Research Article

On the q-Extension of Apostol-Euler Numbers and Polynomials

Young-Hee Kim, Wonjoo Kim, and Lee-Chae Jang

1 Division of General Education-Mathematics, Kwangwoon University, Seoul 139-701, South Korea
2 Natural Science Institute, KonKuk University, Chungju 380-701, South Korea
3 Department of Mathematics and Computer Science, KonKuk University, Chungju 380-701, South Korea

Correspondence should be addressed to Lee-Chae Jang, leechae.jang@kku.ac.kr

Received 4 October 2008; Accepted 21 November 2008

Recommended by Lance Littlejohn

Recently, Choi et al. (2008) have studied the q-extensions of the Apostol-Bernoulli and the Apostol-Euler polynomials of order n and multiple Hurwitz zeta function. In this paper, we define Apostol’s type q-Euler numbers $E_{n,q}$ and q-Euler polynomials $E_{n,q}(x)$. We obtain the generating functions of $E_{n,q}$ and $E_{n,q}(x)$, respectively. We also have the distribution relation for Apostol’s type q-Euler polynomials. Finally, we obtain q-zeta function associated with Apostol’s type q-Euler numbers and Hurwitz’s type q-zeta function associated with Apostol’s type q-Euler polynomials for negative integers.

Copyright © 2008 Young-Hee Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let p be a fixed odd prime. Throughout this paper, \mathbb{Z}_p, \mathbb{Q}_p and \mathbb{C} and \mathbb{C}_p will, respectively, denote the ring of p-adic rational integers, the field of p-adic rational numbers, the complex number field, and the completion of algebraic closure of \mathbb{Q}_p. Let \mathbb{N} be the set of natural numbers and $\mathbb{Z}_+ = \mathbb{N} \cup \{0\}$. Let ν_p be the normalized exponential valuation of \mathbb{C}_p with $|p|_p = p^{-\nu_p(p)} = p^{-1}$. When one talks of q-extension, q is variously considered as an indeterminate, a complex number $q \in \mathbb{C}$, or a p-adic number $q \in \mathbb{C}_p$. If $q \in \mathbb{C}$, one normally assumes $|q| < 1$. If $q \in \mathbb{C}_p$, then one assumes $|q - 1|_p < 1$. We also use the notations

$$ [x]_q = \frac{1 - q^x}{1 - q}, \quad [x]_{-q} = \frac{1 - (-q)^x}{1 + q} \quad \forall x \in \mathbb{Z}_p \quad (1.1) $$

For a fixed odd positive integer d with $(p,d) = 1$, let

$$ X = X_d = \lim_{N \to \infty} \frac{Z_d}{dp^N}, \quad X_1 = \mathbb{Z}_p, $$
\[X^* = \bigcup_{0 \leq a < dp} (a + dp\mathbb{Z}_p), \]
\[a + dp^N\mathbb{Z}_p = \{ x \in X \mid x \equiv a \pmod{dp^N} \}, \]

where \(a \in \mathbb{Z} \) lies in \(0 \leq a < dp^N \). The distribution is defined by

\[\mu_q(a + dp^N\mathbb{Z}_p) = \frac{q^a}{[dp^N]_q}. \]

We say that \(f \) is a uniformly differentiable function at a point \(a \in \mathbb{Z}_p \) and denote this property by \(f \in \text{UD}(\mathbb{Z}_p) \), if the difference quotients \(F_f(x, y) = (f(x) - f(y))/(x - y) \) have a limit \(l = f'(a) \) as \((x, y) \rightarrow (a, a) \). For \(f \in \text{UD}(\mathbb{Z}_p) \), the \(p \)-adic invariant \(q \)-integral is defined as

\[I_q(f) = \int_{\mathbb{Z}_p} f(x) d\mu_q(x) = \lim_{N \to \infty} \frac{1}{[p^N]_q} \sum_{x=0}^{p^N-1} f(x)q^x. \]

The fermionic \(p \)-adic \(q \)-measures on \(\mathbb{Z}_p \) are defined as

\[\mu_{-q}(a + dp^N\mathbb{Z}_p) = \frac{(-q)^a}{[dp^N]_{-q}}, \]

and the fermionic \(p \)-adic invariant \(q \)-integral on \(\mathbb{Z}_p \) is defined as

\[I_{-q}(f) = \int_{\mathbb{Z}_p} f(x) d\mu_{-q}(x) = \lim_{N \to \infty} \frac{1}{[p^N]_{-q}} \sum_{x=0}^{p^N-1} f(x)(-q)^x \]

for \(f \in \text{UD}(\mathbb{Z}_p) \). For details see [1–10].

Classical Euler numbers are defined by the generating function

\[\frac{2}{e^t + 1} = \sum_{n=0}^{\infty} E_n \frac{t^n}{n!}, \]

and these numbers are interpolated by the Euler zeta function which is defined as

\[\zeta_E(s) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n^s}, \quad s \in \mathbb{C}. \]

After Carlitz [11] gave \(q \)-extensions of the classical Bernoulli numbers and polynomials, the \(q \)-extensions of Bernoulli and Euler numbers and polynomials have been studied by several authors (cf. [1–16, 18–26, 34–39]).
By using p-adic q-integral, the q-Euler numbers $E_{n,q}$ are defined as

$$E_{n,q} = \int_{\mathbb{Z}_p} [t]^n d\mu_q(t), \quad \text{for } n \in \mathbb{N}. \quad (1.9)$$

The q-Euler numbers $E_{n,q}$ are defined by means of the generating function

$$F_q(t) = [2]_q \sum_{n=0}^{\infty} (-1)^n q^n e^{[n]_q t} \quad (1.10)$$

(cf. [8, 26]). Kim [22] gave a new construction of the q-Euler numbers $E_{n,q}$ which can be uniquely determined by

$$E_{0,q} = \frac{[2]_q}{2},$$

$$(qE + 1)^n + E_{n,q} = \begin{cases} [2]_q & \text{if } n = 0, \\ 0 & \text{if } n \neq 0, \end{cases} \quad (1.11)$$

with the usual convention of replacing E^n by $E_{n,q}$.

The twisted q-Euler numbers and q-Euler polynomials are very important in several fields of mathematics and physics, and so they have been studied by many authors. Simsek [37, 38] constructed generating functions of q-generalized Euler numbers and polynomials and twisted q-generalized Euler numbers and polynomials. Recently, Y. H. Kim et al. [27] gave the twisted q-Euler zeta function associated with twisted q-Euler numbers and obtained q-Euler’s identity. They also have a q-extension of the Euler zeta function for negative integers and the q-analog of twisted Euler zeta function. Kim [24] defined twisted q-Euler numbers and polynomials of higher order and studied multiple twisted q-Euler zeta functions.

The Apostol-Bernoulli and the Apostol-Euler polynomials and numbers have been studied by several authors (cf. [15, 17, 32, 33, 40, 41]). Recently, q-extensions of the Apostol-Bernoulli and the Apostol-Euler polynomials and numbers have been studied by many authors with great interest. In [15], Cenkci and Can introduced and investigated q-extensions of the Bernoulli polynomials. Choi et al. [16] have studied some q-extensions of the Apostol-Bernoulli and the Apostol-Euler polynomials of order n and multiple Hurwitz zeta function.

In this paper, we define Apostol’s type q-Euler numbers and q-Euler polynomials. Then, we have the generating functions of Apostol’s type q-Euler numbers and q-Euler polynomials and the distribution relation for Apostol’s type q-Euler polynomials. In Section 2, we define Apostol’s type q-Euler numbers $E_{n,q,\xi}$ and q-Euler polynomials $E_{n,q,\xi}(x)$. Then, we obtain the generating functions of $E_{n,q,\xi}$ and $E_{n,q,\xi}(x)$, respectively. We also have the distribution relation for Apostol’s type q-Euler polynomials. In Section 3, we obtain q-zeta function associated with Apostol’s type q-Euler numbers and Hurwitz’s type q-zeta function associated with Apostol’s type q-Euler polynomials for negative integers.
2. On the q-extensions of the Apostol-Euler numbers and polynomials

In this section, we will assume $q \in \mathbb{C}$ with $|q - 1| < 1$. For $n \in \mathbb{Z}$, let $C_{p^n} = \{ \xi \mid \xi^{p^n} = 1 \}$ be the cyclic group of order p^n, and let T_p be the space of locally constant functions, that is,

$$T_p = \lim_{n \to \infty} C_{p^n} = \bigcup_{n \geq 0} C_{p^n}. \tag{2.1}$$

Let $\xi \in T_p$. We define Apostol's type q-Euler numbers by

$$E_{n,q,\xi} = \int_{Z_p} q^{-x} \xi^x [x]_q^n d\mu_q(x). \tag{2.2}$$

Then, we have

$$E_{n,q,\xi} = \frac{[2]_q}{(1-q)^n} \sum_{l=0}^{n} \binom{n}{l} (-1)^l \frac{1}{1 + q^l \xi} \tag{2.3}$$

where $\binom{n}{l}$ are the binomial coefficients.

Apostol's type q-Euler polynomials are defined as

$$E_{n,q,\xi}(x) = \int_{Z_p} q^{-y} \xi^y [x+y]_q^n d\mu_q(y). \tag{2.4}$$

Since

$$[x+y]_q^n = ([x]_q + q^x [y]_q^n) = \sum_{l=0}^{n} \binom{n}{l} [x]^n_q q^l x \tag{2.5}$$

we have from (2.4) that

$$E_{n,q,\xi}(x) = \sum_{l=0}^{n} \binom{n}{l} [x]_q^{n-l} q^l x E_{l,q,\xi}. \tag{2.6}$$

By (2.2) and (2.6), we have

$$E_{n,q,\xi}(x) = \sum_{l=0}^{n} \binom{n}{l} [x]_q^{n-l} q^l x E_{l,q,\xi}. \tag{2.7}$$

Since

$$[x+y]_q^n = \frac{1}{(1-q)^n} \sum_{l=0}^{n} \binom{n}{l} (-1)^l q^l x y^l = \frac{1}{(1-q)^n} \sum_{l=0}^{n} \binom{n}{l} (-1)^l q^l x q^l y^l, \tag{2.8}$$
we have

\[
\int_{\mathbb{Z}_p} q^{-y} \xi^{x+y} d\mu_{-q}(y) = \frac{1}{(1-q)^n} \sum_{l=0}^{n} \binom{n}{l} (-1)^l q^l x \int_{\mathbb{Z}_p} q^{(l-1)y} \xi^y d\mu_{-q}(y). \tag{2.9}
\]

Therefore, we also have

\[
E_{n,q,\xi}(x) = [2]_q \frac{1}{(1-q)^n} \sum_{l=0}^{n} \binom{n}{l} (-1)^l \frac{1}{1+q^l \xi}. \tag{2.10}
\]

Note that (2.7) and (2.10) are two representations for \(E_{n,q,\xi}(x)\). Hence, we have the following result.

Theorem 2.1. For \(n \in \mathbb{Z}_+\) and \(\xi \in T_p\), one has

\[
E_{n,q,\xi} = [2]_q \frac{1}{(1-q)^n} \sum_{l=0}^{n} \binom{n}{l} (-1)^l \frac{1}{1+q^l \xi},
\]

\[
E_{n,q,\xi}(x) = [2]_q \frac{1}{(1-q)^n} \sum_{l=0}^{n} \binom{n}{l} (-1)^l q^l x \frac{1}{1+q^l \xi}, \tag{2.11}
\]

\[
= \sum_{l=0}^{n} \binom{n}{l} [x]^{n-l} q^l x E_{l,q,\xi}.
\]

Now, we will find the generating function of \(E_{n,q,\xi}\) and \(E_{n,q,\xi}(x)\), respectively. Let \(F(t)\) be the generating function of \(E_{n,q,\xi}\). Then, we have

\[
F(t) = \sum_{n=0}^{\infty} E_{n,q,\xi} \frac{t^n}{n!}
\]

\[
= \sum_{n=0}^{\infty} \left[2\right]_q \frac{1}{(1-q)^n} \sum_{l=0}^{n} \binom{n}{l} (-1)^l \frac{1}{1+q^l \xi} \frac{t^n}{n!}
\]

\[
= \left[2\right]_q \sum_{n=0}^{\infty} \frac{1}{(1-q)^n} \sum_{l=0}^{n} \binom{n}{l} (-1)^l \left(\sum_{m=0}^{\infty} q^{m} \xi^{m} (-1)^m \right) \frac{t^n}{n!}
\]

\[
= \left[2\right]_q \sum_{m=0}^{\infty} (-1)^m \xi^m \sum_{n=0}^{\infty} \frac{1}{(1-q)^n} \sum_{l=0}^{n} \binom{n}{l} (-1)^l q^m \frac{t^n}{n!}
\]

\[
= \left[2\right]_q \sum_{m=0}^{\infty} (-1)^m \xi^m \sum_{n=0}^{\infty} \frac{1}{(1-q)^n} (1-q^m)^n \frac{t^n}{n!}
\]
\[F(t) = [2]_q \sum_{m=0}^{\infty} (-1)^m \xi^m \sum_{n=0}^{\infty} \frac{t^n}{n!} = [2]_q \sum_{m=0}^{\infty} (-1)^m \xi^m e^{[m]_q t}. \]
(2.12)

Therefore, the generating function \(F(t) \) of \(E_{n,q,\xi} \) equals

\[F(t) = \sum_{n=0}^{\infty} E_{n,q,\xi} \frac{t^n}{n!} = [2]_q \sum_{m=0}^{\infty} (-1)^m \xi^m e^{[m]_q t}. \]
(2.13)

Note that

\[\int_{\mathbb{Z}_p} q^{-x} \xi^x e^{[x]_q t} d\mu_{-q}(x) = \sum_{n=0}^{\infty} \int_{\mathbb{Z}_p} q^{-x} \xi^x [x]_q^n d\mu_{-q}(x) \frac{t^n}{n!} \]
\[= \sum_{n=0}^{\infty} E_{n,q,\xi} \frac{t^n}{n!} = F(t). \]
(2.14)

For the generating function of \(E_{n,q,\xi}(x) \), we have

\[\int_{\mathbb{Z}_p} q^{-y} \xi^y e^{[x+y]_q t} d\mu_{-q}(y) = [2]_q \sum_{m=0}^{\infty} (-1)^m \xi^m e^{[m+x]_q t}. \]
(2.15)

Hence, we obtain the following theorem.

Theorem 2.2. For \(\xi \in T_p \), one has

\[\int_{\mathbb{Z}_p} q^{-x} \xi^x e^{[x]_q t} d\mu_{-q}(x) = [2]_q \sum_{m=0}^{\infty} (-1)^m \xi^m e^{[m]_q t}, \]
(2.16)

\[\int_{\mathbb{Z}_p} q^{-y} \xi^y e^{[x+y]_q t} d\mu_{-q}(y) = [2]_q \sum_{m=0}^{\infty} (-1)^m \xi^m e^{[m+x]_q t}. \]
(2.17)

Since (2.16) equals to the generating functions (2.17) equals to the generating functions \(\sum_{n=0}^{\infty} E_{n,q,\xi}(x) (t^n/n!) \), we have the following result.

Corollary 2.3. For \(n \in \mathbb{Z}_+ \) and \(\xi \in T_p \), one has

\[E_{n,q,\xi} = [2]_q \sum_{m=0}^{\infty} (-1)^m \xi^m [m]_q^n, \]
(2.18)

\[E_{n,q,\xi}(x) = [2]_q \sum_{m=0}^{\infty} (-1)^m \xi^m [m + x]_q^n. \]
Now, we will find the distribution relation for $E_{n,q,ξ}(x)$. By (2.4), we have

$$E_{n,q,ξ}(x) = \int X q^{-y} s^y [x + y]_q^n dμ_ξ(y)$$

$$= \lim_{N \to \infty} \frac{1}{[dp^N]_{-q}} \sum_{y=0}^{dp^N-1} s^y (-1)^y [x + y]_q^n$$

$$= \lim_{N \to \infty} \frac{1}{[dp^N]_{-q}} \sum_{a=0}^{d-1} \sum_{y=0}^{p^N-1} s^y (-1)^y [x + a + dy]_q^n.$$ \hspace{1cm} (2.19)

Note that for odd numbers d and p,

$$[dp^N]_{-q} = [d]_{-q}[p^N]_{-q^d},$$

$$[x + a + dy]_q = [d]_q \left[\frac{x + a}{d} + y \right]_{q^d}. \hspace{1cm} (2.20)$$

By (2.19), we have

$$E_{n,q,ξ}(x) = \frac{1}{[d]_{-q}} \sum_{a=0}^{d-1} s^a (-1)^a \lim_{N \to \infty} \frac{1}{[p^N]_{-q^d}} \sum_{y=0}^{p^N-1} s^y (-1)^y [d]_q^n \left[\frac{x + a}{d} + y \right]_{q^d}^n$$

$$= \frac{[d]_q^{n-1}}{[d]_{-q}} \sum_{a=0}^{d-1} s^a (-1)^a \int_{\mathbb{Z}_q} (s^d)^y (q^d)^{-y} \left[\frac{x + a}{d} + y \right]_{q^d}^n dμ_{-q^d}(y). \hspace{1cm} (2.21)$$

Therefore, we obtain the distribution relation for $E_{n,q,ξ}(x)$ as follows.

Theorem 2.4. For $n \in \mathbb{Z}_+$, $ξ \in T_p$, and $d \in \mathbb{Z}_+$ with $d \equiv 1 \pmod{2}$, one has

$$E_{n,q,ξ}(x) = \frac{[d]_q^{n-1}}{[d]_{-q}} \sum_{a=0}^{d-1} s^a (-1)^a E_{n,q^d,ξ} \left(\frac{x + a}{d} \right). \hspace{1cm} (2.22)$$

3. Further remark on the basic q-zeta functions associated with Apostol’s type q-Euler numbers and polynomials

In this section, we assume that $q \in \mathbb{C}$ with $|q| < 1$. Let $ξ \in T_p$. For $s \in \mathbb{C}$, q-zeta function associated with Apostol’s type q-Euler numbers is defined as

$$ζ_{q,ξ}(s) = [2]_q \sum_{n=1}^{\infty} \frac{ζ_n(-1)^n}{[n]_q^s}.$$ \hspace{1cm} (3.1)
Hence, we obtain which is analytic in whole complex s-plane. Substituting $s = -k$ with $k \in \mathbb{Z}_+$ into $\zeta_{q,k}(s)$ and using Corollary 2.3, then we arrive at

$$\zeta_{q,k}(-k) = [2]_q \sum_{n=1}^{\infty} \frac{t^n(-1)^n}{[n]_q^k} = E_{k,q,k}.$$ \quad (3.2)

Now, we also consider Hurwitz’s type q-zeta function associated with the Apostol’s type q-Euler polynomials as follows:

$$\zeta_{q,k}(s,x) = [2]_q \sum_{n=0}^{\infty} \frac{t^n(-1)^n}{[n+x]_q^k}.$$ \quad (3.3)

Substituting $s = -k$ with $k \in \mathbb{Z}_+$ into $\zeta_{q,k}(s,x)$ and using Corollary 2.3, then we arrive at

$$\zeta_{q,k}(-k,x) = [2]_q \sum_{n=0}^{\infty} \frac{t^n(-1)^n}{[n+x]_q^k} = E_{k,q,k}(x).$$ \quad (3.4)

Hence, we obtain q-zeta function associated with Apostol’s type q-Euler numbers and Hurwitz’s type q-zeta function associated with Apostol’s type q-Euler polynomials for negative integers.

References

Submit your manuscripts at http://www.hindawi.com