Research Article

On a Higher-Order Nonlinear Difference Equation

Bratislav D. Iričanin

Faculty of Electrical Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11120 Belgrade, Serbia

Correspondence should be addressed to Bratislav D. Iričanin, iricanin@.etf.rs

Received 20 May 2010; Accepted 2 June 2010

Academic Editor: Stevo Stević

Copyright © 2010 Bratislav D. Iričanin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper shows that all positive solutions of a higher-order nonlinear difference equation are bounded, extending some recent results in the literature.

1. Introduction

There is a considerable interest in studying nonlinear difference equations nowadays; see, for example, [1–40] and numerous references listed therein.

The investigation of the higher-order nonlinear difference equation

\[x_n = A + \frac{x_{n-m}}{x_{n-k}}, \quad n \in \mathbb{N}_0, \]

(1.1)

where \(A, r > 0 \) and \(p \geq 0 \), and \(k, m \in \mathbb{N}, k \neq m \), was suggested by Stević at numerous talks and in papers (see, e.g., [20, 28, 30, 34–38] and the related references therein).

In this paper we show that under some conditions on parameters \(A, r, \) and \(p \) all positive solutions of the difference equation

\[x_n = A + \frac{x_{n-1}}{x_{n-k}}, \quad n \in \mathbb{N}_0, \]

(1.2)

where \(k \in \mathbb{N} \setminus \{1\} \), are bounded. To do this we modify some methods and ideas from Stević’s papers [30, 35–37]. Our motivation stems from these four papers.
The reader can find results for some particular cases of (1.2), as well as on some closely related equations treated in, for example, [1, 2, 5–11, 18–20, 26, 30, 33–35, 38, 40].

2. Main Result

Here we investigate the boundedness of the positive solutions to (1.2) for the case \(0 < p < (rk^k/(k-1)^{k-1})^{1/k}\). The following result completely describes the boundedness of positive solutions to (1.2) in this case. The result is an extension of one of the main results in [35].

Theorem 2.1. Assume, \(p, r > 0\) and \(k \in \mathbb{N} \setminus \{1\}\). Then every positive solution of (1.2) is bounded if

\[
0 < p < \left(\frac{rk^k}{(k-1)^{k-1}}\right)^{1/k}.
\]

Proof. First note that from (1.2) it directly follows that

\[x_n > A, \quad \text{for } n \in \mathbb{N}_0.\]

Using (1.2), it follows that

\[
x_n = A + \frac{x_{n-1}^p}{x_{n-k}^r} = A + \left(\frac{x_{n-1}}{x_{n-k}^{r/p}}\right)^p = A + \left(\frac{A}{x_{n-k}^{r/p}} + \frac{x_{n-2}^p}{x_{n-k}^{r/p}x_{n-k-1}^x}\right)^p = A + \left(\frac{A}{x_{n-k}^{r/p}} + \left(\frac{x_{n-2}}{x_{n-k}^{r/p}x_{n-k-1}^x}\right)^p\right)^p
\]

Using (1.2), it follows that

\[
x_n = A + \frac{x_{n-1}^p}{x_{n-k}^r} = A + \left(\frac{x_{n-1}}{x_{n-k}^{r/p}}\right)^p = A + \left(\frac{A}{x_{n-k}^{r/p}} + \frac{x_{n-2}^p}{x_{n-k}^{r/p}x_{n-k-1}^x}\right)^p = A + \left(\frac{A}{x_{n-k}^{r/p}} + \left(\frac{x_{n-2}}{x_{n-k}^{r/p}x_{n-k-1}^x}\right)^p\right)^p
\]

\[
= A + \left(\frac{A}{x_{n-k}^{r/p}} + \left(\frac{x_{n-2}}{x_{n-k}^{r/p}x_{n-k-1}^x}\right)^p\right)^p.
\]

This completes the proof.
After k steps we obtain the following formula

$$
x_n = A + \left(\frac{A}{x_n^{r/p}} \right)^n_k + \left(\frac{A}{x_n^{r/p^2}} \right)^n_k + \left(\frac{A}{x_n^{r/p^3}} \right)^n_k + \cdots
$$

Two subcases can be considered now.

Case 1 ($r \geq p^k$). If $r \geq p^k$, then by (2.2) equality (2.4) implies that

$$
x_n < A + \left(\frac{A}{A^{r/p}} \right)^n + \left(\frac{A}{A^{r/p^{2}+r/p^k}} \right)^n + \cdots
$$

for $n \geq 2k - 1$. This means that (x_n) is a bounded sequence.

Case 2 ($p^k > r$). In this case we have

$$
p - \frac{r}{p^{k-1}} > 0.
$$
From (2.4) and (1.2) we further obtain

\[
x_n = A + \left(\frac{A}{x_{n-k}} \right) + \left(\frac{A}{x_{n-k}^2 x_{n-k-1}} \right) + \left(\frac{A}{x_{n-k}^3 x_{n-k-2}} \right)
\]

\[
+ \cdots + \left(\frac{A}{x_{n-k}^{p-1} x_{n-k-1} \cdots x_{n-(2k-2)}} \right) \left(\frac{A}{x_{n-k}^{p-2} x_{n-k-2} \cdots x_{n-(2k-2)}^{p-2}} \right) \left(\frac{A}{x_{n-k}^{p-3} x_{n-k-3} \cdots x_{n-(2k-2)}^{p-3}} \right) \cdots \right)^p
\]

\[
= A + \left(\frac{A}{x_{n-k}^p} \right) + \left(\frac{A}{x_{n-k}^r x_{n-k}} \right) + \left(\frac{A}{x_{n-k}^r x_{n-k}^2 x_{n-k-1}} \right) + \left(\frac{A}{x_{n-k}^r x_{n-k}^3 x_{n-k-2}} \right)
\]

\[
+ \cdots + \left(\frac{A}{x_{n-k}^{p-z_{0}^{(0)}}} \right) + \left(\frac{x_{n-k}}{\prod_{j=0}^{k-2} x_{n-k-j}^{z_{0}^{(0)}}} \left(\prod_{j=1}^{k-2} x_{n-k-j}^{z_{0}^{(0)}} \right) x_{n-k}^{p-z_{0}^{(0)}} \right) \cdots \right)^p
\]

\[
= A + \left(\frac{A}{x_{n-k}^p} \right) + \left(\frac{A}{x_{n-k}^r x_{n-k}} \right) + \left(\frac{A}{x_{n-k}^r x_{n-k}^2 x_{n-k-1}} \right) + \left(\frac{A}{x_{n-k}^r x_{n-k}^3 x_{n-k-2}} \right)
\]

\[
+ \cdots + \left(\frac{A}{x_{n-k}^{p-z_{1}^{(0)}}} \right) + \left(\frac{x_{n-k}^{1-z_{1}^{(0)}}}{\prod_{j=0}^{k-2} x_{n-k-j}^{1-z_{1}^{(0)}}} \left(\prod_{j=1}^{k-2} x_{n-k-j}^{1-z_{1}^{(0)}} \right) x_{n-k-1}^{p-z_{1}^{(0)}} \right) \cdots \right)^p
\]

\[
= \cdots = A + \left(\frac{A}{x_{n-k}^p} \right) + \left(\frac{A}{x_{n-k}^r x_{n-k}} \right) + \left(\frac{A}{x_{n-k}^r x_{n-k}^2 x_{n-k-1}} \right) + \left(\frac{A}{x_{n-k}^r x_{n-k}^3 x_{n-k-2}} \right)
\]

\[
+ \cdots + \left(\frac{A}{x_{n-k}^{p-z_{m}^{(0)}}} \right) + \left(\frac{x_{n-k}^{m-z_{m}^{(0)}}}{\prod_{j=0}^{k-2} x_{n-k-j}^{m-z_{m}^{(0)}}} \left(\prod_{j=1}^{k-2} x_{n-k-j}^{m-z_{m}^{(0)}} \right) x_{n-k-m}^{p-z_{m}^{(0)}} \right) \cdots \right)^p,
\]

(2.7)
for each $k \in \mathbb{N} \setminus \{1\}$ and every $n \geq 2k + m - 1$, where the sequences $(z_m^{(j)})$, $j = 0, 1, \ldots, k - 2$, satisfy the system

$$
z_{m+1}^{(0)} = \frac{z_{m}^{(1)} z_{m+1}^{(1)}}{p - z_{m}^{(0)}}, \quad z_{m+1}^{(1)} = \frac{z_{m}^{(2)} z_{m+1}^{(2)}}{p - z_{m}^{(0)}}, \ldots, \quad z_{m+1}^{(k-2)} = \frac{z_{m}^{(k-2)} z_{m+1}^{(k-2)}}{p - z_{m}^{(0)}}, \quad z_{m+1}^{(k-1)} = \frac{r}{p - z_{m}^{(0)}} \quad (2.8)
$$

and the initial values are given by

$$
z_0^{(j)} = r p^{j+1-k}, \quad j = 0, 1, \ldots, k-2. \quad (2.9)
$$

Note that $p^k > r$ implies that $z_0^{(0)} < p$. Assume $z_0^{(0)} < p$ for every $m \in \mathbb{N}_0$.

By a direct calculation it follows that $z_0^{(j)} < z_1^{(j)}$, $j = 0, 1, \ldots, k-2$, which, along with (2.8) implies that $(z_m^{(j)})$, $j = 0, 1, \ldots, k-2$, are strictly increasing sequences.

From system (2.8), we have,

$$
z_{m+1}^{(0)} = \frac{r}{(p - z_m^{(0)})(p - z_{m-1}^{(0)}) \cdots (p - z_{m-k+2}^{(0)})}, \quad m \geq k - 2. \quad (2.10)
$$

If it were $z_m^{(0)} < p$, $m \in \mathbb{N}_0$, then there was

$$
\lim_{m \to \infty} z_m^{(0)} = z \in (0, p]. \quad (2.11)
$$

Clearly z is a solution of the equation

$$
f(x) = x(p - x)^{k-1} - r = 0. \quad (2.12)
$$

Since

$$
f(0) = f(p) = -r, \quad (2.13)
$$

and

$$
f'(x) = (p - x)^{k-2}(p - kx), \quad (2.14)
$$

we see that the function f attains its maximum at the point $x = p/k$.

Further, by assumption (2.1) we get

$$
f\left(\frac{p}{k}\right) = \frac{(k-1)^{k-1}}{k^k} \left(p^k - r \frac{k^k}{(k-1)^{k-1}} \right) < 0, \quad (2.15)
$$

which along with (2.13) implies that (2.12) does not have solutions on $(0, p]$, arriving at a contradiction.
This implies that there is a fixed index $m_0 \in \mathbb{N}$ such that
\begin{equation}
-z_{m_0-1}^{(0)} < p, \quad z_{m_0}^{(0)} \geq p.
\end{equation}

From this, inequality (2.2), and identity (2.7) with $m = m_0$, it follows that
\begin{align}
x_n &= A + \left(\frac{A}{x_{n-k}^{\frac{r}{p}}} + \left(\frac{A}{x_{n-k-1}^{\frac{r}{p}}} + \left(\frac{A}{x_{n-k-2}^{\frac{r}{p}}} + \cdots + \left(\frac{A}{\prod_{j=0}^{k-2} x_{n-k-m_j}^{\frac{r}{p}}} + \left(\frac{A}{\prod_{j=1}^{k-2} x_{n-k-m_j}^{\frac{r}{p}}} \right) \right) \right) \right) \right) \cdots \\
&\leq A + \left(\frac{A}{A^{\frac{r}{p}}} + \left(\frac{A}{A^{\frac{r}{p}+r/p}} + \left(\frac{A}{A^{\frac{r}{p}+r/p}} + \cdots + \left(\frac{A}{A^{\prod_{j=0}^{m_j-1} (p-z_{j}^{(0)})}} + \left(\frac{A}{A^{\prod_{j=1}^{m_j-1} (p-z_{j}^{(0)})}} \right) \right) \right) \right) \right) \cdots < \infty
\end{align}

for $n \geq 2k + m_0 - 1$.

From (2.17) the boundedness of the sequence (x_n) directly follows, as desired. \qed

Acknowledgment

The research was partially supported by the Serbian Ministry of Science, through The Mathematical Institute of SASA, Belgrade, Project no. 144013.

References

[13] S. Stević, “A note on the difference equation \(x_{n+1} = \sum_{i=0}^{k} a_i / x_{n-i}^m\),” *Journal of Difference Equations and Applications*, vol. 8, no. 7, pp. 641–647, 2002.

[17] S. Stević, “On the recursive sequence \(x_{n+1} = A / \prod_{i=0}^{k} x_{n-i} + 1 / \prod_{j=k+1}^{2(k+1)} x_n - j\),” *Taiwanese Journal of Mathematics*, vol. 7, no. 2, pp. 249–259, 2003.

[18] S. Stević, “On the recursive sequence \(x_{n+1} = \alpha_n + (x_{n-1} / x_n)\),” *Dynamics of Continuous, Discrete & Impulsive Systems*, vol. 10, no. 6, pp. 911–916, 2003.

[31] S. Stević, “On the recursive sequence \(x_{n+1} = 1 + (\sum_{i=1}^{k} \alpha_i x_{n-i}) / (\sum_{j=1}^{m} \beta_j x_{n-j})\),” *Discrete Dynamics in Nature and Society*, Article ID 39404, 7 pages, 2007.

Submit your manuscripts at
http://www.hindawi.com