Research Article

Isomorphisms and Derivations in Lie C*-Algebras

Choonkil Park, Jong Su An, and Jianlian Cui

Received 7 May 2007; Revised 10 July 2007; Accepted 13 July 2007

Recommended by John Michael Rassias

We investigate isomorphisms between C*-algebras, Lie C*-algebras, and JC*-algebras, and derivations on C*-algebras, Lie C*-algebras, and JC*-algebras associated with the Cauchy–Jensen functional equation 2f((x + y/2) + z) = f(x) + f(y) + 2f(z).

1. Introduction and preliminaries

Ulam [1] gave a talk before the Mathematics Club of the University of Wisconsin in which he discussed a number of unsolved problems, containing the stability problem of homomorphisms. Hyers [2] proved the stability problem of additive mappings in Banach spaces. Rassias [3] provided a generalization of Hyers’ theorem which allows the Cauchy difference to be unbounded:

Let f : E → E' be a mapping from a normed vector space E into a Banach space E' subject to the inequality

\[\| f(x + y) - f(x) - f(y) \| \leq \epsilon (\| x \|^p + \| y \|^p) \] \hspace{1cm} (1.1)

for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. The inequality (1.1) that was introduced by Rassias [3] provided a lot of influence in the development of a generalization of the Hyers-Ulam stability concept. This new concept is known as Hyers-Ulam-Rassias stability of functional equations. Gavruta [4] provided a further generalization of Th. M. Rassias’ theorem. Several mathematicians have contributed works on these subjects (see [4–14]).

Rassias [15] provided an alternative generalization of Hyers’ stability theorem which allows the Cauchy difference to be unbounded, as follows.
Theorem 1.1. Let $f : E \to E'$ be a mapping from a normed vector space E into a Banach space E' subject to the inequality

$$
\| f(x + y) - f(x) - f(y) \| \leq \epsilon \|x\|^p \|y\|^p
$$

(1.2)

for all $x, y \in E$, where ϵ and p are constants with $\epsilon > 0$ and $0 \leq p < 1/2$. Then the limit

$$
L(x) = \lim_{n \to \infty} \frac{f(2^nx)}{2^n}
$$

(1.3)

exists for all $x \in E$ and $L : E \to E'$ is the unique additive mapping which satisfies

$$
\| f(x) - L(x) \| \leq \frac{\epsilon}{2 - 4p} \|x\|^{2p}
$$

(1.4)

for all $x \in E$. If $p < 0$, then inequality (1.2) holds for $x, y \neq 0$, and (1.4) for $x \neq 0$. If $p > 1/2$, then inequality (1.2) holds for all $x, y \in E$, and the limit

$$
A(x) = \lim_{n \to \infty} 2^n f \left(\frac{x}{2^n} \right)
$$

(1.5)

exists for all $x \in E$ and $A : E \to E'$ is the unique additive mapping which satisfies

$$
\| f(x) - A(x) \| \leq \frac{\epsilon}{4^p - 2} \|x\|^{2p}
$$

(1.6)

for all $x \in E$.

In 1982–1994, a generalization of this result was established by J. M. Rassias with a weaker (unbounded) condition controlled by (or involving) a product of different powers of norms. However, there was a singular case. Then for this singularity, a counterexample was given by Găvruta [16]. The above-mentioned stability involving a product of different powers of norms is called Ulam-Găvruta-Rassias stability by Sibaha et al. [17] and Ravi and Arunkumar[18]. This stability is called Hyers-Ulam-Rassias stability involving a product of different powers of norms by Park [10]. Note that both Ulam stabilities specifically called: “Ulam-Găvruta-Rassias stability of mappings” and “Hyers-Ulam-Rassias stability of mappings involving a product of powers of norms are identical in meaning stability notions. Besides Euler-Lagrange quadratic mappings were introduced by Rassias [19], motivated from the pertinent algebraic quadratic equation. Thus he introduced and investigated the relative quadratic functional equation [20, 21]. In addition, he generalized and investigated the general pertinent Euler-Lagrange quadratic mappings [22]. Analogous quadratic mappings were introduced and investigated by the same author [23, 24]. Therefore, this introduction of Euler-Lagrange mappings and equations in functional equations and inequalities provided an interesting cornerstone in analysis, because this kind of Euler-Lagrange-Rassias mappings (resp., Euler-Lagrange-Rassias equations) is of particular interest in probability theory and stochastic analysis by marrying these fields of research results to functional equations and inequalities via the introduction of new Euler-Lagrange-Rassias quadratic weighted means and Euler-Lagrange-Rassias fundamental mean equations [21, 22, 25]. For further research developments in
stability of functional equations, the readers are referred to the works of Park [6–13], Rassias [15, 19–24, 26–36], J. M. Rassias and M. J. Rassias [25, 37–39], Rassias [40–43], Skof [44], and the references cited therein.

Gilányi [45] showed that if f satisfies the functional inequality
\[
\|2f(x) + 2f(y) - f(x - y)\| \leq \|f(x + y)\|, \tag{1.7}
\]
then f satisfies the Jordan-von Neumann functional inequality
\[
2f(x) + 2f(y) = f(x + y) + f(x - y) \tag{1.8}
\]

Jordan observed that $L(\mathcal{H})$ is a (nonassociative) algebra via the anticommutator product $x \circ y := (xy + yx)/2$. A commutative algebra X with product $x \circ y$ is called a Jordan algebra. A Jordan C^*-subalgebra of a C^*-algebra, endowed with the anticommutator product, is called a JC^*-algebra. A C^*-algebra \mathcal{C}, endowed with the Lie product $[x, y] = (xy - yx)/2$ on \mathcal{C}, is called a Lie C^*-algebra (see [6, 7, 13]).

This paper is organized as follows. In Section 2, we investigate isomorphisms and derivations in C^*-algebras associated with the Cauchy-Jensen functional equation. In Section 3, we investigate isomorphisms and derivations in JC^*-algebras associated with the Cauchy-Jensen functional equation. In Section 4, we investigate isomorphisms and derivations in JC^*-algebras associated with the Cauchy-Jensen functional equation.

2. Isomorphisms and derivations in C^*-algebras

Throughout this section, assume that A is a C^*-algebra with norm $\| \cdot \|_A$, and that B is a C^*-algebra with norm $\| \cdot \|_B$.

Lemma 2.1 [11]. Let $f : A \to B$ be a mapping such that
\[
\|f(x) + f(y) + 2f(z)\|_B \leq \bigg\|2f \left(\frac{x+y}{2} + z \right) \bigg\|_B \tag{2.1}
\]
for all $x, y, z \in A$. Then f is Cauchy additive, that is, $f(x + y) = f(x) + f(y)$.

In this section, we investigate C^*-algebra isomorphisms between C^*-algebras and linear derivations on C^*-algebras associated with the Cauchy-Jensen functional equation.

Theorem 2.2. Let $r > 1$ and θ be nonnegative real numbers, and let $f : A \to B$ be a bijective mapping such that
\[
\|\mu f(x) + f(y) + 2f(z)\|_B \leq \bigg\|2f \left(\frac{\mu x + y}{2} + z \right) \bigg\|_B, \tag{2.2}
\]
\[
\|f(xy) - f(x)f(y)\|_B \leq \theta(\|x\|_B^2 r + \|y\|_B^2 r), \tag{2.3}
\]
\[
\|f(x^*) - f(x)^*\|_B \leq \theta(\|x\|_A^r + \|x\|_A^r) \tag{2.4}
\]
for all \(\mu \in \mathbb{T}^1 := \{ \lambda \in \mathbb{C} \mid |\lambda| = 1 \} \) and all \(x, y, z \in A \). Then the mapping \(f : A \to B \) is a \(C^* \)-algebra isomorphism.

Proof. Let \(\mu = 1 \) in (2.2). By Lemma 2.1, the mapping \(f : A \to B \) is Cauchy additive. So \(f(0) = 0 \) and \(f(x) = \lim_{n \to \infty} 2^n f(x/2^n) \) for all \(x \in A \).

Letting \(y = -\mu x \) and \(z = 0 \), we get

\[
||\mu f(x) + f(-\mu x)||_B \leq ||2f(0)||_B = 0
\]
(2.5)

for all \(x \in A \) and all \(\mu \in \mathbb{T}^1 \). So

\[
\mu f(x) - f(\mu x) = \mu f(x) + f(-\mu x) = 0
\]
(2.6)

for all \(x \in A \) and all \(\mu \in \mathbb{T}^1 \). Hence \(f(\mu x) = \mu f(x) \) for all \(x \in A \) and all \(\mu \in \mathbb{T}^1 \). By the same reasoning as in the proof of [8, Theorem 2.1], the mapping \(f : A \to B \) is \(\mathbb{C} \)-linear.

It follows from (2.3) that

\[
||f(xy) - f(x)f(y)||_B = \lim_{n \to \infty} 4^n \left[\left| f\left(\frac{xy}{2^n \cdot 2^n}\right) - f\left(\frac{x}{2^n}\right) f\left(\frac{y}{2^n}\right) \right|_B \right]
\]
(2.7)

\[
\leq \lim_{n \to \infty} 4^n \theta \left(\|x\|_A^{2r} + \|y\|_A^{2r} \right) = 0
\]

for all \(x, y \in A \). Thus

\[
f(xy) = f(x)f(y)
\]
(2.8)

for all \(x, y \in A \).

It follows from (2.4) that

\[
||f(x^*) - f(x)^*||_B = \lim_{n \to \infty} 2^n \left[\left| f\left(\frac{x^*}{2^n}\right) - f\left(\frac{x}{2^n}\right)^* \right|_B \right]
\]
(2.9)

\[
\leq \lim_{n \to \infty} \frac{2^n \theta}{2nr} \left(\|x\|_A^r + \|x\|_A^r \right) = 0
\]

for all \(x \in A \). Thus

\[
f(x^*) = f(x)^*
\]
(2.10)

for all \(x \in A \). Hence the bijective mapping \(f : A \to B \) is a \(C^* \)-algebra isomorphism. \(\square \)
Theorem 2.3. Let $r < 1$ and θ be nonnegative real numbers, and let $f : A \to B$ be a bijective mapping satisfying (2.2), (2.3), and (2.4). Then the mapping $f : A \to B$ is a C^*-algebra isomorphism.

Proof. The proof is similar to the proof of Theorem 2.2.

\[\| f(xy) - f(x)f(y) \|_A \leq \theta (\| x \|_A^r + \| y \|_A^r) \] (2.11)

for all $x, y \in A$. Then the mapping $f : A \to A$ is a linear derivation.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping $f : A \to A$ is \mathbb{C}-linear.

It follows from (2.11) that
\[\| f(xy) - f(x)y - xf(y) \|_A = \lim_{n \to \infty} 4^n \left\| f \left(\frac{xy}{4^n} \right) - f \left(\frac{x}{2^n} \right) \frac{y}{2^n} - f \left(\frac{y}{2^n} \right) \right\|_A \]
\[\leq \lim_{n \to \infty} \frac{4^n \theta}{4^{nr}} (\| x \|_A^r + \| y \|_A^r) = 0 \] (2.12)

for all $x, y \in A$. So
\[f(xy) = f(x)y + xf(y) \] (2.13)

for all $x, y \in A$. Thus the mapping $f : A \to A$ is a linear derivation.

\[\| f(x^*) - f(x)^* \|_B \leq \theta \cdot \| x \|_A^r \cdot \| x \|_A^r \] (2.14)

for all $\mu \in \mathbb{T}$ and all $x, y \in A$. Then the mapping $f : A \to B$ is a C^*-algebra isomorphism.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping $f : A \to B$ is \mathbb{C}-linear.

It follows from (2.14) that
\[\| f(xy) - f(x)f(y) \|_B = \lim_{n \to \infty} 4^n \left\| f \left(\frac{xy}{2^n} \cdot 2^n \right) - f \left(\frac{x}{2^n} \right) f \left(\frac{y}{2^n} \right) \right\|_B \]
\[\leq \lim_{n \to \infty} \frac{4^n \theta}{4^{nr}} \cdot \| x \|_A^r \cdot \| y \|_A^r = 0 \] (2.16)
for all \(x, y \in A \). Thus

\[
 f(xy) = f(x)f(y)
\]

for all \(x, y \in A \).

It follows from (2.15) that

\[
 \| f(x^*) - f(x)^* \|_B = \lim_{n \to \infty} 2^n \left\| f\left(\frac{x^*}{2^n} \right) - f\left(\frac{x}{2^n} \right)^* \right\|_B
\]

\[
 \leq \lim_{n \to \infty} \frac{2^n \theta}{2^{nr}} \cdot \| x \|_A^{r/2} \cdot \| y \|_A^{r/2} = 0
\]

for all \(x \in A \). Thus

\[
 f(x^*) = f(x)^*
\]

for all \(x \in A \). Hence the bijective mapping \(f : A \to B \) is a \(C^* \)-algebra isomorphism.

Theorem 2.7. Let \(r < 1 \) and \(\theta \) be nonnegative real numbers, and let \(f : A \to B \) be a bijective mapping satisfying (2.2), (2.14), and (2.15). Then the mapping \(f : A \to B \) is a \(C^* \)-algebra isomorphism.

Proof. The proof is similar to the proofs of Theorems 2.2 and 2.6.

Theorem 2.8. Let \(r > 1 \) and \(\theta \) be nonnegative real numbers, and let \(f : A \to A \) be a mapping satisfying (2.2) such that

\[
 \| f(xy) - f(x)y - xf(y) \|_A \leq \theta \cdot \| x \|_A^r \cdot \| y \|_A^r
\]

for all \(x, y \in A \). Then the mapping \(f : A \to A \) is a linear derivation.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping \(f : A \to A \) is \(C \)-linear.

It follows from (2.20) that

\[
 \| f(xy) - f(x)y - xf(y) \|_A = \lim_{n \to \infty} 4^n \left\| f\left(\frac{xy}{4^n} \right) - f\left(\frac{x}{2^n} \right) \frac{y}{2^n} - \frac{x}{2^n} f\left(\frac{y}{2^n} \right) \right\|_A
\]

\[
 \leq \lim_{n \to \infty} \frac{4^n \theta}{4^{nr}} \cdot \| x \|_A^r \cdot \| y \|_A^r = 0
\]

for all \(x, y \in A \). So

\[
 f(xy) = f(x)y + xf(y)
\]

for all \(x, y \in A \). Thus the mapping \(f : A \to A \) is a linear derivation.

Theorem 2.9. Let \(r < 1 \) and \(\theta \) be nonnegative real numbers, and let \(f : A \to A \) be a mapping satisfying (2.2) and (2.20). Then the mapping \(f : A \to A \) is a linear derivation.

Proof. The proof is similar to the proofs of Theorems 2.2 and 2.8.
3. Isomorphisms and derivations in Lie C^*-algebras

Throughout this section, assume that A is a Lie C^*-algebra with norm $\| \cdot \|_A$, and that B is a Lie C^*-algebra with norm $\| \cdot \|_B$.

Definition 3.1 [6, 7, 13]. A bijective \mathbb{C}-linear mapping $H : A \to B$ is called a **Lie C^*-algebra isomorphism** if $H : A \to B$ satisfies

$$H([x,y]) = [H(x),H(y)]$$

(3.1)

for all $x, y \in A$.

Definition 3.2 [6, 7, 13]. A \mathbb{C}-linear mapping $D : A \to A$ is called a **Lie derivation** if $D : A \to A$ satisfies

$$D([x,y]) = [Dx,y] + [x,Dy]$$

(3.2)

for all $x, y \in A$.

In this section, we investigate Lie C^*-algebra isomorphisms between Lie C^*-algebras and Lie derivations on Lie C^*-algebras associated with the Cauchy-Jensen functional equation.

Theorem 3.3. Let $r > 1$ and θ be nonnegative real numbers, and let $f : A \to B$ be a bijective mapping satisfying (2.2) such that

$$\|f([x,y]) - [f(x),f(y)]\|_B \leq \theta(\|x\|_A^{2r} + \|y\|_A^{2r})$$

(3.3)

for all $x, y \in A$. Then the mapping $f : A \to B$ is a Lie C^*-algebra isomorphism.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping $f : A \to B$ is \mathbb{C}-linear. It follows from (3.3) that

$$\|f([x,y]) - [f(x),f(y)]\|_B = \lim_{n \to \infty} 4^n \|f\left(\frac{x}{2^n},\frac{y}{2^n}\right) - \left[f\left(\frac{x}{2^n}\right),f\left(\frac{y}{2^n}\right)\right]\|_B$$

(3.4)

$$\leq \lim_{n \to \infty} \frac{4^n \theta}{4^{nr}} (\|x\|_A^{2r} + \|y\|_A^{2r}) = 0$$

for all $x, y \in A$. Thus

$$f([x,y]) = [f(x),f(y)]$$

(3.5)

for all $x, y \in A$. Hence the bijective mapping $f : A \to B$ is a Lie C^*-algebra isomorphism, as desired. □

Theorem 3.4. Let $r < 1$ and θ be nonnegative real numbers, and let $f : A \to B$ be a bijective mapping satisfying (2.2) and (3.3). Then the mapping $f : A \to B$ is a Lie C^*-algebra isomorphism.

Proof. The proof is similar to the proofs of Theorems 2.2 and 3.3. □
8 Abstract and Applied Analysis

Theorem 3.5. Let \(r > 1 \) and \(\theta \) be nonnegative real numbers, and let \(f : A \to A \) be a mapping satisfying (2.2) such that

\[
\|f([x,y]) - [f(x), y] - [x, f(y)]\|_A \leq \theta(\|x\|_A^r + \|y\|_A^r)
\]

(3.6)

for all \(x, y \in A \). Then the mapping \(f : A \to A \) is a Lie derivation.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping \(f : A \to A \) is \(\mathbb{C} \)-linear.

It follows from (3.6) that

\[
\|f([x,y]) - [f(x), y] - [x, f(y)]\|_A
\]

\[
= \lim_{n \to \infty} 4^n \|f\left(\frac{[x,y]}{4^n}\right) - \left[f\left(\frac{x}{2^n}\right), \frac{y}{2^n}\right] - \left[\frac{x}{2^n}, f\left(\frac{y}{2^n}\right)\right]\|_A
\]

(3.7)

\[
\leq \lim_{n \to \infty} 4^n \theta 4^{nr} (\|x\|_A^r + \|y\|_A^r) = 0
\]

(3.8)

for all \(x, y \in A \). So

\[
f([x,y]) = [f(x), y] + [x, f(y)]
\]

(3.9)

for all \(x, y \in A \). Thus the mapping \(f : A \to A \) is a Lie derivation.

Theorem 3.6. Let \(r < 1 \) and \(\theta \) be nonnegative real numbers, and let \(f : A \to A \) be a mapping satisfying (2.2) and (3.6). Then the mapping \(f : A \to A \) is a Lie derivation.

Proof. The proof is similar to the proofs of Theorems 2.2 and 3.5.

Theorem 3.7. Let \(r > 1 \) and \(\theta \) be nonnegative real numbers, and let \(f : A \to B \) be a bijective mapping satisfying (2.2) such that

\[
\|f([x,y]) - [f(x), f(y)]\|_B \leq \theta \cdot \|x\|_A^r \cdot \|y\|_A^r
\]

(3.10)

for all \(x, y \in A \). Then the mapping \(f : A \to B \) is a Lie C*-algebra isomorphism.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping \(f : A \to B \) is \(\mathbb{C} \)-linear.

It follows from (3.10) that

\[
\|f([x,y]) - [f(x), f(y)]\|_B = \lim_{n \to \infty} 4^n \|f\left(\frac{[x,y]}{2^n \cdot 2^n}\right) - \left[f\left(\frac{x}{2^n}\right), f\left(\frac{y}{2^n}\right)\right]\|_B
\]

(3.11)

\[
\leq \lim_{n \to \infty} 4^n \theta 4^{nr} \cdot \|x\|_A^r \cdot \|y\|_A^r = 0
\]

for all \(x, y \in A \). Thus

\[
f([x,y]) = [f(x), f(y)]
\]

(3.12)

for all \(x, y \in A \). Hence the bijective mapping \(f : A \to B \) is a Lie C*-algebra isomorphism, as desired.
Theorem 3.8. Let $r < 1$ and θ be nonnegative real numbers, and let $f : A \to B$ be a bijective mapping satisfying (2.2) and (3.9). Then the mapping $f : A \to B$ is a Lie C^*-algebra isomorphism.

Proof. The proof is similar to the proofs of Theorems 2.2, 2.6, and 3.7. □

Theorem 3.9. Let $r > 1$ and θ be nonnegative real numbers, and let $f : A \to A$ be a mapping satisfying (2.2) such that

$$\|f([x,y]) - [f(x),y] - [x,f(y)]\|_A \leq \theta \cdot \|x\|_A^r \cdot \|y\|_A^r$$

(3.12)

for all $x, y \in A$. Then the mapping $f : A \to A$ is a Lie derivation.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping $f : A \to A$ is C-linear.

It follows from (3.12) that

$$\|f([x,y]) - [f(x),y] - [x,f(y)]\|_A = \lim_{n \to \infty} 4^n \|f\left(\frac{x}{4^n}, \frac{y}{4^n}\right) - \left(\frac{x}{2^n}, \frac{y}{2^n}\right)\|_A$$

(3.13)

$$\leq \lim_{n \to \infty} \frac{4^n\theta}{4^{nr}} \cdot \|x\|_A^r \cdot \|y\|_A^r = 0$$

for all $x, y \in A$. So

$$f([x,y]) = [f(x),y] + [x,f(y)]$$

(3.14)

for all $x, y \in A$. Thus the mapping $f : A \to A$ is a Lie derivation. □

Theorem 3.10. Let $r < 1$ and θ be nonnegative real numbers, and let $f : A \to A$ be a mapping satisfying (2.2) and (3.12). Then the mapping $f : A \to A$ is a Lie derivation.

Proof. The proof is similar to the proofs of Theorems 2.2, 2.8, and 3.9. □

4. Isomorphisms and derivations in JC^*-algebras

Throughout this section, assume that A is a JC^*-algebra with norm $\|\cdot\|_A$, and that B is a JC^*-algebra with norm $\|\cdot\|_B$.

Definition 4.1 [7, 13]. A bijective C-linear mapping $H : A \to B$ is called a JC^*-algebra isomorphism if $H : A \to B$ satisfies

$$H(x \circ y) = H(x) \circ H(y)$$

(4.1)

for all $x, y \in A$.

Definition 4.2 [7, 13]. A C-linear mapping $D : A \to A$ is called a Jordan derivation if $D : A \to A$ satisfies

$$D(x \circ y) = Dx \circ y + x \circ Dy$$

(4.2)

for all $x, y \in A$.
In this section, we investigate JC^*-algebra isomorphisms between JC^*-algebras and Jordan derivations on JC^*-algebras associated with the Cauchy-Jensen functional equation.

Theorem 4.3. Let $r > 1$ and θ be nonnegative real numbers, and let $f : A \to B$ be a bijective mapping satisfying (2.2) such that

$$
||f(x \circ y) - f(x) \circ f(y)||_B \leq \theta(||x||_A^{2r} + ||y||_A^{2r})
$$

(4.3)

for all $x, y \in A$. Then the mapping $f : A \to B$ is a JC^*-algebra isomorphism.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping $f : A \to B$ is C-linear.

It follows from (4.3) that

$$
||f(x \circ y) - f(x) \circ f(y)||_B = \lim_{n \to \infty} 4^n ||f\left(\frac{x \circ y}{2^n}\right) - f\left(\frac{x}{2^n}\right) \circ f\left(\frac{y}{2^n}\right)||_B
$$

(4.4)

$$
\leq \lim_{n \to \infty} \frac{4^n \theta}{4^{nr}} (||x||_A^{2r} + ||y||_A^{2r}) = 0
$$

(4.5)

for all $x, y \in A$. Thus

$$
f(x \circ y) = f(x) \circ f(y)
$$

(4.6)

for all $x, y \in A$. Hence the bijective mapping $f : A \to B$ is a JC^*-algebra isomorphism, as desired. □

Theorem 4.4. Let $r < 1$ and θ be nonnegative real numbers, and let $f : A \to B$ be a bijective mapping satisfying (2.2) and (4.3). Then the mapping $f : A \to B$ is a JC^*-algebra isomorphism.

Proof. The proof is similar to the proofs of Theorems 2.2 and 4.3. □

Theorem 4.5. Let $r > 1$ and θ be nonnegative real numbers, and let $f : A \to A$ be a mapping satisfying (2.2) such that

$$
||f(x \circ y) - f(x) \circ y - x \circ f(y)||_A \leq \theta(||x||_A^{2r} + ||y||_A^{2r})
$$

(4.6)

for all $x, y \in A$. Then the mapping $f : A \to A$ is a Jordan derivation.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping $f : A \to A$ is C-linear.

It follows from (4.6) that

$$
||f(x \circ y) - f(x) \circ y - x \circ f(y)||_A = \lim_{n \to \infty} 4^n \left||f\left(\frac{x \circ y}{4^n}\right) - f\left(\frac{x}{2^n}\right) \circ f\left(\frac{y}{2^n}\right)\right||_A
$$

(4.7)
for all $x, y \in A$. So

$$f(x \circ y) = f(x) \circ y + x \circ f(y)$$ (4.8)

for all $x, y \in A$. Thus the mapping $f : A \to A$ is a Jordan derivation. □

Theorem 4.6. Let $r < 1$ and θ be positive real numbers, and let $f : A \to A$ be a mapping satisfying (2.2) and (4.6). Then the mapping $f : A \to A$ is a Jordan derivation.

Proof. The proof is similar to the proofs of Theorems 2.2 and 4.5. □

Theorem 4.7. Let $r > 1$ and θ be nonnegative real numbers, and let $f : A \to B$ be a bijective mapping satisfying (2.2) such that

$$\|f(x \circ y) - f(x) \circ f(y)\|_B \leq \theta \cdot \|x\|_A^r \cdot \|y\|_A^r$$ (4.9)

for all $x, y \in A$. Then the mapping $f : A \to B$ is a JC*-algebra isomorphism.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping $f : A \to B$ is \mathbb{C}-linear.

It follows from (4.9) that

$$\|f(x \circ y) - f(x) \circ f(y)\|_B = \lim_{n \to \infty} 4^n \|f\left(\frac{x \circ y}{2^n} \cdot 2^n\right) - f\left(\frac{x}{2^n}\right) \circ f\left(\frac{y}{2^n}\right)\|_B$$

$$\leq \lim_{n \to \infty} \frac{4^n \theta}{4^nr} \cdot \|x\|_A^r \cdot \|y\|_A^r = 0$$ (4.10)

for all $x, y \in A$. Thus

$$f(x \circ y) = f(x) \circ f(y)$$ (4.11)

for all $x, y \in A$. Hence the bijective mapping $f : A \to B$ is a JC*-algebra isomorphism, as desired. □

Theorem 4.8. Let $r < 1$ and θ be nonnegative real numbers, and let $f : A \to B$ be a bijective mapping satisfying (2.2) and (4.9). Then the mapping $f : A \to B$ is a JC*-algebra isomorphism.

Proof. The proof is similar to the proofs of Theorems 2.2, 2.6, and 4.7. □

Theorem 4.9. Let $r > 1$ and θ be nonnegative real numbers, and let $f : A \to A$ be a mapping satisfying (2.2) such that

$$\|f(x \circ y) - f(x) \circ y - x \circ f(y)\|_A \leq \theta \cdot \|x\|_A^r \cdot \|y\|_A^r$$ (4.12)

for all $x, y \in A$. Then the mapping $f : A \to A$ is a Jordan derivation.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping $f : A \to A$ is \mathbb{C}-linear.
Abstract and Applied Analysis

It follows from (4.6) that

\[
\| f(x \circ y) - f(x) \circ y - x \circ f(y) \|_A = \lim_{n \to \infty} 4^n \left\| f \left(\frac{x \circ y}{4^n} \right) - f \left(\frac{x}{2^n} \right) \circ \frac{y}{2^n} - \frac{x}{2^n} \circ f \left(\frac{y}{2^n} \right) \right\|_A
\]
\[
\leq \lim_{n \to \infty} \frac{4^n \theta}{4^{nr}} \cdot \| x \|_A^r \cdot \| y \|_A^2 = 0
\]

(4.13)

for all \(x, y \in A \). So

\[
f(x \circ y) = f(x) \circ y + x \circ f(y)
\]

(4.14)

for all \(x, y \in A \). Thus the mapping \(f : A \to A \) is a Jordan derivation.

Theorem 4.10. Let \(r < 1 \) and \(\theta \) be positive real numbers, and let \(f : A \to A \) be a mapping satisfying (2.2) and (4.12). Then the mapping \(f : A \to A \) is a Jordan derivation.

Proof. The proof is similar to the proofs of Theorems 2.2, 2.8, and 4.9.

Acknowledgments

The first author was supported by Grant no. F01-2006-000-10111-0 from the Korea Science & Engineering Foundation, and the third author was supported by National Natural Science Foundation of China (no.10501029), Tsinghua Basic Research Foundation (JCpy2005056), and the Specialized Research Fund for Doctoral Program of Higher Education

References

Choonkil Park: Department of Mathematics, Hanyang University, Seoul 133–791, South Korea
Email address: baak@hanyang.ac.kr

Jong Su An: Department of Mathematics Education, Pusan National University, Pusan 609–735, South Korea
Email addresses: jsan63@pusan.ac.kr; jsan63@hanmail.net

Jianlian Cui: Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
Email address: jcui@math.tsinghua.edu.cn
Submit your manuscripts at http://www.hindawi.com