Research Article

Global Behavior of the Max-Type Difference Equation $x_{n+1} = \max\{1/x_n, A_n/x_{n-1}\}$

Taixiang Sun, 1 Bin Qin, 2 Hongjian Xi, 2 and Caihong Han 1

1 College of Mathematics and Information Science, Guangxi University, Nanning 530004, China
2 Department of Mathematics, Guangxi College of Finance and Economics, Nanning 530003, China

Correspondence should be addressed to Taixiang Sun, stx1963@163.com

Received 4 February 2009; Revised 2 March 2009; Accepted 8 March 2009

Recommended by Stevo Stevic

We study global behavior of the following max-type difference equation $x_{n+1} = \max\{1/x_n, A_n/x_{n-1}\}$, $n = 0, 1, \ldots$, where $\{A_n\}_{n=0}^{\infty}$ is a sequence of positive real numbers with $0 \leq \inf A_n \leq \sup A_n < 1$. The special case when $\{A_n\}_{n=0}^{\infty}$ is a periodic sequence with period k and $A_n \in (0, 1)$ for every $n \geq 0$ has been completely investigated by Y. Chen. Here we extend his results to the general case.

Copyright © 2009 Taixiang Sun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In the recent years, there has been a lot of interest in studying the global behavior of, the so-called, max-type difference equations; see, for example, [1–17] (see also references therein). In [1, 3–5, 7, 8], the second order max-type difference equation

$$x_{n+1} = \max\left\{\frac{1}{x_n}, \frac{A_n}{x_{n-1}}\right\}, \quad n = 0, 1, \ldots$$

(1.1)

has been studied for positive coefficients A_n, which are periodic with period k. The case $k = 1$ was studied in [1], the case $k = 2$ was studied in [3], the case $k = 3$ was studied in [4, 8], and the more difficult case $k = 4$ was studied in [7]. Chen [5] found that every positive solution of (1.1) is eventually periodic with period 2 when $\{A_n\}_{n=0}^{\infty}$ is a periodic sequence of positive real numbers with period $k \geq 2$ and $A_n \in (0, 1)$ for all $n \geq 0$. These results were also included in the recent monograph [9] along with other related references. In this paper, we study global behavior of (1.1) when $\{A_n\}_{n=0}^{\infty}$ is a sequence of positive real numbers with $0 \leq \inf A_n \leq \sup A_n < 1$.
2. Main Results

The main results of this paper are established through the following lemmas.

Lemma 2.1. Let \(\{x_n\}_{n=1}^{\infty} \) be a positive solution of (1.1), then

1. \(x_{n+1}x_n \geq 1 \) for all \(n \geq 0 \);
2. if \(x_{k+1}x_k > 1 \) for some \(k \geq 1 \), then \(x_{k+2}x_{k+1} = 1 \).

Proof. (1) is obvious since \(x_{n+1} \geq 1/x_n \) for all \(n \geq 0 \).

(2) If \(x_{k+1}x_k > 1 \) for some \(k \geq 1 \), then \(x_{k+1}x_k - 1 = A_k \). Suppose for the sake of contradiction that \(x_{k+2}x_k = A_k \) and

\[
A_{k+1} = x_{k+1}x_{k-1}x_{k+2}x_k \geq 1.
\]

This is a contradiction since \(A_{k+1} < 1 \) and \(A_k < 1 \). The proof is complete.

Lemma 2.2. Let \(\{x_n\}_{n=1}^{\infty} \) be a positive solution of (1.1) and \(P_n = \max\{x_n, x_{n-1}\} \) for all \(n \geq 1 \). Then

1. \(x_{n+1} \leq P_n \) and \(P_n \) is nonincreasing;
2. \(x_n \) is bounded, and moreover \(1/P_1 \leq x_n \leq P_1 \) for any \(n \geq 1 \).

Proof. By Lemma 2.1(1) and the assumption \(A_n < 1 \), we obtain that for any \(n \geq 1 \),

\[
x_{n+1} = \max\left\{ \frac{x_{n-1}}{x_n x_{n-1}}, \frac{A_n x_n}{x_n x_{n-1}} \right\} \leq \max\{x_{n-1}, x_n\} = P_n.
\]

Hence

\[
P_{n+1} = \max\{x_{n+1}, x_n\} \leq P_n,
\]

which implies that for all \(n \geq 1 \),

\[
x_n \leq P_1.
\]

Furthermore, it follows that for all \(n \geq 1 \),

\[
x_{n+1} = \max\left\{ \frac{1}{x_n}, \frac{A_n}{x_n x_{n-1}} \right\} \geq \frac{1}{x_n} \geq \frac{1}{P_1},
\]

The proof is complete.

Remark 2.3. Note that from the proof of Lemma 2.2 we have that \(P_1 \geq 1 \).

Remark 2.4. Various sequences which satisfy inequality in Lemma 2.2(1), that is, \(x_{n+1} \leq P_n \) have been studied, for example, in [18–24].
Lemma 2.5. Let \(\{x_n\}_{n=1}^{\infty} \) be a positive solution of (1.1) and \(\lim_{n \to \infty} P_n = S \). Then \(S = \limsup_{n \to \infty} x_n \).

Proof. Since \(P_n \) is a subsequence of \(x_n \), it follows that
\[
S \leq \limsup_{n \to \infty} x_n. \tag{2.6}
\]

On the other hand, by \(x_{n+1} \leq P_n \) for all \(n \geq 1 \), we obtain
\[
\limsup_{n \to \infty} x_n \leq \limsup_{n \to \infty} P_n = S. \tag{2.7}
\]

The proof is complete.

Remark 2.6. Let \(\{x_n\}_{n=1}^{\infty} \) be a positive solution of (1.1). By Lemma 2.2, we see that if \(S = \limsup_{n \to \infty} x_n \) and \(x_N < S \) for some \(N > 0 \), then \(x_{N-1}, x_{N+1} \in [S, +\infty) \). For example, if it were \(x_{N-1} < S \), then it would be \(P_N < S \), which would imply \(\limsup_{n \to \infty} x_n < S \).

Lemma 2.7. Suppose that \(\{x_n\}_{n=1}^{\infty} \) is a positive solution of (1.1) and \(S = \limsup_{n \to \infty} x_n \). Write
\[
\omega(x_n) = \left\{ x : \text{there exist } -1 \leq k_1 < k_2 < \cdots < k_n < \cdots \text{ such that } \lim_{n \to \infty} x_{k_n} = x \right\}. \tag{2.8}
\]

Then \(\omega(x_n) = \{S, 1/S\} \).

Proof. If \(\omega(x_n) \) contains only one point, we may assume by taking a subsequence that \(A_{n_k} \to \mu(<1) \). By taking the limit in the following relationship:
\[
x_{n_k+1} = \max\left\{ \frac{1}{x_{n_k}}, \frac{A_{n_k}}{x_{n_k-1}} \right\}, \tag{2.9}
\]
as \(k \to \infty \), we obtain
\[
S = \max\left\{ \frac{1}{S}, \frac{\mu}{S} \right\} = \frac{1}{S}, \tag{2.10}
\]
which implies that \(S = 1 \).

If \(\omega(x_n) \) contains at least two points, let \(L \in \omega(x_n) - \{S\} \), then there exists a subsequence \(x_{n_k} \) of \(x_n \) such that
\[
x_{n_k} \to L < S. \tag{2.11}
\]

By Remark 2.6, we see that there exists \(N > 0 \) such that for every \(n_k > N \),
\[
x_{n_k} < S, \quad x_{n_k+1}, x_{n_k-1} \in [S, +\infty), \tag{2.12}
\]
from which it follows that

\[x_{n_1 + 1} \to S, \quad x_{n-1} \to S. \]

(2.13)

By taking a subsequence we may assume that \(A_{n_k} \to \mu (\mu < 1). \) By taking the limit in the following relationship:

\[x_{n_1 + 1} = \max \left\{ \frac{1}{x_{n_k}}, \frac{A_{n_k}}{x_{n_k - 1}} \right\}, \]

(2.14)

as \(k \to \infty, \) we obtain

\[S = \max \left\{ \frac{1}{L'}, \frac{\mu}{S} \right\} = \frac{1}{L'}, \]

(2.15)

which implies

\[L = \frac{1}{S}. \]

(2.16)

The proof is complete. \(\square \)

Theorem 2.8. Let \(\{x_n\}_{n=1}^{\infty} \) be a positive solution of (1.1) and \(S = \lim \sup_{n \to \infty} x_n. \) Then one of the following two statements is true.

1. If there exist infinitely many \(n \) such that \(x_n \geq S \) and \(x_{n+1} \geq S, \) then \(\{x_n\}_{n=1}^{\infty} \) is eventually equal to 1.

2. If there exists \(N \) such that \(x_{N+2k} < S \) and \(x_{N+2k-1} \geq S \) for all \(k \geq 0, \) then \(x_{N+2k} \to 1/S \) and \(x_{N+2k-1} \to S. \)

Proof. (1) We assume that there exists an infinite sequence \(n_1 < n_2 < n_3 < \cdots < n_k < \cdots \) such that

\[x_{n_k} \geq S, \quad x_{n_k+1} \geq S. \]

(2.17)

By taking a subsequence we may assume from Lemma 2.7 that

\[A_{n_k} \to \mu < 1, \quad x_{n_k - 1} \to l \in \left\{ S, \frac{1}{S} \right\}. \]

(2.18)

By taking the limit in the following relationship:

\[x_{n_1 + 1} = \max \left\{ 1, \frac{A_{n_k} x_{n_k}}{x_{n_k - 1}} \right\}, \]

(2.19)
as \(k \to \infty \), we get

\[
S^2 = \max \left\{ 1, \frac{S\mu}{I} \right\}. \tag{2.20}\]

Since \(S\mu/I \in \{ \mu, \mu S^2 \} \) and \(\mu < 1 \), it follows that \(S^2 = 1 \) and \(\omega(x_n) = \{ 1 \} \).

In the following, we show that \(\{ x_n \}_{n=1}^\infty \) is eventually equal to 1. It only needs to prove that there exists \(N \geq 0 \) such that for all \(n \geq N \),

\[
\frac{1}{x_n} > \frac{A_n}{x_{n-1}}. \tag{2.21}\]

Indeed, if there exist infinitely many \(n_k \) such that

\[
x_{n_k+1} = \frac{A_{n_k}}{x_{n_k-1}}, \tag{2.22}\]

by taking a subsequence we may assume that \(A_{n_k} \to \mu < 1 \), then it follows that

\[
1 = \frac{\mu}{1}, \quad \mu = 1, \tag{2.23}\]

which is a contradiction. Therefore there exists \(N \) such that for all \(n \geq N \),

\[
x_{n+1} = \frac{1}{x_n}. \tag{2.24}\]

Thus

\[
x_n = x_N, \quad \text{for } n = N + 2k, \tag{2.25}\]

\[
x_n = x_{N+1}, \quad \text{for } n = N + 2k + 1.\]

Since \(x_n \to 1 \), we have \(x_{N+1} = x_N = 1 \).

(2) If \(S = 1 \), then the result follows from Lemma 2.7. In the following, we assume \(S \neq 1 \). Suppose for the sake of contradiction that there exists a subsequence \(x_{N+2k} \) of \(x_{N+2k} \) such that

\[
x_{N+2k} \to S. \tag{2.26}\]

By taking a subsequence we may assume that

\[
A_{N+2k} \to \mu. \tag{2.27}\]
By taking the limit in the following relationship:

\[x_{N+2k_i+1} = \max \left\{ \frac{1}{x_{N+2k_i}} \cdot \frac{A_{N+2k_i}}{x_{N+2k_i-1}} \right\}, \quad (2.28) \]

as \(k_i \to \infty \), we get

\[S = \max \left\{ \frac{1}{S}, \frac{\mu}{S} \right\}, \quad (2.29) \]

which implies

\[S = 1. \quad (2.30) \]

This is a contradiction. The proof is complete. \(\square \)

Corollary 2.9. Let \(\{A_n\}_{n=0}^{\infty} \) be a periodic sequence of positive real numbers, then every positive solution of (1.1) is eventually periodic with period 2.

Proof. Let \(\{x_n\}_{n=-1}^{\infty} \) be a positive solution of (1.1) and \(S = \lim \sup_{n \to \infty} x_n \). By Remark 2.6 and Theorem 2.8, we may assume without loss of generality that \(x_{2k} < S, x_{2k-1} \geq S \geq 1 \) for all \(k \geq 0 \). Suppose for the sake of contradiction that there exists a sequence \(m_1 < m_2 < \cdots < m_k < \cdots \) such that

1. \(x_{m_{k+1}} x_{m_k-1} = A_{m_k}, \) and \(x_{m_{k+1}} x_{m_k} > 1; \)
2. \(x_{n+1} x_n = 1, \) for \(n \neq m_k. \)

Then \(m_k \) is odd for every \(k \geq 1 \). Let \(m_k = 2n_k + 1 \), then it follows from Lemma 2.1 that

\[x_{2n_k+2} x_{2n_k} = A_{2n_k+1} < 1 = x_{2n_k+1} x_{2n_k} < x_{2n_k+1} x_{2n_k+2}. \quad (2.31) \]

From this and by (2) it follows that

\[\frac{A_{2n_k+1}}{x_{2n_k+2}} = x_{2n_k} < x_{2n_k+2} = x_{2n_k+4} = \cdots = x_{2n_{k+1}} < x_{2n_{k+1}+2} = \frac{A_{2n_{k+1}+1}}{x_{2n_{k+1}}}. \quad (2.32) \]

Therefore for every \(k \geq 1, \)

\[A_{2n_k+1} < x_{2n_k+2} = x_{2n_{k+1}} < A_{2n_{k+1}+1}, \quad (2.33) \]

which is a contradiction since \(\{A_n\}_{n=0}^{\infty} \) is a periodic sequence. The proof is complete. \(\square \)

Remark 2.10. Corollary 2.9 is the main result of [5].
3. Example

In this section, we give an example for \(\{ A_n \}_{n=0}^{\infty} \) to be no periodic sequence.

Example 3.1. Consider

\[
x_{n+1} = \max \left\{ \frac{1}{x_n} A_n \right\}, \quad n = 0, 1, \ldots,
\]

(3.1)

where \(A_{2n} = A_{2n+1} = (2 - 1/2^n)(2 - 1/2^{n+1})/16 \) for any \(n \geq 0 \). Then solution \(\{ x_n \}_{n=1}^{\infty} \) of (3.1) with the initial values \(x_{-1} = 1/4 \) and \(x_0 = 4 \) satisfies the following.

1. \(x_{2p-1} x_{2p} = 1 \), for any \(p \geq 0 \).
2. \(x_{2p-1} < x_{2p+1} = \frac{A_{2p}}{x_{2p-1}} < \frac{1}{2} < x_{2p+2} < x_{2p} \), for any \(p \geq 0 \).

Proof. By simple computation, we have

\[
A_{2p} = \frac{(2 - 1/2^p)(2 - 1/2^{p+1})}{16} = \left\{ \begin{array}{ll}
\frac{x_{-1}^2}{}, & \text{if } p = 0, \\
\left(\frac{A_0}{x_{-1}} \right)^2, & \text{if } p = 1, \\
\left(\frac{A_{2p-2} A_{2p-6} \cdots A_2}{A_{2p-4} A_{2p-8} \cdots A_0} x_{-1} \right)^2, & \text{if } p \geq 2 \text{ is even}, \\
\left(\frac{A_{2p-2} A_{2p-6} \cdots A_4 A_0}{A_{2p-4} A_{2p-8} \cdots A_2 x_{-1}} \right)^2, & \text{if } p \geq 2 \text{ is odd}.
\end{array} \right.
\]

(3.2)

It follows from (3.1) and (3.2) that

\[
x_1 x_{-1} = \max \left\{ \frac{x_{-1}}{x_0}, A_0 \right\} = \max \left\{ x_{-1}^2, A_0 \right\} = A_0,
\]

\[
x_2 x_1 = \max \left\{ 1, \frac{x_1 A_1}{x_0} \right\} = \max \left\{ 1, \frac{A_0 A_1}{x_1 x_0} \right\} = 1,
\]

\[
x_3 x_1 = \max \left\{ \frac{x_1}{x_2}, A_2 \right\} = \max \left\{ \frac{x_1^2}{x_2 x_1}, A_2 \right\} = \max \left\{ \left(\frac{A_0}{x_{-1}} \right)^2, A_2 \right\} = A_2,
\]

\[
x_4 x_3 = \max \left\{ 1, \frac{x_3 A_3}{x_2} \right\} = \max \left\{ 1, \frac{A_2 A_3}{x_2 x_1} \right\} = 1,
\]

\[
x_5 x_3 = \max \left\{ \frac{x_3}{x_4}, A_4 \right\} = \max \left\{ \frac{x_3^2}{x_4 x_3}, A_4 \right\} = \max \left\{ \left(\frac{x_3 x_1}{x_1 x_{-1}} \right)^2, A_4 \right\}
\]

\[
= \max\left\{ \left(\frac{A_2}{A_0} x_{-1} \right)^2, A_4 \right\} = A_4,
\]
Abstract and Applied Analysis

By induction, we have from (3.1) and (3.2) that for any \(p \geq 1, \)

\[
x_{4p+1} = \max \left\{ \frac{x_{4p+1}}{x_{4p}}, A_{4p} \right\} = \max \left\{ \frac{x_{4p+1}^2}{x_{4p}x_{4p+1}}, A_{4p} \right\} = \max \left\{ x_{4p+1}^2, A_{4p} \right\}
\]

\[
x_{4p+2} = \max \left\{ \frac{x_{4p+2}}{x_{4p+1}}, A_{4p+1} \right\} = \max \left\{ \frac{x_{4p+2}^2}{x_{4p+1}x_{4p+2}}, A_{4p+1} \right\} = \max \left\{ x_{4p+2}^2, A_{4p+1} \right\}
\]

\[
x_{4p+3} = \max \left\{ \frac{x_{4p+3}}{x_{4p+2}}, A_{4p+2} \right\} = \max \left\{ \frac{x_{4p+3}^2}{x_{4p+2}x_{4p+3}}, A_{4p+2} \right\} = \max \left\{ x_{4p+3}^2, A_{4p+2} \right\}
\]

\[
x_{4p+4} = \max \left\{ \frac{x_{4p+4}}{x_{4p+3}}, A_{4p+3} \right\} = \max \left\{ \frac{x_{4p+4}^2}{x_{4p+3}x_{4p+4}}, A_{4p+3} \right\} = \max \left\{ x_{4p+4}^2, A_{4p+3} \right\}
\]

from which the result follows. The proof is complete.
Acknowledgments

The project is supported by NNSF of China(10861002), NSF of Guangxi (0640205,0728002), and Innovation Project of Guangxi Graduate Education(2008105930701M43).

References

Submit your manuscripts at
http://www.hindawi.com