ON A CLASS OF SEMILINEAR ELLIPTIC EQUATIONS WITH BOUNDARY CONDITIONS AND POTENTIALS WHICH CHANGE SIGN

M. OUANAN AND A. TOUZANI

Received 19 May 2004

We study the existence of nontrivial solutions for the problem $\Delta u = u$, in a bounded smooth domain $\Omega \subset \mathbb{R}^N$, with a semilinear boundary condition given by $\frac{\partial u}{\partial \nu} = \lambda u - W(x)g(u)$, on the boundary of the domain, where W is a potential changing sign, g has a superlinear growth condition, and the parameter $\lambda \in]0, \lambda_1]$; λ_1 is the first eigenvalue of the Steklov problem. The proofs are based on the variational and min-max methods.

1. Introduction

In this paper, we study the existence of nontrivial solutions of the following problem:

$$(P_\lambda) \quad \begin{array}{ll}
\Delta u = u & \text{in } \Omega, \\
\frac{\partial u}{\partial \nu} = \lambda u - W(x)g(u) & \text{on } \partial \Omega,
\end{array}$$

where Ω is a bounded domain set of \mathbb{R}^N, $N \geq 3$ with smooth boundary $\partial \Omega$, $\Delta u = \nabla \cdot (\nabla u)$ is the Laplacian and $\partial/\partial \nu$ is the outer normal derivative; the parameter $\lambda \in]0, \lambda_1]$, where λ_1 is the first eigenvalue of the Steklov problem (see [5]), $W \in C(\overline{\Omega})$ different from zero almost everywhere and changes sign, while $g(u)$ is a continuous and superlinear function (see (G1), (G2), (G3)) below.

In the case of $W \equiv 0$, (P_λ) becomes a linear eigenvalue problem and it is known as the Steklov problem studied in [5], which proved the existence, the simplicity, and the isolation of the first eigenvalue λ_1.

The study of the similar problem when the nonlinear term is placed in the equation, that is, when one considers problem of the form $-\Delta u = \lambda u + W(x)g(u)$ with Dirichlet boundary condition, there is more work; hence, in the case where g behaves as a power near 0 and infinity, Alama and Tarantello in [2] showed the existence of a positive solution, provided that f is odd, and found that a necessary and sufficient condition to obtain...
such a solution is

$$\int_{\Omega} W(x)e_1^p dx < 0,$$

where e_1 denotes a positive eigenfunction of Laplacian related to the first eigenvalue, with $p \in]2,2^*[$, $2^* = 2N/(N-2)$ if $N > 2$, $2^* = +\infty$ if $N = 2$. Also, in [3], it was proved that (1.2) is a necessary and sufficient condition to obtain a positive solution; recently, Mar-gone in [14], proved some results of existence in case that $0 < \lambda < \lambda_1$, close to λ_1; by using mountain pass lemma (see [4]) and linking-type theorem (see [15]). Finally, in [1], Alama and Delpino proved under some restriction on the sign of $W(x)$ the existence of nontrivial solution, by using two different approach: one involving min-max methods, the other Morse theory methods.

However, nonlinear boundary conditions have only been considered in recent years, for the Laplacian with boundary conditions, see, for example [6, 7, 8, 12, 13, 16], where the authors discussed mountain pass theorem on an order interval with Dirichlet boundary condition. For elliptic systems with nonlinear boundary conditions, see [9, 10]. The main purpose of this work is to study one problem of Neumman boundary value, in the case $\lambda = \lambda_1$ because if $\lambda < \lambda_1$, it is easy to prove that the functional Φ_λ has a condition of mountain pass structure. We show two results of existence obtained as critical points of the functional related at (P_λ), by using mountain pass lemma introduced in [4] and linking-type theorem introduced in [15].

The rest of this paper is organized as follows: in Section 2, we cite the main results and in Section 3, we prove the main results.

2. Main results

In the sequel, we consider the following functional:

$$G(u) = \int_0^u g(t)dt.$$

Then, we show the following existence results for (P_λ).

Theorem 2.1. Let g be a continuous real-valued function on \mathbb{R} such that the following assumptions hold:

1. $g(u)u \geq 0$ for all $u \in \mathbb{R}$,
2. $|g(u)| \leq C|u|^{r-1}$ for all $u \in \mathbb{R}$, and for some $r \in]2,2(N-1)/(N-2)[$,
3. $g(u)u \geq (s+1)G(u)$ for $u > R$, R sufficiently large, and for some $s \in]1, N/(N-2)[$,
4. $\lim_{u \to 0}(g(u)/|u|^{r-2}u) = a > 0$,
5. $g(u)u \geq c|u|^{s+1}$ for $|u| > R$, and R sufficiently large,
6. $W^- (g(u)u - (s+1)G(u)) \leq \gamma |u|^2$, $|u| > R$, for some

$$\gamma \in \left[0, \left(\frac{s+1}{2} - 1\right)(\lambda_2 - \lambda_1)\right],$$

where λ_2 is the second eigenvalue of the Steklov problem, and $W^- (x) = -\min \{W(x), 0\}$, $W^- = \max_{x \in \partial \Omega} W^-(x)$; moreover, let
Theorem 2.3. Let \(g \) satisfy conditions (G1)–(G3), (G5), (G6), and (W0). If \(W \) verifies the further assumptions,

\[(W_2) \int_{\partial \Omega} W(x)G(te_1)\,d\sigma > 0, \text{ for all } t \in \mathbb{R} \setminus \{0\},\]
\[(W_3) \int_D W(x)G(te_1)\,d\sigma > c, \text{ for all } t \in \mathbb{R} \text{ and for some } c \in \mathbb{R}, \text{ where } D \text{ is a nonempty open subset in } \partial \Omega \text{ such that } \text{supp } W^- \subset D,\]

then \((P_\lambda)\) has a nontrivial solution.

Remark 2.4. Note that the solution found in Theorem 2.3 is surely not always positive because \((W_1)\) does not hold. Moreover, condition \((W_2)\), which appears in Theorem 2.3, is in some sense complementary to \((W_1)\) if \(g \) is a power.

3. Proof of the main results

It is well known that the solutions of \((P_\lambda)\) are critical points of the functional

\[
\Phi_\lambda(u) = \frac{1}{2} \left(\| \nabla u \|_2^2 + \| u \|_2^2 - \lambda \int_{\partial \Omega} |u|^2\,d\sigma \right) - \int_{\partial \Omega} W(x)G(u)\,d\sigma, \quad u \in H^1(\Omega). \tag{3.1}
\]

In order to prove the main results, we apply the mountain pass theorem (see [4]) and a suitable version of the linking-type theorem (see [15]) to the functional \(\Phi_\lambda \).

The following lemma is the key for proving our theorems, in which we consider \(\lambda = \lambda_1 \) because if \(\lambda < \lambda_1 \), the argument is the same.

Lemma 3.1. Under assumptions \((W_0)\), (G2), (G3), (G5), (G6), the functional \(\Phi_\lambda(u) \) satisfies the Palais-Smale condition on \(H^1(\Omega) \). That is, any sequence \((u_n)_n \) in \(H^1(\Omega) \), such that

\[
(\Phi_\lambda(u_n))_n \text{ is bounded and } \Phi'_\lambda(u_n) \to 0 \tag{3.2}
\]

possesses a converging subsequence.

Proof. Let \((u_n)_n \subset H^1(\Omega) \) be a Palais-Smale sequence, namely, there exist \(c_1 \) and \(c_2 \) such that

\[
c_1 \leq \frac{1}{2} \left(\| \nabla u_n \|_2^2 + \| u_n \|_2^2 - \lambda_1 \int_{\partial \Omega} |u_n|^2\,d\sigma \right) - \int_{\partial \Omega} W(x)G(u_n)\,d\sigma \leq c_2, \tag{3.3}
\]

\[
\sup_{\| \phi \|_{H^1(\Omega)} = 1} \left\{ \int_{\Omega} \nabla u_n \nabla \phi + u_n \phi \,dx - \lambda_1 \int_{\partial \Omega} u_n \phi\,d\sigma \right. \nonumber
\]
\[
- \left. \int_{\partial \Omega} W(x)g(u_n)\phi\,d\sigma \right\} \to 0 \quad \text{as } n \to +\infty. \tag{3.4}
\]
We are going to show that \((u_n)_n\) is bounded in \(H^1(\Omega)\). By assumptions \((G3)\) and \((G6)\), and from (3.3) and (3.4), we get for some constant \(c_R > 0\) depending on the number \(R\) of \((G3),\)
\[
\int_\Omega (|\nabla u_n|^2 + u_n^2) \, dx = \lambda_1 \int_{\partial \Omega} u_n^2 \, d\sigma - \int_{\partial \Omega} W(x) g(u_n) u_n \, d\sigma + \epsilon_n ||u_n||_{1,2}
\geq \lambda_1 \int_{\partial \Omega} u_n^2 \, d\sigma + \int_{\partial \Omega} W^+(x) g(u_n) u_n \, d\sigma
- \int_{\partial \Omega} W^-(x) g(u_n) u_n \, d\sigma + c_R \epsilon_n ||u_n||_{1,2}
\geq \lambda_1 \int_{\partial \Omega} u_n^2 \, d\sigma + (s+1) \int_{\partial \Omega} W^+(x) G(u_n) \, d\sigma - \gamma \int_{\partial \Omega \cap \{|u| > R\}} |u_n|^2 \, d\sigma
- (s+1) \int_{\partial \Omega \cap \{|u| > R\}} W^-(x) G(u_n) \, d\sigma + c_R \epsilon_n ||u_n||_{1,2}
\geq \lambda_1 \int_{\partial \Omega} u_n^2 \, d\sigma + (s+1) \left[\frac{1}{2} ||u_n||_{1,2}^2 - \frac{\lambda_1}{2} \int_{\partial \Omega} u_n^2 \, d\sigma - c_1 \right]
- \gamma \int_{\partial \Omega} u_n^2 \, d\sigma + c_R \epsilon_n ||u_n||_{1,2}.
\]
(3.5)

Set \(X_1 = \text{vect}(e_1)\), then, there exist \(k_n \in \mathbb{R}\) such that \(u_n = k_n e_1 + v_n\), where \(v_n \in X_1^\perp\).

Using the variational characterization of \(\lambda_2\), (3.5) becomes
\[
\left(\frac{s+1}{2} - 1 \right) \left(1 - \frac{\lambda_1}{\lambda_2} \right) ||v_n||_{1,2}^2 + \epsilon_n ||v_n||_{1,2} \leq \gamma \int_{\partial \Omega} (k_n e_1 + v_n)^2 \, d\sigma + c,
\]
(3.6)
where \(\epsilon_n\) is an infinitesimal sequence of positive numbers.

On the other hand, using variational characterization of \(\lambda_1\), it follows that
\[
\left[\left(\frac{s+1}{2} - 1 \right) \left(1 - \frac{\lambda_1}{\lambda_2} \right) - \frac{\gamma}{\lambda_2} \right] ||v_n||_{1,2}^2 + \epsilon_n ||v_n||_{1,2} \leq c + yk_n^2 \int_{\partial \Omega} e_1^2 \, d\sigma.
\]
(3.7)

On the other side, by (2.2) and taking into account that \(\epsilon_n \to 0\), we deduce that
\[
||v_n||_{1,2} \leq \text{const} \left(1 + k_n^2 \right),
\]
(3.8)
hence, it suffices to prove that \((|k_n|)_n\) is bounded. So, if \(|k_n| \to +\infty\) (at least a subsequence), therefore \((v_n/|k_n|)_n\) is bounded in \(H^1(\Omega)\), so a subsequence, also called \((v_n/|k_n|)_n\), weakly converges in \(H^1(\Omega)\) at some \(f\) and that
\[
f(x) + e_1(x) \neq 0 \quad \text{a.e. in } \overline{\Omega}.
\]
(3.9)

Indeed, if (3.9) is false, taking into account that
\[
\int_{\Omega} \left(\nabla \left(\frac{v_n}{|k_n|} \right) \right) \nabla e_1 + \frac{v_n}{|k_n|} e_1 \, dx = 0 \quad \forall n \in \mathbb{N}
\]
(3.10)
as \(n \to +\infty \), we obtain \(\|e_1\|_{L^2,\Omega}^2 = \lambda_1 \int_{\partial \Omega} e_1^2 = 0 \), which is an absurdum as we know that \(e_1 \) is the principal eigenvector related with \(\lambda_1 \).

From (3.4), we obtain

\[
\int_{\Omega} (\nabla u_n \nabla \phi + u_n \phi) \, dx - \lambda_1 \int_{\partial \Omega} u_n \phi \, d\sigma - \int_{\partial \Omega} W(x)g(u_n) \phi \, d\sigma = \eta_n \tag{3.11}
\]

with \(\lim_{n \to +\infty} \eta_n = 0 \) in \(\mathbb{R} \).

Let \(\phi_n = (k_n e_1 + v_n)|k_n|^{-1} \phi \), where \(\phi \) is a regular function with support compact in \(\overline{\Omega} \) and \(\text{meas}(\text{supp} \phi \cap \partial \Omega) \neq 0 \); then

\[
\int_{\Omega} (\nabla (k_n e_1 + v_n) \nabla \phi_n + (k_n e_1 + v_n) \phi_n) \, dx \\
- \lambda_1 \int_{\partial \Omega} (k_n e_1 + v_n) \phi_n \, d\sigma - \int_{\partial \Omega} W(x)g(k_n e_1 + v_n) \phi_n \, d\sigma = \eta_n, \tag{3.12}
\]

hence

\[
\frac{1}{|k_n|} \int_{\Omega} [\nabla v_n \nabla \phi_n + v_n \phi_n] \, dx - \frac{\lambda_1}{|k_n|} \int_{\partial \Omega} v_n \phi_n \, d\sigma
= \frac{1}{|k_n|} \int_{\partial \Omega} W(x)g(k_n e_1 + v_n) \phi_n \, d\sigma + o(1) \tag{3.13}
\]

for \(n \) large enough.

So, Hölder inequality and (3.8) imply that \((1/|k_n|) \int_{\Omega} (\nabla v_n \nabla \phi_n + v_n \phi_n) \, dx\) and \((\lambda_1/|k_n|) \int_{\partial \Omega} v_n \phi_n \, d\sigma\) are bounded.

On the other side, combining (\(W_0 \)) and (3.9), it follows that either

\[
\int_{\text{supp} \, W^+} |h(x) + e_1(x)|^{s+1} \, d\sigma > 0 \quad \text{or} \quad \int_{\text{supp} \, W^-} |h(x) + e_1(x)|^{s+1} \, d\sigma > 0. \tag{3.14}
\]

In the first case, we take \(\phi \) regular nonnegative function with \(\text{meas}(\text{supp} \phi \cap \text{supp} \, W^+) \neq 0 \) such that

\[
\int_{\text{supp} \, W^+} W^+(x) \phi(x) |h(x) + e_1(x)|^{s+1} \, d\sigma > 0, \tag{3.15}
\]

then, by \((G6)\) and (3.15), we get for some positive constant \(c \),

\[
\frac{1}{|k_n|} \int_{\partial \Omega} W(x)g(k_n e_1 + v_n) \phi_n \, d\sigma \geq \frac{c}{|k_n|} \int_{\text{supp} \, W^+} W^+(x) |k_n e_1 + v_n|^{s+1} \phi \, d\sigma - c
\geq c|k_n|^{-1} \int_{\text{supp} \, W^+} W^+(x) \left| e_1 + \frac{v_n}{k_n} \right|^{s+1} \phi \, d\sigma - c \to +\infty. \tag{3.16}
\]

This and formula (3.13) contradict the bound of \((1/|k_n|) \int_{\Omega} (\nabla v_n \nabla \phi_n + v_n \phi_n) \, d\sigma\) and \((\lambda_1/|k_n|) \int_{\partial \Omega} v_n \phi_n \, d\sigma\).
For the second case, it suffices to take ϕ nonnegative function with $\text{meas}(\text{supp} \phi \cap \text{supp} W^-) \neq 0$ such that

$$\int_{\text{supp} W^-} W^-(x) \phi(x) |h(x) + e_1(x)|^{s+1} \, d\sigma > 0. \quad (3.17)$$

Finally, we have proved that $(u_n)_n$ is bounded, this implies the existence of a subsequence weakly converging in $H^1(\Omega)$. On the other side, thanks to $(G2)$ and the compact embedding $H^1(\Omega) \hookrightarrow L^r(\partial \Omega)$ for $r \in]2, 2(N - 1)/(N - 2)[$, we have the strong convergence. □

Lemma 3.2. The origin is a strict locale minimizer of Φ_λ.

Proof. First, remark that each $u \in H^1(\Omega)$ can be written as $u = te_1 + v$, where $t \in \mathbb{R}$, and $v \in X^\perp$, then

$$\int_\Omega (|\nabla u|^2 + |u|^2) \, dx = t^2 \lambda_1 \int_{\partial \Omega} e_1^2 \, d\sigma + \|v\|^2_{1,2}. \quad (3.18)$$

Choosing e_1 such that $\int_{\partial \Omega} e_1^2 \, d\sigma = 1/\lambda_1$, one gets, for all u satisfying $\|u\|_{1,2} \leq 1/2 \|e_1\|_\infty$,

$$t^2 < \|u\|^2_{1,2} < \frac{1}{4\|e_1\|_\infty^2}. \quad (3.19)$$

Hence, by variational characterization of the eigenvalues of the Laplacian with boundary conditions and for a suitable function $F(t, v)$, we obtain

$$\Phi_\lambda(u) \geq \frac{1}{2} \left(1 - \frac{\lambda_1}{\lambda_2} \right) \|v\|^2_{1,2} - \int_{\partial \Omega} W(x) G(te_1 + v) \, d\sigma$$
$$\geq \frac{1}{2} \left(1 - \frac{\lambda_1}{\lambda_2} \right) \|v\|^2_{1,2} - |t|^r \int_{\partial \Omega} W(x) e_1 \, d\sigma + F(t, v), \quad (3.20)$$

where by $(G4)$,

$$F(t, v) = \int_{\partial \Omega} W(x) \left[|te_1|^r - G(te_1) \right] \, d\sigma + \int_{\partial \Omega} W(x) \left[G(te_1) - G(te_1 + v) \right] \, d\sigma$$
$$= \int_{\partial \Omega} W(x) \left[G(te_1) - G(te_1 + v) \right] \, d\sigma + o(|t|^r). \quad (3.21)$$

On the other hand, using arrangement-finite theorem, there exists a function $0 < \theta \equiv \theta(x, t, v) < 1$ such that

$$|G(te_1 + v) - G(te_1)| = |g(te_1 + \theta v(x)) v(x)| \quad (3.22)$$
In case that \(|te_1 + \theta \nu(x)| \geq 1\), by (3.19), we deduce
\[
|\theta \nu(x)| \geq 2|t||e_1|_\infty - |t||e_1|_\infty \geq |t||e_1|_\infty,
\]
so by (G2),
\[
|g(te_1 + \theta \nu(x)) \nu(x)| \leq C|te_1 + \theta \nu(x)|^{r-1} |\nu(x)| \\
\leq 2^{r-2}C|\theta \nu(x)|^{r-1} |\nu(x)| \leq 2^{r-1}C|\nu(x)|^r,
\]
while, if \(|te_1 + \theta \nu(x)| \leq 1\), using again (G2), one obtains
\[
|W(x)| |g(te_1 + \theta \nu(x)) \nu(x)| \leq C|te_1 + \theta \nu(x)|^{r-1} |\nu(x)| \\
\leq C\left[|te_1|^{r-1} + |\nu(x)|^r \right] \leq \epsilon |te_1|^{r} + C_\epsilon |\nu(x)|^r,
\]
where \(\epsilon, C_\epsilon\) are two positive constants.

Set \(A = -\int_{\partial \Omega} W(x)e_1' d\sigma > 0\). Combining (3.21), (3.24), and (3.25), and using (W1), (3.20) becomes
\[
\Phi_{\lambda_1}(u) \geq \frac{1}{2} \left(1 - \frac{\lambda_1}{\lambda_2} \right) \|v\|_{1,2}^2 - t \int_{\partial \Omega} W(x)e_1' - |F(t, \nu)| \\
\geq \frac{1}{2} \left(1 - \frac{\lambda_1}{\lambda_2} \right) \|v\|_{1,2}^2 + t' A - 2^{r-1}C \int_{\partial \Omega \cap \{|u| > 1\}} |W(x)| |\nu(x)|^r d\sigma \\
- \int_{\partial \Omega \cap \{|u| \leq 1\}} \left[\epsilon |te_1|^{r} + C_\epsilon |\nu(x)|^{r} \right] + \theta(|t|^{r}) \\
\geq \frac{1}{2} \left(1 - \frac{\lambda_1}{\lambda_2} \right) \|v\|_{1,2}^2 + t' (A - C_1 \epsilon) - C_2 \|v\|_{1,2}^r + o(|t|^{r}),
\]
where \(C_1, C_2\) are two positive constants.

Hence, using Sobolev trace embedding, for \(\epsilon < A/C_1\), we deduce
\[
\Phi_{\lambda_1}(u) \geq \frac{1}{2} \left(1 - \frac{\lambda_1}{\lambda_2} \right) \|v\|_{1,2}^2 + C_3 t' - C_4 \|v\|_{1,2}^r + o(|t|^{r}).
\]

For \(r > 2\), the least expression is strictly positive as \(\|v\|_{1,2}\) is close to 0. \(\square\)

Proof of Theorem 2.1. We will study only the case \(\lambda = \lambda_1\) because if \(\lambda < \lambda_1\), it is easily proved that the functional \(\Phi_\lambda\) has a condition of mountain pass structure.

Now, it suffices to prove that there exist \(\pi \in H^1(\Omega)\) such that \(\|\pi\|_{1,2} > \rho, \rho\) large enough satisfying \(\Phi_\lambda(\pi) < 0\) which completes the proof of Theorem 2.3.

Let \(t \in \mathbb{R}\) and \(\phi \in C_0^\infty(\text{supp} \ W^+)\), where \(W^+(x) = \max(W(x), 0)\) (note that \(\phi\) is well defined, thanks to (W0)).

Using (G4), we obtain
\[
\Phi_{\lambda_1}(t\phi) = \frac{t^2}{2} \left(\|\phi\|_{1,2}^2 - \lambda_1 \int_{\partial \Omega} \phi^2 d\sigma \right) - \int_{\partial \Omega} W(x)G(t\phi) d\sigma \\
\leq \frac{t^2}{2} \|\phi\|_{1,2}^2 - Ct' \int_{\text{supp} \ W^+} W^+(x)|\phi|^r d\sigma \rightarrow -\infty \quad \text{as} \ t \rightarrow +\infty.
\]
Then, there exists $t_0 > 0$ large enough, such that $u = t_0 \phi$. Hence, using mountain pass lemma, there exists a critical point u of Φ_{λ_1} at the level

$$c = \inf_{y \in \Gamma} \max_{v \in y([0,1])} \Phi_{\lambda_1}(v) > 0,$$

where $\Gamma = \{ y \in C([0,1], H^1(\Omega)) : y(0) = 0, y(\bar{\Omega}) = 1 \}$ is the class of the path joining the origin to $\bar{\Omega}$.

The positivity of u can be checked by a standard argument based on (3.29) (which yields the nonnegativity of u) and by the strong maximum principle of Vazquez [17] (which yields the strict positivity of u). □

The proof of Theorem 2.3 is based on Lemma 3.1 and the following version of the linking theorem, see [15].

Proposition 3.3. Let E be a real Banach space with $E = X_1 \oplus X_2$, where X_1 is finite dimensional. Suppose $J \in C^1(E, \mathbb{R})$ satisfies the Palais-Smale condition and

(J1) there are two constants $\rho, \alpha > 0$ such that $J(u) \geq \alpha$, for all $u \in X_2$: $\|u\|_E = \rho$,

(J2) there exists $\bar{x} \in X_2$ with $\|\bar{x}\| = 1$ and $R > \rho$ such that, if

$$Q = \{ u \in E : u = w + \delta \bar{x} \text{ with } w \in X_1, \|w\| \leq R, \delta \in (0, R) \},$$

then $J|_{\partial Q} \leq 0$.

Then J possesses a critical value $c \geq \alpha$.

Proof of Theorem 2.3. Set $E = H^1(\Omega)$ and $J = \Phi_{\lambda}$ in Proposition 3.3.

First, thanks to Lemma 3.1, Φ_{λ} satisfies Palais-Smale condition.

We take $X_1 = \{ t e_1 / t \in \mathbb{R} \}$, then $X_2 = \{ v \in H^1(\Omega)/\int_\Omega v e_1 dx = 0 \}$ and let $v \in X_2$, $\|v\|_{1,2} = \rho$, then

$$\Phi_{\lambda_1}(v) = \frac{1}{2} \int_\Omega (|\nabla v|^2 + |v|^2) dx - \frac{\lambda_1}{2} \int_{\partial \Omega} v^2 d\sigma - \int_{\partial \Omega} W(x) G(u) d\sigma$$

$$\geq \frac{1}{2} \left(1 - \frac{\lambda_1}{\lambda_2} \right) \|v\|_{1,2}^2 - C \sup_{\partial \Omega} W(x) \int_{\partial \Omega} |v'| d\sigma$$

$$\geq \frac{1}{2} \left(1 - \frac{\lambda_1}{\lambda_2} \right) \rho^2 - C \rho^r.$$

Then, for ρ small enough, we have $\Phi_{\lambda_1}(v) \geq \alpha$, so (J1) is verified.

As for the proof of (J2), first of all, we note that, as also observed in [15], it is enough to prove the following two properties:

(a) $\Phi_{\lambda_1}(te_1) \leq 0$ for all $t \in \mathbb{R}$;

(b) there exist $\bar{v} \in X_2 \setminus \{0\}$ and $\rho_0 > \rho$ such that $\Phi_{\lambda_1}(u) \leq 0$ for all $u \in X_1 \oplus [\bar{v}]$ and $\|u\| \geq \rho_0$.

For (a), we have

$$\Phi_{\lambda_1}(te_1) = - \int_{\partial \Omega} W(x) G(te_1)$$

which is not positive by (W2), and (a) follows.
On the other side, let \overline{v} be a sufficiently regular function in $X_2 \setminus \{0\}$ such that $\text{supp} \overline{v} \subset \overline{\Omega} \setminus D$ and $\text{meas}(\text{supp} \overline{v} \cap \partial \Omega) \neq 0$. Hence, for $u \in X_1 \oplus [\overline{v}] = \{te_1 + \delta \overline{v}, (t, \delta) \in \mathbb{R}^2\}$, we obtain

$$
\Phi_{\lambda_1}(u) = \frac{\delta^2}{2} \left[\int_{\Omega} \left(|\nabla \overline{v}|^2 + |\overline{v}|^2 \right) dx - \lambda_1 \int_{\partial \Omega} |\overline{v}|^2 d\sigma \right] - \int_{\partial \Omega} W(x) G(te_1 + \delta \overline{v}) d\sigma \\
\leq \frac{\delta^2}{2} \int_{\Omega} \left(|\nabla \overline{v}|^2 + |\overline{v}|^2 \right) dx - \int_{\partial \Omega \setminus D} W^+(x) G(te_1 + \delta \overline{v}) d\sigma - \int_D W(x) G(te_1) d\sigma + c,
$$

(3.33)

therefore, by (W_3), one gets

$$
\Phi_{\lambda_1}(te_1 + \delta \overline{v}) \leq c(t^2 + \delta^2) - c \int_{\partial \Omega \setminus D} W^+(x) |te_1 + \delta \overline{v}|^{s+1} d\sigma + c.
$$

(3.34)

We observe now that the map

$$
te_1 + \delta \overline{v} \in X_1 \oplus [\overline{v}] \longrightarrow (t, \delta) \in \mathbb{R}^2
$$

is an isomorphism and that

$$
te_1 + \delta \overline{v} \longrightarrow \left(\int_{\partial \Omega \setminus D} W^+(x) |te_1 + \delta \overline{v}|^{s+1} d\sigma \right)^{1/(s+1)}
$$

(3.36)

yields a norm from $X_1 \oplus [\overline{v}]$ as it easily can be deduced from the fact that $-te_1(x) \neq \delta \overline{v}(x)$ in $\overline{\Omega} \setminus D$ if $\delta^2 + t^2 \neq 0$ (indeed $e_1(x) > 0$ everywhere on $\overline{\Omega}$, while \overline{v} has a compact support in $\overline{\Omega} \setminus D$) therefore, as all the norms are equivalents in a finite dimensional space, we get, for some positive constant c,

$$
\Phi_{\lambda_1}(te_1 + \delta \overline{v}) \leq c(t^2 + \delta^2) - c(t^{s+1} + \delta^{s+1}) + c
$$

(3.37)

then,

$$
\lim_{t^2 + \delta^2 \to +\infty} \Phi_{\lambda_1}(te_1 + \delta \overline{v}) = -\infty,
$$

(3.38)

hence, Φ_1 satisfies the assumptions of Proposition 3.3, which completes the proof of Theorem 2.3.

□

References

104 Semilinear elliptic equations

M. Ouanan: Department of Mathematics and Informatics, Faculty of Sciences Dhar-Mahraz, P.O. Box 1796 Atlas-Fez, Fez, Morocco
E-mail address: m_ouanan@hotmail.com

A. Touzani: Department of Mathematics and Informatics, Faculty of Sciences Dhar-Mahraz, P.O. Box 1796 Atlas-Fez, Fez, Morocco
E-mail address: atouzani@menara.ma