Research Article

Existence and Nonexistence Results for Classes of Singular Elliptic Problem

Peng Zhang and Jia-Feng Liao

Correspondence should be addressed to Peng Zhang, gzyypd@sina.com

1. Introduction and Main Results

In this paper, we study the existence or the nonexistence of solutions to the following singular semilinear elliptic problem

\[-\Delta u + k(x)u^{-\gamma} = \lambda u^p, \quad \text{in} \quad \Omega,\]

\[u > 0, \quad \text{in} \quad \Omega,\]

\[u = 0, \quad \text{on} \quad \partial \Omega,\]

where \(\Omega \subset \mathbb{R}^N (N \geq 1)\) is a bounded domain with \(C^{2+\alpha}\) boundary for some \(\alpha \in (0,1)\), \(k \in C^\alpha_{\text{loc}}(\Omega) \cap C(\overline{\Omega})\), and \(\gamma, p, \lambda\) are three nonnegative constants. This problem arises in the study of non-Newtonian fluids, chemical heterogeneous catalysts, in the theory of heat conduction in electrically conducting materials (see [1–7] and their references).

Many authors have considered this problem. For examples, when \(k(x) < 0\) in \(\Omega\), problem (1.1) was studied in [3, 8–11]; when \(k(x) > 0\) in \(\Omega\), problem (1.1) was considered in [12–14]. Particularly, when \(k(x) \equiv 1\), it has been established in Zhang [14] that there exists \(\overline{\lambda} > 0\) such that problem (1.1) has at least one solution in \(C^{2+\alpha}(\Omega) \cap C(\overline{\Omega})\) for all \(\lambda > \overline{\lambda}\) and
has no solution in \(C^2(\Omega) \cap C(\overline{\Omega}) \) if \(\lambda < \lambda_0 \). After that Shi and Yao in [13] have also obtained the same results with \(k \in C^{2,a}(\overline{\Omega}) \) and \(k(x) > 0 \) in \(\overline{\Omega} \). Recently, Ghergu and Rădulescu in [12] considered more general sublinear singular elliptic problem with \(k \in C^{s}(\overline{\Omega}) \).

In this paper, we consider the case that \(k \in C^{s}_{loc}(\Omega) \cap C(\overline{\Omega}) \), and \(k \) may have zeros in \(\overline{\Omega} \). The following main results are obtained by the sub-supersolution method with restriction on the boundary in Cui [15].

Theorem 1.1. Suppose that \(k \in C^{s}_{loc}(\Omega) \cap C(\overline{\Omega}), k \geq 0, \) and \(k \neq 0 \). Assume that \(0 < p < 1 \) and \(0 < \gamma < 1 \) such that problem (1.1) has at least one solution \(u_\lambda \in C^{2+a}(\Omega) \cap C(\overline{\Omega}) \) and \(u_\lambda^{+} \in L^1(\Omega) \) for all \(\lambda > \lambda_0 \), and problem (1.1) has no solution in \(C^2(\Omega) \cap C(\overline{\Omega}) \) if \(\lambda < \lambda_0 \). Moreover, problem (1.1) has a maximal solution \(v_\lambda \) which is increasing with respect to \(\lambda \) for all \(\lambda > \lambda_0 \).

Remark 1.2. Theorem 1.1 generalizes Theorem 1.2 in [13] in coefficient \(k(x) \) of the singular term. Consequently, it also generalizes Theorem 1 in [14]. Moreover, there are functions \(k \) satisfying our Theorem 1.1 and not satisfying Theorem 1.2 in [13]. For example, let

\[
k(x) = \begin{cases}
\frac{1}{\ln(|x - x_0|/(2d))}, & x \in \overline{\Omega} \setminus \{x_0\}, \\
0, & x = x_0,
\end{cases}
\]

where \(x_0 \in \partial \Omega \), and

\[
d = \text{diam}(\Omega) \triangleq \max \left\{ |x - y| \mid x, y \in \overline{\Omega} \right\}.
\]

Certainly, this example does not satisfy Theorem 1.2 in [12] yet.

Theorem 1.3. Suppose that \(k \in C^a_{loc}(\Omega) \cap C(\overline{\Omega}) \) and \(k(x) > 0 \) in \(\overline{\Omega} \). If \(\gamma \geq 1 \), problem (1.1) has no solution in \(C^2(\Omega) \cap C(\overline{\Omega}) \) for all \(\lambda > 0 \) and \(p > 0 \).

Remark 1.4. Obviously, Theorem 1.3 is a generalization of Theorem 2 in [14]. There are also functions \(k(x) \) satisfying our Theorem 1.3 and not satisfying Theorem 2 in [14] and Theorem 1.1 in [12]. For example, let

\[
k(x) = \begin{cases}
\frac{1}{\ln(|x - x_0|/(2d))} + \varepsilon, & x \in \overline{\Omega} \setminus \{x_0\}, \\
\varepsilon, & x = x_0,
\end{cases}
\]

where \(x_0 \in \partial \Omega, \varepsilon \) is any positive constant and \(d = \text{diam}(\Omega) \) is the diameter of \(\Omega \).
2. Proof of Theorems

Consider the more general semilinear elliptic problem

\[-\Delta u = f(x,u), \quad \text{in } \Omega,\]
\[u > 0, \quad \text{in } \Omega,\]
\[u = 0, \quad \text{on } \partial \Omega,\]

(2.1)

where the function \(f(x,s)\) is locally \(H^\alpha\) continuous in \(\Omega \times (0, \infty)\) and continuously differentiable with respect to the variable \(s\). A function \(\underline{u}\) is called to be a subsolution of problem (2.1) if \(\underline{u} \in C^2(\Omega) \cap C(\overline{\Omega})\), and

\[-\Delta \underline{u} \leq f(x,\underline{u}), \quad \text{in } \Omega,\]
\[\underline{u} > 0, \quad \text{in } \Omega,\]
\[\underline{u} = 0, \quad \text{on } \partial \Omega.\]

(2.2)

A function \(\overline{u}\) is called to be a supersolution of problem (2.1) if \(\overline{u} \in C^2(\Omega) \cap C(\overline{\Omega})\), and

\[-\Delta \overline{u} \geq f(x,\overline{u}), \quad \text{in } \Omega,\]
\[\overline{u} > 0, \quad \text{in } \Omega,\]
\[\overline{u} = 0, \quad \text{on } \partial \Omega.\]

(2.3)

According to Lemma 3 in the study of Cui [15], we can easily have the following basic existence of classical solution to problem (2.1).

Lemma 2.1. Let \(f \in C^\alpha_{\text{loc}}(\Omega \times (0, \infty))\) be continuously differentiable with respect to the variable \(s\). Suppose that problem (2.1) has a supersolution \(\overline{u}\) and a subsolution \(\underline{u}\) such that

\[\underline{u}(x) \leq \overline{u}(x), \quad \text{in } \Omega,\]

(2.4)

then problem (2.1) has at least one solution \(u \in C^{2+\alpha}(\Omega) \cap C(\overline{\Omega})\) satisfying

\[\underline{u}(x) \leq u(x) \leq \overline{u}(x), \quad \text{in } \overline{\Omega}.\]

(2.5)

Let \(\lambda_1\) be the first eigenvalue of the eigenvalue problem

\[-\Delta u = \lambda u, \quad \text{in } \Omega,\]
\[u = 0, \quad \text{on } \partial \Omega,\]

(2.6)

and \(\varphi_1 > 0\) in \(\Omega\) the corresponding eigenfunction. Then \(\varphi_1 \in C^{2+\alpha}(\overline{\Omega})\). Moreover one has the following lemma.
Lemma 2.2 (see [10]). One has
\[\int_\Omega \varphi_1^r \, dx < \infty \] (2.7)
if and only if \(r > -1 \).

Now we give the proof of our theorems.

Proof of Theorem 1.1. Let \(p \in (0, 1) \), and let \(u^* \) denote the unique solution of
\[-\Delta u = u^p, \quad \text{in } \Omega, \]
\[u > 0, \quad \text{in } \Omega, \]
\[u = 0, \quad \text{on } \partial \Omega, \] (2.8)
where \(u^* \) belongs to \(C^2(\bar{\Omega}) \) (see [16]). Then \(u = \lambda^{1/(1-p)} u^* \) is a solution of
\[-\Delta u = \lambda u^p, \quad \text{in } \Omega, \]
\[u > 0, \quad \text{in } \Omega, \]
\[u = 0, \quad \text{on } \partial \Omega, \] (2.9)
where \(0 < p < 1 \) and \(\lambda > 0 \). Then fix \(\lambda > 0 \) and set
\[\overline{u} = \lambda^{1/(1-p)} u^*, \] (2.10)
thus we can easily obtain that \(\overline{u} \) is a supersolution of problem (1.1).

Now, we want to find a subsolution of problem (1.1). Let
\[\underline{u} = M \varphi_1^{2/(1+\gamma)}, \] (2.11)
where \(M \) is a positive constant; now we will prove that \(\underline{u} \) is a subsolution of problem (1.1). By Hopf's maximum principle in [17], there exist \(\delta > 0 \) and \(\varepsilon_0 > 0 \) such that
\[|\nabla \varphi_1| \geq \delta, \quad \text{on } \Omega \setminus \Omega', \]
\[\varphi_1 \geq \delta, \quad \text{on } \Omega', \] (2.12)
where \(\Omega' = \{ x \in \Omega \mid \text{dist}(x, \partial \Omega) > \varepsilon_0 \} \). On \(\Omega' \), we choose \(M \geq M_1 = \frac{\lambda_1 M}{\lambda_1 \delta^2} \) \(|\kappa|_{\infty} (1 + \gamma) \), then we have
\[\frac{k(x)}{M^\gamma \varphi_1^{2/(1+\gamma)}} \leq \frac{\lambda_1 M}{\lambda_1 \delta^2} \frac{2/(1+\gamma)}{\varphi_1^{2/(1+\gamma)}}, \] (2.13)
Abstract and Applied Analysis

where \(\| k \|_\infty = \max \{ |k(x)| \ | x \in \overline{\Omega} \} \) for \(k \in C(\overline{\Omega}) \). On \(\Omega \setminus \Omega' \), we choose \(M \geq M_2 \overset{\Delta}{=} (\|k\|_\infty (1 + \gamma)^2 / 2(1 - \gamma) \delta^2)^{1/(1 + \gamma)} \), then one obtains

\[
\frac{k(x)}{M \varphi_1^{2/(1 + \gamma)}} \leq \frac{2(1 - \gamma)M |\nabla \varphi_1|^2}{(1 + \gamma)^2 \varphi_1^{2/(1 + \gamma)}}. \tag{2.14}
\]

Thus, we choose \(M \geq \max \{ M_1, M_2 \} \), then fixing \(M \), let \(\lambda > \lambda' \overset{\Delta}{=} (3\lambda_1M^{1 - p}) / (1 + \gamma) \| \varphi_1 \|_\infty^{2(1 - p)/(1 + \gamma)} \), it follows from (2.13) and (2.14) that

\[
-\Delta u + k(x)u_\alpha^{-\gamma} = -M \Delta \varphi_1^{2/(1 + \gamma)} + \frac{k(x)}{M \varphi_1^{2/(1 + \gamma)}}
\]

\[
= -M \left(\frac{2(1 - \gamma)}{1 + \gamma} |\nabla \varphi_1|^2 \varphi_1^{2/(1 + \gamma)} + \frac{2}{1 + \gamma} \varphi_1^{1 - 1/(1 + \gamma)} \Delta \varphi_1 \right) + \frac{k(x)}{M \varphi_1^{2/(1 + \gamma)}}
\]

\[
= \frac{2\lambda_1M}{1 + \gamma} \varphi_1^{2/(1 + \gamma)} + \frac{k(x)}{M \varphi_1^{2/(1 + \gamma)}} - \frac{2(1 - \gamma)M |\nabla \varphi_1|^2}{(1 + \gamma)^2 \varphi_1^{2/(1 + \gamma)}}
\]

\[
\leq \frac{3\lambda_1M}{1 + \gamma} \varphi_1^{2/(1 + \gamma)}
\]

\[
\leq \lambda \left(M \varphi_1^{2/(1 + \gamma)} \right)^p
\]

\[
= \lambda u_\alpha^p. \tag{2.15}
\]

Thus we proved that \(u = M \varphi_1^{2/(1 + \gamma)} \) is a subsolution of problem (1.1) for all \(\lambda > \lambda' \). According to Lemma 4 in [14], there exists a positive constant \(C \) such that

\[
\varphi_1(x) \leq Cu^*(x), \quad \text{in } \overline{\Omega}. \tag{2.16}
\]

Set \(\lambda \geq \lambda'' \overset{\Delta}{=} (MC\| \varphi_1 \|_\infty^{(1 - p)/(1 + \gamma)})^{1 - p} \), then we have

\[
\overline{u} = \lambda^{1/(1 - p)}u^* \geq u = M \varphi_1^{2/(1 + \gamma)}, \quad \text{in } \Omega. \tag{2.17}
\]

Thus we choose \(\lambda^* = \max \{ \lambda', \lambda'' \} \); via Lemma 2.1, problem (1.1) has at least one solution \(u_1 \in C^{2 + \delta}(\Omega) \cap C(\overline{\Omega}) \) and satisfying

\[
\underline{u}(x) \leq u_1(x) \leq \overline{u}(x), \quad \text{in } \overline{\Omega}, \tag{2.18}
\]

for all \(\lambda \geq \lambda^* \).
Since \(u_1 \geq M \phi_1^{2/(1+\gamma)} \) in \(\overline{\Omega} \) for all \(\lambda \geq \lambda^* \) and \(-2\gamma/(1+\gamma) > -1\), according to Lemma 2.2 one has

\[
\int_{\Omega} u_1^{-\gamma}(x) \, dx \leq \frac{1}{M^\gamma} \int_{\Omega} \phi_1^{-2\gamma/(1+\gamma)}(x) \, dx < +\infty. \tag{2.19}
\]

So we obtain \(u_1^{-\gamma} \in L^1(\Omega) \).

Let \(\Omega_j = \{ x \in \Omega \mid \text{dist}(x, \partial \Omega) > r/2j \} \), \(j = 1, 2, 3, \ldots \), and let \(u_j \) be the unique solution of

\[
-\Delta u + k(x)u_j^{-\gamma} = \lambda u_j^p, \quad \text{in } \Omega_j,
\]

\[
 u = u_{j-1}, \quad \text{on } \overline{\Omega} \setminus \Omega_j,
\]

for \(j = 1, 2, 3, \ldots \), and with \(u_0 = \bar{u} = \lambda^{1/(1-p)}u^* \), where

\[
r = \max_{x \in \Omega} \min_{y \in \partial \Omega} |x - y|. \tag{2.21}
\]

We claim that \(u_j \) is nonincreasing with respect to \(j \) in \(\overline{\Omega} \) for all \(j \in \mathbb{N} \). Indeed, since \(\bar{u} \) is a supersolution of problem (1.1) for all \(\lambda > 0 \), then we have

\[
-\Delta (u_0 - u_1) = -\Delta u_0 + \Delta u_1
\]

\[
= -\Delta u_0 + k(x)u_0^{-\gamma} - \lambda u_0^p
\]

\[
= -\Delta \bar{u} + k(x)\bar{u}^{-\gamma} - \lambda \bar{u}^p
\]

\[
> 0,
\]

for all \(x \in \Omega_1 \). Since \(u_1 = u_0 \) in \(\overline{\Omega} \setminus \Omega_1 \), so by the maximum principle, one has \(u_0 \geq u_1 \) in \(\overline{\Omega} \). So when \(j = 0 \) our claim is true. We assume that our claim is true when \(j = n \); that is, \(u_n \leq u_{n-1} \) in \(\overline{\Omega} \). Then we obtain

\[
-\Delta (u_n - u_{n+1}) = -\Delta u_n + \Delta u_{n+1}
\]

\[
= \lambda \left(u_{n-1}^p - u_n^p \right) + k(x) \left(u_n^{-\gamma} - u_{n-1}^{-\gamma} \right)
\]

\[
> 0,
\]

for all \(x \in \Omega_{n+1} \). Since \(u_n = u_{n+1} \) in \(\overline{\Omega} \setminus \Omega_{n+1} \), so by the maximum principle, one has \(u_n \geq u_{n+1} \) in \(\overline{\Omega} \). Thus by the induction, one obtains

\[
 u_{j+1} \leq u_j, \quad \text{in } \overline{\Omega}, \tag{2.24}
\]
for all \(j \in N \). Then by the monotonicity of \(u_j \), we have

\[
-\Delta u_j = \lambda u_j^p - k(x)u_j^q,
\]

\[
\geq \lambda u_j^p - k(x)u_j^q,
\]

for all \(x \in \Omega_j \) and \(j \in N^+ \). According to the definitions of \(u_j \) and \(u_0 \), we obtain that \(u_j \) is a supersolution of problem (1.1) for all \(j \in N^+ \). Let \(u_1 \) be a classical solution of problem (1.1), thus one has

\[
u_1(x) \leq u_{j+1}(x) \leq u_j(x) \leq u_0(x), \quad \text{in } \Omega.
\] (2.26)

Assume that \(v_1(x) = \lim_{j \to \infty} u_j(x) \) for all \(x \in \Omega \), then by standard elliptic arguments (see [17]) it follows that \(v_1 \) is a solution of problem (1.1), and \(v_1 \geq u_1 \) in \(\Omega \) for any \(u_1 \). Therefore, \(v_1 \) is the maximal solution of problem (1.1). According to the above arguments, problem (1.1) has a maximal solution for \(\lambda \geq \lambda^* \).

To complete the proof of Theorem 1.1, setting

\[
\sigma = \{ \lambda > 0 \mid \text{problem (1.1) has at least one solution } u_1 \},
\]

\[
\bar{\lambda} = \inf \sigma,
\] (2.27)

then \([\lambda^*, +\infty) \subset \sigma, \bar{\lambda} \leq \lambda^* \). It suffices to prove that if \(\lambda_0 \in \sigma \), then \([\lambda_0, +\infty) \subset \sigma \); that is, assume that \(\lambda > \lambda_0 \), then problem (1.1) has at least one solution. Let \(u_{\lambda_0} \) be a solution of problem (1.1) corresponding to \(\lambda_0 \), then \(u_{\lambda_0} \) is a subsolution of problem (1.1) with every fixed \(\lambda > \lambda_0 \). Since \(\bar{u} = \lambda^{1/(1-p)}u^* \) is a supersolution of problem (1.1) for any \(\lambda > 0 \), then one has

\[
\lambda^{1/(1-p)}u^* \geq \lambda_0^{1/(1-p)}u^* \geq u_{\lambda_0}, \quad \text{in } \Omega,
\] (2.28)

for all \(\lambda > \lambda_0 \). According to Lemma 2.1, problem (1.1) has at least one solution \(u_1 \in C^{2+\alpha}(\Omega) \cap C(\Omega) \) for all \(\lambda > \lambda_0 \). Moreover,

\[
u_{\lambda_0}(x) \leq u_1(x) \leq \bar{u}(x), \quad \text{in } \Omega.
\] (2.29)

Consequently, the maximal solution \(v_1 \) of problem (1.1) is increasing with respect to \(\lambda \) for all \(\lambda > \bar{\lambda} \). So the proof of Theorem 1.1 is completed.

\[\square \]

Proof of Theorem 1.3. Suppose to the contrary that there exists \(\lambda > 0 \) such that problem (1.1) has one solution \(u_1 \in C^2(\Omega) \cap C(\Omega) \). Let \(e \) be the unique solution of

\[
-\Delta u = 1, \quad \text{in } \Omega,
\]

\[
u = 0, \quad \text{on } \partial \Omega,
\] (2.30)
By the maximum principle, $e > 0$ in Ω. We claim that for any solution u_λ of problem (1.1), there exists a constant $M = M(\lambda) > 0$ such that

$$Me(x) > u_\lambda(x), \quad \text{in } \Omega.$$ \hfill (2.31)

Indeed, let $M = \lambda \|u_\lambda\|_{\infty}^p + 1$, then one obtains

$$-\Delta (Me - u_\lambda) = -M\Delta e + \Delta u_\lambda$$

$$= \lambda\|u_\lambda\|_{\infty}^p + 1 - \lambda u_\lambda^p(x) + k(x)u_\lambda^{-r}$$

$$> 0,$$

for all $x \in \Omega$. Since $(Me - u_\lambda)|_{\partial \Omega} = 0$, by the maximum principle we have

$$Me(x) > u_\lambda(x), \quad \text{in } \Omega.$$ \hfill (2.33)

According to Lemma 4 in [14], there exists a positive constant C such that

$$e(x) \leq C\varphi_1(x), \quad \text{in } \Omega.$$ \hfill (2.34)

Since $\gamma \geq 1$, from Lemma 2.2, it follows that

$$\int_{\Omega} u_\lambda^{-r}(x)dx \geq \frac{1}{(CM)^{\gamma}} \int_{\Omega} \varphi_1^{-r}(x)dx = +\infty.$$ \hfill (2.35)

Thus we obtain

$$\int_{\Omega} u_\lambda^{-r}dx = +\infty.$$ \hfill (2.36)

Set

$$\Omega_i = \{ x \in \Omega \mid \text{dist}(x, \partial \Omega) > \frac{r}{2i}, \ i \in \mathbb{N}^+ \},$$

and $\bar{\Omega} = \bigcup_{i=1}^{\infty} \Omega_i$, then $\Omega_i \subset \Omega$ and $u_\lambda \in C^2(\bar{\Omega}_i)$, satisfying

$$-\Delta u_\lambda + k(x)u_\lambda^{-r} = \lambda u_\lambda^p,$$

for all $x \in \bar{\Omega}_i$ and $i \in \mathbb{N}^+$. Consequently, integrating (2.38) we have

$$-\int_{\Omega_i} \Delta u_\lambda dx + \int_{\Omega_i} k(x)u_\lambda^{-r}dx = \lambda \int_{\Omega_i} u_\lambda^p dx \leq \lambda \int_{\Omega_i} u_\lambda^p dx,$$ \hfill (2.39)
Abstract and Applied Analysis

noting that

$$\int_{\Omega} \Delta u_{\lambda} dx = \int_{\partial\Omega} \frac{\partial u_{\lambda}}{\partial n} ds,$$

(2.40)

where \(n \) denotes the outward normal to \(\partial\Omega \). From (2.39) and (2.40), letting \(i \to \infty \), one has

$$\int_{\Omega} k(x)u_{\lambda}^T dx - \int_{\partial\Omega} \frac{\partial u_{\lambda}}{\partial n} ds \leq \lambda \|u_{\lambda}\|_p \|\Omega\|,$$

(2.41)

where \(|\Omega| \) denotes the Lebesgue measure of \(\Omega \). According to (2.36) and \(k(x) > 0 \) in \(\overline{\Omega} \), one obtains

$$\int_{\partial\Omega} \frac{\partial u_{\lambda}}{\partial n} ds = +\infty.$$

(2.42)

But this is impossible, by Hopf’s maximum principle, we have

$$\frac{\partial u_{\lambda}}{\partial n} < 0,$$

(2.43)

for all \(x \in \partial\Omega \), where \(n \) denotes the outward normal to \(\partial\Omega \) at \(x \). Therefore Theorem 1.3 is true. \(\square \)

Acknowledgment

This paper is supported by NNSF of China under Grant 10771173 and the Natural Science Foundation of Education of Guizhou Province under Grant 2008067.

References

