solution of (4.12).

Corollary 4.9. If

$$\liminf_{t \to \infty} \sum_{k=1}^{m} \int_{\max h_k(t)}^{t} \frac{r_k(\tau)}{1 + s_k(\tau)} d\tau > \frac{1}{e},$$

(4.15)

then all solutions of (4.12) are oscillatory about K. If

$$\limsup_{t \to \infty} \sum_{k=1}^{m} \int_{\min h_k(t)}^{t} \frac{r_k(\tau)}{1 + s_k(\tau)} d\tau < \frac{1}{e},$$

(4.16)

then (4.12) has a nonoscillatory about K solution.
References

Oscillation of a food-limited model

Leonid Berezansky: Department of Mathematics, Ben-Gurion University of The Negev, Beer-Sheva 84105, Israel
E-mail address: brznsky@math.bgu.ac.il

Elena Braverman: Department of Mathematics and Statistics, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4
E-mail address: maelena@math.ucalgary.ca
Submit your manuscripts at http://www.hindawi.com