Research Article

Some Identities on the q-Bernoulli Numbers and Polynomials with Weight 0

T. Kim, J. Choi, and Y. H. Kim

Division of General Education-Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea

Correspondence should be addressed to J. Choi, jeschoi@kw.ac.kr

Received 16 August 2011; Accepted 27 September 2011

Academic Editor: Josef Diblik

Copyright © 2011 T. Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Recently, Kim (2011) has introduced the q-Bernoulli numbers with weight α. In this paper, we consider the q-Bernoulli numbers and polynomials with weight $\alpha = 0$ and give p-adic q-integral representation of Bernstein polynomials associated with q-Bernoulli numbers and polynomials with weight 0. From these integral representation on \mathbb{Z}_p, we derive some interesting identities on the q-Bernoulli numbers and polynomials with weight 0.

1. Introduction

Let p be a fixed prime number. Throughout this paper, \mathbb{Z}_p, \mathbb{Q}_p, and \mathbb{C}_p will denote the ring of p-adic integers, the field of p-adic rational numbers, and the completion of the algebraic closure of \mathbb{Q}_p, respectively. Let \mathbb{N} be the set of natural numbers and $\mathbb{N}_+ = \mathbb{N} \cup \{0\}$.

Let $| \cdot |_p$ be a p-adic norm with $|x|_p = p^{-r}$, where $x = p^r s/t$ and $(p, s) = (p, t) = 1$, $r \in \mathbb{Q}$. In this paper, we assume that $q \in \mathbb{C}_p$ with $|1-q|_p < p^{-1/(p-1)}$ so that $q^x = \exp(x \log q)$, and $[x]_q = (1 - q^x)/(1 - q)$.

Let $\text{UD}(\mathbb{Z}_p)$ be the space of uniformly differentiable functions on \mathbb{Z}_p. For $f \in \text{UD}(\mathbb{Z}_p)$, the p-adic q-integral on \mathbb{Z}_p is defined by Kim as follows:

$$I_q(f) = \int_{\mathbb{Z}_p} f(x) \, d\mu_q(x) = \lim_{N \to \infty} \sum_{x=0}^{p^N-1} f(x) \mu_q(x + p^N \mathbb{Z}_p)$$

(1.1)

(see [1–5]). For $n \in \mathbb{N}$, let $f_n(x) = f(x + n)$. From (1.1), we note that

$$q^n I_q(f_n) - I_q(f) = (q - 1) \sum_{l=0}^{n-1} q^{l} f(l) + \frac{q-1}{\log q} \sum_{l=0}^{n-1} q^l f'(l),$$

(1.2)
where \(f'(l) = df(x)/dx \rfloor_{x=l} \) (see [3, 6, 7]). In the special case, \(n = 1 \), we get

\[
q \int_{z_q} f(x+1)d\mu_q(x) - \int_{z_q} f(x)d\mu_q(x) = (q-1)f(0) + \frac{q-1}{\log q} f'(0). \tag{1.3}
\]

Throughout this paper, we assume that \(\alpha \in \mathbb{Q} \).
The \(q \)-Bernoulli numbers with weight \(\alpha \) are defined by Kim [8] as follows:

\[
\tilde{\beta}_{0,q}^{(\alpha)} = 1, \quad q \left(q^{\alpha} \tilde{\beta}_{q}^{(\alpha)} + 1 \right)^n - \tilde{\beta}_{n,q}^{(\alpha)} = \begin{cases} \frac{\alpha}{|\alpha|_q} & \text{if } n = 1, \\ 0 & \text{if } n > 1, \end{cases} \tag{1.4}
\]

with the usual convention about replacing \((\tilde{\beta}_{q}^{(\alpha)})^n\) with \(\tilde{\beta}_{n,q}^{(\alpha)}\). From (1.4), we can derive the following equation:

\[
\tilde{\beta}_{n,q}^{(\alpha)} = \frac{1}{(1-q)^n|\alpha|_q} \sum_{l=0}^{n} \binom{n}{l} (-1)^l \frac{\alpha l + 1}{|\alpha l + 1|_q}.
\]

\[
= -\frac{n\alpha}{|\alpha|_q} \sum_{m=0}^{\infty} q^{m\alpha + m}[m] q^{-1} + (1-q) \sum_{m=0}^{\infty} q^m[m] q^{-n}. \tag{1.5}
\]

By (1.1), (1.4), and (1.5), we get

\[
\tilde{\beta}_{n,q}^{(\alpha)} = \int_{z_q} [x]^n d\mu_q(x) = \frac{1}{(1-q)^n|\alpha|_q} \sum_{l=0}^{n} \binom{n}{l} (-1)^l \frac{\alpha l + 1}{|\alpha l + 1|_q}. \tag{1.6}
\]

The \(q \)-Bernoulli polynomials with weight \(\alpha \) are defined by

\[
\tilde{\beta}_{n,q}^{(\alpha)}(x) = \int_{z_q} [x+y]^n d\mu_q(y) = \sum_{l=0}^{n} \binom{n}{l} q^\alpha [x] q^{-l} \tilde{\beta}_{l,q}^{(\alpha)}. \tag{1.7}
\]

By (1.6) and (1.7), we easily see that

\[
\tilde{\beta}_{n,q}^{(\alpha)}(x) = \int_{z_q} [x+y]^n d\mu_q(y) = \sum_{l=0}^{n} \binom{n}{l} (-1)^l q^{\alpha l} \frac{\alpha l + 1}{|\alpha l + 1|_q}. \tag{1.8}
\]

Let \(C(\mathbb{Z}_p) \) be the set of continuous functions on \(\mathbb{Z}_p \). For \(f \in C(\mathbb{Z}_p) \), the \(p \)-adic analogue of Bernstein operator of order \(n \) for \(f \) is given by

\[
\mathbb{B}_{n,q}(f \mid x) = \sum_{k=0}^{n} f \left(\frac{k}{n} \right) B_{k,n}(x) = \sum_{k=0}^{n} f \left(\frac{k}{n} \right) \binom{n}{k} x^k (1-x)^{n-k}, \tag{1.9}
\]
where \(n, k \in \mathbb{Z}^+ \) (see [1, 9, 10]). For \(n, k \in \mathbb{Z}^+ \), the \(p \)-adic Bernstein polynomials of degree \(n \) are defined by \(B_{k,n}(x) = \binom{n}{k} x^k (1-x)^{n-k} \) for \(x \in \mathbb{Z}_p \), (see [1, 10, 11]).

In this paper, we consider Bernstein polynomials to express the \(p \)-adic \(q \)-integral on \(\mathbb{Z}_p \) and investigate some interesting identities of Bernstein polynomials associated with the \(q \)-Bernoulli numbers and polynomials with weight 0 by using the expression of \(p \)-adic \(q \)-integral on \(\mathbb{Z}_p \) of these polynomials.

2. \(q \)-Bernoulli Numbers with Weight 0 and Bernstein Polynomials

In the special case, \(\alpha = 0 \), the \(q \)-Bernoulli numbers with weight 0 will be denoted by \(\tilde{\beta}^{(0)}_{n,q} = \tilde{\beta}_{n,q} \). From (1.4), (1.5), and (1.6), we note that

\[
\sum_{n=0}^{\infty} \tilde{\beta}_{n,q} \frac{t^n}{n!} = \sum_{n=0}^{\infty} \int_{\mathbb{Z}_p} x^n d\mu_q(x) \frac{t^n}{n!} = \int_{\mathbb{Z}_p} e^{xt} d\mu_q(x) = \left(\frac{q-1}{\log q} \right) \left(\frac{t + \log q}{qe^t - 1} \right).
\]

It is easy to show that

\[
\frac{t + \log q}{qe^t - 1} = \frac{t}{q-1} \left(\frac{1 - q^{-1}}{e^t - q^{-1}} \right) + \frac{\log q}{q-1} \left(\frac{1 - q^{-1}}{e^t - q^{-1}} \right)
\]

\[
= \frac{t}{q-1} \sum_{n=0}^{\infty} H_n(q^{-1}) \frac{t^n}{n!} + \frac{\log q}{q-1} \sum_{n=0}^{\infty} H_n(q^{-1}) \frac{t^n}{n!}
\]

\[
= \frac{1}{q-1} \sum_{n=1}^{\infty} nH_{n-1}(q^{-1}) \frac{t^n}{n!} + \frac{\log q}{q-1} \sum_{n=0}^{\infty} H_n(q^{-1}) \frac{t^n}{n!},
\]

where \(H_n(q^{-1}) \) are the \(n \)th Frobenius-Euler numbers.

By (2.1) and (2.2), we get

\[
\tilde{\beta}_{n,q} = \begin{cases}
1 & \text{if } n = 0, \\
\frac{n}{\log q} H_{n-1}(q^{-1}) + H_n(q^{-1}) & \text{if } n > 0.
\end{cases}
\]

Therefore, we obtain the following theorem.

Theorem 2.1. For \(n \in \mathbb{Z}_+ \), we have

\[
\tilde{\beta}_{n,q} = \begin{cases}
1 & \text{if } n = 0, \\
\frac{n}{\log q} H_{n-1}(q^{-1}) + H_n(q^{-1}) & \text{if } n > 0.
\end{cases}
\]

where \(H_n(q^{-1}) \) are the \(n \)th Frobenius-Euler numbers.
Abstract and Applied Analysis

From (1.5), (1.6), and (1.7), we have

$$
\tilde{\beta}_{0,q} = 1, \quad q (\tilde{\beta}_q + 1)^n - \tilde{\beta}_{n,q} = \begin{cases}
\frac{q - 1}{\log q} & \text{if } n = 1, \\
0 & \text{if } n > 1,
\end{cases}
$$

(2.5)

with the usual convention about replacing \((\tilde{\beta}_q)^n\) with \(\tilde{\beta}_{n,q}\). By (1.7), the \(n\)th \(q\)-Bernoulli polynomials with weight 0 are given by

$$
\tilde{\beta}_{n,q}(x) = \int_{\mathbb{Z}_p} (x + y)^n \, d\mu_q(y) = \sum_{l=0}^{n} \binom{n}{l} x^{n-l} \tilde{\beta}_{l,q}.
$$

(2.6)

From (2.6), we can derive the following function equation:

$$
\left(\frac{q - 1}{\log q} \right) \left(\frac{t + \log q}{q^e t - 1} \right) e^{xt} = \sum_{n=0}^{\infty} \tilde{\beta}_{n,q}(x) \frac{t^n}{n!}.
$$

(2.7)

Thus, by (2.7), we get that

$$
\tilde{\beta}_{n,q}(-1) = (-1)^n \tilde{\beta}_{n,q}(x), \quad \text{for } n \in \mathbb{Z}_+.
$$

(2.8)

By the definition of \(p\)-adic \(q\)-integral on \(\mathbb{Z}_p\), we see that

$$
\int_{\mathbb{Z}_p} (1 - x)^n d\mu_q(x) = (-1)^n \int_{\mathbb{Z}_p} (x - 1)^n d\mu_q(x) = (-1)^n \tilde{\beta}_{n,q}(-1).
$$

(2.9)

Therefore, by (2.8) and (2.9), we obtain the following theorem.

Theorem 2.2. For \(n \in \mathbb{Z}_+\), we have

$$
(-1)^n \tilde{\beta}_{n,q}(x) = \tilde{\beta}_{n,q}(-1).
$$

(2.10)

In particular, \(x = -1\), we get

$$
\int_{\mathbb{Z}_p} (1 - y)^n d\mu_q(y) = (-1)^n \tilde{\beta}_{n,q}(-1) = \tilde{\beta}_{n,q}(-1).
$$

(2.11)

From (2.5), we can derive the following equation:

$$
q^2 \tilde{\beta}_{n,q}(2) = q^2 + nq \frac{q - 1}{\log q} - q + \tilde{\beta}_{n,q}, \quad \text{if } n > 1.
$$

(2.12)

Therefore, by (2.12), we obtain the following theorem.
Abstract and Applied Analysis

Theorem 2.3. For \(n \in \mathbb{N} \) with \(n > 1 \), we have

\[
\tilde{\beta}_{n,q}(2) = 1 + \frac{n}{q} \left(\frac{q-1}{\log q} \right) - \frac{1}{q} + \frac{1}{q^2} \tilde{\beta}_{n,q}. \tag{2.13}
\]

Taking the \(p \)-adic \(q \)-integral on \(\mathbb{Z}_p \) for one Bernstein polynomials in (1.9), we get

\[
\int_{\mathbb{Z}_p} B_{k,n}(x)d\mu_q(x) = \binom{n}{k} \int_{\mathbb{Z}_p} x^k(1-x)^{n-k}d\mu_q(x)
\]

\[
= \binom{n}{k} \sum_{l=0}^{n-k} \binom{n-k}{l} (-1)^l \int_{\mathbb{Z}_p} x^{k+l}d\mu_q(x) \tag{2.14}
\]

From the symmetry of Bernstein polynomials, we note that

\[
\int_{\mathbb{Z}_p} B_{k,n}(x)d\mu_q(x) = \int_{\mathbb{Z}_p} B_{n-k,n}(1-x)d\mu_q(x)
\]

\[
= \binom{n}{k} \sum_{l=0}^{n-k} \binom{n-k}{l} (-1)^l \int_{\mathbb{Z}_p} (1-x)^{n-l}d\mu_q(x). \tag{2.15}
\]

Let \(n > k + 1 \). Then, by Theorem 2.3 and (2.15), we get

\[
\int_{\mathbb{Z}_p} B_{k,n}(x)d\mu_q(x) = \binom{n}{k} \sum_{l=0}^{k} \binom{k}{l} (-1)^{k+l} \left(1 - \frac{n-l}{q} \left(\frac{q-1}{\log q} \right) - q + q^2 \tilde{\beta}_{n-l,q} \right)
\]

\[
= \begin{cases}
1 + n \left(\frac{q-1}{\log q} \right) - q + q^2 \tilde{\beta}_{n,q} & \text{if } k = 0, \\
n \left(\frac{1-q}{\log q} \right) + nq^2 \tilde{\beta}_{n,q} + nq^2 \tilde{\beta}_{n-1,q} & \text{if } k = 1, \\
n \frac{1}{q} \sum_{l=0}^{k} \binom{k}{l} (-1)^{k+l} \tilde{\beta}_{n-l,q} & \text{if } k > 1.
\end{cases} \tag{2.16}
\]

By comparing the coefficients on the both sides of (2.14) and (2.16), we obtain the following theorem.
Theorem 2.4. For $n, k \in \mathbb{Z}_+$ with $n > k + 1$, we have
\[
\sum_{l=0}^{n-1} \binom{n-1}{l} (-1)^l \hat{\beta}_{1+l,q} = \frac{1 - q}{\log q} + q^2 \beta_{n,q^{-1}} + q^2 \beta_{n-1,q^{-1}},
\]
(2.17)
\[
\sum_{l=0}^{n-k} \binom{n-k}{l} (-1)^l \hat{\beta}_{k+l,q} = q^2 \sum_{l=0}^{k} \binom{k}{l} (-1)^{k+l} \beta_{n-l,q^{-1}}, \quad \text{if } k > 1.
\]

In particular, when $k = 0$, we have
\[
\sum_{l=0}^{n} \binom{n}{l} (-1)^l \beta_{l,q} = 1 + n \frac{q - 1}{\log q} - q + q^2 \beta_{n,q^{-1}}.
\]
(2.18)

Let $m, n, k \in \mathbb{Z}_+$ with $m + n > 2k + 1$. Then we see that
\[
\int_{Z_q} B_{k,n}(x) B_{k,m}(x) d\mu_q(x)
\]
\[
= \binom{n}{k} \binom{m}{k} \int_{Z_q} x^{2k} (1 - x)^{n+m-2k} d\mu_q(x)
\]
\[
= \binom{n}{k} \binom{m}{k} \sum_{l=0}^{2k} \binom{2k}{l} (-1)^{l+2k} \int_{Z_q} (1 - x)^{n+m-1} d\mu_q(x)
\]
\[
= \binom{n}{k} \binom{m}{k} \sum_{l=0}^{2k} \binom{2k}{l} (-1)^{l+2k} (1 - (n + m - l)) \left(\frac{1 - q}{\log q} \right) - q + q^2 \beta_{n+m-l,q^{-1}}
\]
(2.19)
\[
= \begin{cases}
1 + (n + m) \left(\frac{q - 1}{\log q} \right) - q + q^2 \beta_{n+m,q^{-1}} & \text{if } k = 0, \\
\binom{n}{k} \binom{m}{k} q^2 \sum_{l=0}^{2k} \binom{2k}{l} (-1)^{l+2k} \beta_{n+m-l,q^{-1}} & \text{if } k > 0.
\end{cases}
\]

For $m, n, k \in \mathbb{Z}_+$, we have
\[
\int_{Z_q} B_{k,n}(x) B_{k,m}(x) d\mu_q(x) = \binom{n}{k} \binom{m}{k} \int_{Z_q} x^{2k} (1 - x)^{n+m-2k} d\mu_q(x)
\]
\[
= \binom{n}{k} \binom{m}{k} n+m-2k \sum_{l=0}^{n+m-2k} \binom{n+m-2k}{l} (-1)^l \int_{Z_q} x^{2k+l} d\mu_q(x)
\]
(2.20)
\[
= \binom{n}{k} \binom{m}{k} n+m-2k \sum_{l=0}^{n+m-2k} \binom{n+m-2k}{l} (-1)^l \beta_{l+2k,q^{-1}}.
\]
Abstract and Applied Analysis

By comparing the coefficients on the both sides of (2.19) and (2.20), we obtain the following theorem.

Theorem 2.5. For $m, n, k \in \mathbb{Z}_+$ with $m + n > 2k + 1$, we have

$$\sum_{l=0}^{n+m} \binom{n+m}{l} (-1)^l \tilde{p}_{l,q} = 1 + (n + m) \left(\frac{q - 1}{\log q} \right) - q + q^2 \tilde{p}_{n+m-1,q}. \quad (2.21)$$

In particular, when $k \neq 0$, we have

$$\sum_{l=0}^{n+m-2k} \binom{n+m-2k}{l} (-1)^l \tilde{p}_{l+2k,q} = q^2 \sum_{l=0}^{2k} \binom{2k}{l} (-1)^l \tilde{p}_{n+m-1,q}. \quad (2.22)$$

For $s \in \mathbb{N}$, let $k, n_1, \ldots, n_s \in \mathbb{Z}_+$ with $n_1 + n_2 + \cdots + n_s > sk + 1$. By the same method above, we get

$$\int_{\mathbb{Z}_+} \left(\prod_{i=1}^{s} B_{k,n_i}(x) \right) d\mu_q(x) = \begin{cases} 1 + \left(\sum_{i=1}^{s} n_i \right) \left(\frac{q - 1}{\log q} \right) - q + q^2 \tilde{p}_{n_1+n_2+\cdots+n_s-1,q} & \text{if } k = 0, \\ \left(\prod_{i=1}^{s} \binom{n_i}{k} \right) q^2 \sum_{l=0}^{2k} \binom{sk}{l} (-1)^l \tilde{p}_{n_1+n_2+\cdots+n_s-1,q} & \text{if } k > 0. \end{cases} \quad (2.23)$$

From the binomial theorem, we note that

$$\int_{\mathbb{Z}_+} \left(\prod_{i=1}^{s} B_{k,n_i}(x) \right) d\mu_q(x) = \left(\prod_{i=1}^{s} \binom{n_i}{k} \right)^{n_1+n_2+\cdots+n_s} \sum_{l=0}^{2k} \binom{sk}{l} (-1)^l \tilde{p}_{l+sk,q}. \quad (2.24)$$

By comparing the coefficients on the both sides of (2.23) and (2.24), we obtain the following theorem.

Theorem 2.6. For $s \in \mathbb{N}$, let $k, n_1, \ldots, n_s \in \mathbb{Z}_+$ with $n_1 + n_2 + \cdots + n_s > sk + 1$. Then, we have

$$\sum_{l=0}^{n_1+\cdots+n_s} \binom{n_1+\cdots+n_s}{l} (-1)^l \tilde{p}_{l,q} = 1 + \left(\sum_{i=1}^{s} n_i \right) \left(\frac{q - 1}{\log q} \right) - q + q^2 \tilde{p}_{n_1+n_2+\cdots+n_s-1,q}. \quad (2.25)$$

In particular, when $k \neq 0$, we have

$$\sum_{l=0}^{n_1+\cdots+n_s-sk} \binom{n_1+\cdots+n_s-2k}{l} (-1)^l \tilde{p}_{l+sk,q} = q^2 \sum_{l=0}^{2k} \binom{sk}{l} (-1)^l \tilde{p}_{n_1+n_2+\cdots+n_s-1,q}. \quad (2.26)$$
Acknowledgment

The present research has been conducted by the Research Grant of Kwangwoon University in 2011.

References

Submit your manuscripts at http://www.hindawi.com