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Abstract. 
In 2002, Dierk Schleicher gave an explicit estimate of an upper bound for the number of iterations of Newton's method it takes to find all roots of polynomials with prescribed precision. In this paper, we provide a method to improve the upper bound given by D. Schleicher. We give here an iterative method for finding an upper bound for the distance between a fixed point 
	
		
			

				𝑧
			

		
	
 in an immediate basin of a root 
	
		
			

				𝛼
			

		
	
 to 
	
		
			

				𝛼
			

		
	
, which leads to a better upper bound for the number of iterations of Newton's method.


1. Introduction
Let 
	
		
			

				𝑃
			

		
	
 be a polynomial of degree 
	
		
			

				𝑑
			

		
	
, and let 
	
		
			

				𝑁
			

			

				𝑝
			

			
				(
				𝑧
				)
				=
				𝑧
				−
				𝑃
				(
				𝑧
				)
				/
				𝑃
			

			

				
			

			
				(
				𝑧
				)
			

		
	
 be the Newton map induced by 
	
		
			

				𝑃
			

		
	
. Let 
	
		
			

				ℕ
			

		
	
 be the set of positive integers. For each 
	
		
			
				𝑘
				∈
				ℕ
			

		
	
, let 
	
		
			

				𝑁
			

			
				𝑘
				𝑝
			

		
	
 denote the 
	
		
			

				𝑘
			

		
	
-iterate of 
	
		
			

				𝑁
			

			

				𝑝
			

		
	
, that is, 
	
		
			

				𝑁
			

			
				1
				𝑝
			

			
				=
				𝑁
			

			

				𝑝
			

			
				,
				𝑁
			

			
				2
				𝑝
			

			
				=
				𝑁
			

			

				𝑝
			

			
				∘
				𝑁
			

			

				𝑝
			

		
	
, and 
	
		
			

				𝑁
			

			
				𝑘
				𝑝
			

			
				=
				𝑁
			

			
				𝑝
				𝑘
				−
				1
			

			
				∘
				𝑁
			

			

				𝑝
			

		
	
. For a root 
	
		
			

				𝛼
			

		
	
 of 
	
		
			

				𝑃
			

		
	
, we say that a set 
	
		
			

				𝑈
			

		
	
 is the immediate basin of 
	
		
			

				𝛼
			

		
	
 if 
	
		
			

				𝑈
			

		
	
 is the largest connected open set containing 
	
		
			

				𝛼
			

		
	
 and 
	
		
			

				𝑁
			

			
				𝑘
				𝑝
			

			
				(
				𝑧
				)
				→
				𝛼
			

		
	
, as 
	
		
			
				𝑘
				→
				∞
			

		
	
, for all 
	
		
			
				𝑧
				∈
				𝑈
			

		
	
. Every immediate basin 
	
		
			

				𝑈
			

		
	
 is forward invariant, that is, 
	
		
			

				𝑁
			

			

				𝑝
			

			
				(
				𝑈
				)
				=
				𝑈
			

		
	
, and is simply connected (see [1, 2]). In 2002, Schleicher [3] provided an upper bound for the number of iterations of Newton's method for complex polynomials of fixed degree with a prescribed precision. More precisely, Schleicher proved that if all roots of 
	
		
			

				𝑃
			

		
	
 are inside the unit disc and 
	
		
			
				0
				<
				𝜀
				<
				1
			

		
	
, there is a constant 
	
		
			
				𝑛
				(
				𝑑
				,
				𝜀
				)
			

		
	
 such that for every root 
	
		
			

				𝛼
			

		
	
 of 
	
		
			

				𝑃
			

		
	
, there is a point 
	
		
			

				𝑧
			

		
	
 with 
	
		
			
				|
				𝑧
				|
				=
				2
			

		
	
 such that 
	
		
			
				|
				𝑁
			

			
				𝑛
				𝑝
			

			
				(
				𝑧
				)
				−
				𝛼
				|
				<
				𝜀
			

		
	
 for all 
	
		
			
				𝑛
				≥
				𝑛
				(
				𝑑
				,
				𝜀
				)
			

		
	
. Schleicher also showed that 
	
		
			
				𝑛
				(
				𝑑
				,
				𝜀
				)
			

		
	
 can be chosen so that
	
 		
 			
				(
				1
				.
				1
				)
			
 		
	

	
		
			
				𝑛
				(
				𝑑
				,
				𝜀
				)
				≤
				9
				𝜋
				𝑑
			

			

				4
			

			

				𝑓
			

			
				2
				𝑑
			

			
				
			
			

				𝜀
			

			

				2
			

			
				+
				|
				|
				|
				|
				l
				o
				g
				2
				l
				o
				g
				𝜀
				+
				l
				o
				g
				1
				3
			

			
				
			
			
				l
				o
				g
				2
				+
				1
			

		
	

					with
	
 		
 			
				(
				1
				.
				2
				)
			
 		
	

	
		
			

				𝑓
			

			

				𝑑
			

			
				𝑑
				∶
				=
			

			

				2
			

			
				(
				𝑑
				−
				1
				)
			

			
				
			
			
				⎛
				⎜
				⎜
				⎝
				𝑑
				⎞
				⎟
				⎟
				⎠
				.
				2
				(
				2
				𝑑
				−
				1
				)
				2
				𝑑
			

		
	

To obtain this estimate, Schleicher employed several rough estimates which cause the bound far from an efficient upper bound. The main point that causes the extremely inefficiency is the way Schleicher used to obtain 
	
		
			

				𝑓
			

			

				𝑑
			

		
	
 which arose when he estimated an upper bound for the distance of a point 
	
		
			

				𝑧
			

		
	
 to a root 
	
		
			

				𝛼
			

		
	
. Schleicher showed that if 
	
		
			

				𝑧
			

		
	
 is in the immediate basin of 
	
		
			

				𝛼
			

		
	
 and 
	
		
			
				|
				𝑁
			

			

				𝑝
			

			
				(
				𝑧
				)
				−
				𝑧
				|
				=
				𝛿
			

		
	
, then the distance between 
	
		
			

				𝑧
			

		
	
 and 
	
		
			

				𝛼
			

		
	
 is at most 
	
		
			
				𝛿
				𝑓
			

			

				𝑑
			

		
	
.
 In this paper, we give an algorithm to improve the value of 
	
		
			

				𝑓
			

			

				𝑑
			

		
	
. Even though, it is not an explicit formula, it can be easily computed. The following is our main result.
Main Theorem 1.  Let 
	
		
			
				𝑃
				(
				𝑧
				)
			

		
	
 be a polynomial of degree 
	
		
			
				𝑑
				≥
				3
			

		
	
, and let 
	
		
			

				𝑦
			

		
	
 be a positive number larger than 
	
		
			
				4
				𝑑
				−
				3
			

		
	
. If 
	
		
			

				𝑧
			

			

				0
			

		
	
 is in an immediate basin of a root 
	
		
			

				𝛼
			

		
	
 and 
	
		
			
				|
				𝑁
			

			

				𝑝
			

			
				(
				𝑧
			

			

				0
			

			
				)
				−
				𝑧
			

			

				0
			

			
				|
				=
				𝜀
			

		
	
, then 
	
		
			
				|
				𝑧
			

			

				0
			

			
				−
				𝛼
				|
				≤
				𝜀
				𝑀
				(
				𝑑
				,
				𝑦
				)
			

		
	
, where 
	
		
			
				𝑀
				(
				𝑑
				,
				𝑦
				)
				∶
				=
				m
				a
				x
				{
				𝑦
				,
				𝐴
			

			

				𝑑
			

			
				+
				𝑦
				(
				𝑑
				−
				1
				)
				/
				(
				𝑦
				−
				1
				)
				}
			

		
	
 and 
	
		
			

				𝐴
			

			

				𝑑
			

		
	
 can be derived from the following iterative algorithm. Let 
	
		
			
				𝑏
				=
				𝑦
				(
				𝑦
				−
				𝑑
				)
				/
				(
				𝑦
				−
				1
				)
			

		
	
, and 
	
 		
 			
				(
				1
				.
				3
				)
			
 		
	

	
		
			

				𝐴
			

			

				2
			

			
				=
				[
				]
				𝑦
				(
				𝑑
				−
				1
				)
				2
				𝑑
				(
				𝑦
				−
				2
				𝑑
				+
				3
				)
				−
				3
				𝑦
				−
				1
			

			
				
			
			
				.
				(
				𝑦
				−
				1
				)
				(
				𝑦
				−
				4
				𝑑
				+
				3
				)
			

		
	

						For 
	
		
			
				𝑘
				=
				2
				,
				…
				,
				𝑑
				−
				1
			

		
	
, set 
	
		
			

				𝑎
			

			

				𝑘
			

			
				∑
				=
				1
				+
			

			
				𝑘
				−
				1
				𝑗
				=
				2
			

			
				(
				𝐴
			

			

				𝑘
			

			
				/
				(
				𝐴
			

			

				𝑘
			

			
				−
				𝐴
			

			

				𝑗
			

			
				)
				)
			

		
	
. If 
	
		
			
				2
				𝐴
			

			

				𝑘
			

			
				<
				𝑏
			

		
	
 then let 
	
 		
 			
				(
				1
				.
				4
				)
			
 		
	

	
		
			

				𝐴
			

			
				𝑘
				+
				1
			

			
				=
				𝐴
			

			

				𝑘
			

			
				
				
				𝑎
			

			

				𝑘
			

			
				
				𝐴
				+
				𝑑
				−
				𝑘
			

			

				𝑘
			

			
				
				+
				𝑏
				𝑘
				+
				1
				−
				𝑎
			

			

				𝑘
			

			
				
				−
				𝑑
			

			
				
			
			

				𝐴
			

			

				𝑘
			

			
				
				𝑎
			

			

				𝑘
			

			
				
				+
				1
				−
				𝑏
				𝑎
			

			

				𝑘
			

			
				
				.
			

		
	

						Otherwise let
							
	
 		
 			
				(
				1
				.
				5
				)
			
 		
	

	
		
			

				𝐴
			

			
				𝑘
				+
				1
			

			
				=
				𝐴
			

			

				𝑘
			

			

				𝑎
			

			

				𝑘
			

			
				+
				𝑑
				−
				𝑘
			

			
				
			
			

				𝑎
			

			

				𝑘
			

			

				.
			

		
	

Note that the value of 
	
		
			
				𝑀
				(
				𝑑
				,
				𝑦
				)
			

		
	
 in the main theorem depends only on the constant 
	
		
			

				𝑦
			

		
	
 and the degree 
	
		
			

				𝑑
			

		
	
. Hence if we select 
	
		
			

				𝑦
			

		
	
 appropriately the value 
	
		
			
				𝑀
				(
				𝑑
				,
				𝑦
				)
			

		
	
 will be optimized under this method. However this estimate is still far away from the best possible one. We believe that this new upper bound 
	
		
			
				𝑀
				(
				𝑑
				,
				𝑦
				)
			

		
	
 is less than 
	
		
			

				𝑓
			

			

				𝑑
			

			
				/
				2
			

			
				𝑑
				/
				2
			

		
	
 for all 
	
		
			
				𝑑
				≥
				1
				0
			

		
	
 when 
	
		
			
				𝑦
				=
				𝑑
			

			
				1
				.
				5
			

			

				2
			

			
				(
				4
				𝑑
				/
				3
				)
				−
				2
			

		
	
. We will discuss further about this matter in Section 4.
2. Preliminary Results
We will use 
	
		
			
				𝐵
				(
				𝑎
				,
				𝑟
				)
			

		
	
 for the open ball 
	
		
			
				{
				𝑧
				∈
				ℂ
				∶
				|
				𝑧
				−
				𝑎
				|
				<
				𝑟
				}
			

		
	
 and 
	
		
			
				
			
			
				𝐵
				(
				𝑎
				,
				𝑟
				)
			

		
	
 for the closed ball 
	
		
			
				{
				𝑧
				∈
				ℂ
				∶
				|
				𝑧
				−
				𝑎
				|
				≤
				𝑟
				}
			

		
	
, where 
	
		
			

				ℂ
			

		
	
 is the set of complex numbers. If 
	
		
			

				𝑆
			

		
	
 is a subset of 
	
		
			

				ℂ
			

		
	
, we denote the boundary of 
	
		
			

				𝑆
			

		
	
 by 
	
		
			
				𝜕
				𝑆
			

		
	
.
Lemma 2.1.  Let 
	
		
			

				𝑃
			

		
	
 be a polynomial. Let 
	
		
			

				𝛽
			

		
	
 be a complex number and 
	
		
			
				𝑟
				>
				0
			

		
	
. Suppose that 
	
		
			
				R
				e
				{
				(
				𝑧
				−
				𝛽
				)
				𝑃
			

			

				
			

			
				(
				𝑧
				)
				/
				𝑃
				(
				𝑧
				)
				}
				≥
				1
				/
				2
			

		
	
 whenever 
	
		
			
				|
				𝑧
				−
				𝛽
				|
				=
				𝑟
			

		
	
 and 
	
		
			
				𝑃
				(
				𝑧
				)
				≠
				0
			

		
	
. Let 
	
		
			

				𝑈
			

		
	
 be an immediate basin of a root 
	
		
			

				𝛼
			

		
	
 of 
	
		
			

				𝑃
			

		
	
. If 
	
		
			
				𝑈
				∩
			

			
				
			
			
				𝐵
				(
				𝛽
				,
				𝑟
				)
				≠
				∅
			

		
	
, then 
	
		
			

				𝛼
			

		
	
 is in 
	
		
			
				𝐵
				(
				𝛽
				,
				𝑟
				)
			

		
	
.
Proof. For 
	
		
			
				|
				𝑧
				−
				𝛽
				|
				=
				𝑟
			

		
	
 with 
	
		
			
				𝑃
				(
				𝑧
				)
				≠
				0
			

		
	
, we have 
							
	
 		
 			
				(
				2
				.
				1
				)
			
 		
	

	
		
			

				𝑁
			

			

				𝑝
			

			
				
				1
				(
				𝑧
				)
				−
				𝛽
				=
				(
				𝑧
				−
				𝛽
				)
				1
				−
			

			
				
			
			
				
				,
				𝑔
				(
				𝑧
				)
			

		
	

						where 
	
		
			
				𝑔
				(
				𝑧
				)
				=
				(
				𝑧
				−
				𝛽
				)
				𝑃
			

			

				
			

			
				(
				𝑧
				)
				/
				𝑃
				(
				𝑧
				)
			

		
	
. Hence, 
	
		
			
				|
				𝑁
			

			

				𝑝
			

			
				(
				𝑧
				)
				−
				𝛽
				|
				≤
				|
				𝑧
				−
				𝛽
				|
			

		
	
 if and only if 
	
		
			
				|
				(
				𝑔
				(
				𝑧
				)
				−
				1
				)
				/
				𝑔
				(
				𝑧
				)
				|
				≤
				1
			

		
	
 which holds if 
	
		
			
				R
				e
				{
				𝑔
				(
				𝑧
				)
				}
				≥
				1
				/
				2
			

		
	
. It means that if 
	
		
			

				𝑧
			

		
	
 is a point in 
	
		
			
				𝜕
				𝐵
				(
				𝛽
				,
				𝑟
				)
			

		
	
 and 
	
		
			
				R
				e
				{
				𝑔
				(
				𝑧
				)
				}
				≥
				1
				/
				2
			

		
	
, then the distance of 
	
		
			

				𝑁
			

			

				𝑝
			

			
				(
				𝑧
				)
			

		
	
 to 
	
		
			

				𝛽
			

		
	
 is at most the distance of 
	
		
			

				𝑧
			

		
	
 to 
	
		
			

				𝛽
			

		
	
. In other words, the image of 
	
		
			

				𝑧
			

		
	
 under the map 
	
		
			

				𝑁
			

			

				𝑝
			

		
	
 also lies inside 
	
		
			
				
			
			
				𝐵
				(
				𝛽
				,
				𝑟
				)
			

		
	
. Let 
	
		
			

				𝛼
			

		
	
 be a root of 
	
		
			

				𝑃
			

		
	
 and 
	
		
			

				𝑈
			

		
	
 be its immediate basin. Suppose that 
	
		
			
				𝛼
				∉
			

			
				
			
			
				𝐵
				(
				𝛽
				,
				𝑟
				)
			

		
	
 and 
	
		
			
				𝑧
				∈
				𝑈
				∩
			

			
				
			
			
				𝐵
				(
				𝛽
				,
				𝑟
				)
			

		
	
. Since 
	
		
			

				𝑈
			

		
	
 is forward invariant under 
	
		
			

				𝑁
			

			

				𝑝
			

		
	
, 
	
		
			

				𝑁
			

			

				𝑝
			

			
				(
				𝑧
				)
			

		
	
 still stays in 
	
		
			

				𝑈
			

		
	
. Since 
	
		
			

				𝑈
			

		
	
 is connected, there is a curve 
	
		
			

				𝛾
			

			

				0
			

		
	
 connecting 
	
		
			

				𝑧
			

		
	
 to 
	
		
			

				𝑁
			

			

				𝑝
			

			
				(
				𝑧
				)
			

		
	
 and lying entirely in 
	
		
			

				𝑈
			

		
	
. Since 
	
		
			

				𝑁
			

			
				𝑘
				𝑝
			

			
				(
				𝛾
			

			

				0
			

			

				)
			

		
	
 converges uniformly to 
	
		
			

				𝛼
			

		
	
 as 
	
		
			
				𝑘
				→
				∞
			

		
	
, the set 
	
		
			

				⋃
			

			
				∞
				𝑘
				=
				1
			

			

				𝑁
			

			
				𝑘
				𝑝
			

			
				(
				𝛾
			

			

				0
			

			
				)
				∪
				{
				𝛼
				}
			

		
	
 forms a continuous curve 
	
		
			

				𝛾
			

		
	
 joining 
	
		
			

				𝑧
			

		
	
 and 
	
		
			

				𝛼
			

		
	
. Note that 
	
		
			

				𝛾
			

		
	
 is contained in 
	
		
			

				𝑈
			

		
	
 because 
	
		
			

				𝑁
			

			
				𝑘
				𝑝
			

			
				(
				𝛾
			

			

				0
			

			

				)
			

		
	
 lies inside 
	
		
			

				𝑈
			

		
	
 for all 
	
		
			
				𝑘
				∈
				ℕ
			

		
	
.Let 
	
		
			

				𝑤
			

		
	
 be the last intersection point of 
	
		
			

				𝛾
			

		
	
 with 
	
		
			
				𝜕
				𝐵
				(
				𝛽
				,
				𝑟
				)
			

		
	
 (i.e., the part of the curve 
	
		
			

				𝛾
			

		
	
 that connects 
	
		
			

				𝑤
			

		
	
 to 
	
		
			

				𝛼
			

		
	
 stays outside 
	
		
			
				
			
			
				𝐵
				(
				𝛽
				,
				𝑟
				)
			

		
	
 except at 
	
		
			

				𝑤
			

		
	
). So 
	
		
			

				𝑁
			

			

				𝑝
			

		
	
 must send 
	
		
			

				𝑤
			

		
	
 to a point outside 
	
		
			
				
			
			
				𝐵
				(
				𝛽
				,
				𝑟
				)
			

		
	
, otherwise 
	
		
			

				𝛽
			

		
	
 is a fixed point of 
	
		
			

				𝑁
			

			

				𝑝
			

		
	
, which is impossible because all fixed points of 
	
		
			

				𝑁
			

			

				𝑝
			

		
	
 are only the roots of 
	
		
			

				𝑃
			

		
	
, and here 
	
		
			
				𝑃
				(
				𝑧
				)
				≠
				0
			

		
	
 on 
	
		
			
				|
				𝑧
				−
				𝛽
				|
				=
				𝑟
			

		
	
. From the first paragraph, however, we also have 
	
		
			

				𝑁
			

			

				𝑝
			

			
				(
				𝑤
				)
				∈
			

			
				
			
			
				𝐵
				(
				𝛽
				,
				𝑟
				)
			

		
	
. Hence we get a contradiction. Therefore if 
	
		
			
				𝑈
				∩
			

			
				
			
			
				𝐵
				(
				𝛽
				,
				𝑟
				)
			

		
	
 is not empty, then 
	
		
			

				𝛼
			

		
	
 is in 
	
		
			
				𝐵
				(
				𝛽
				,
				𝑟
				)
			

		
	
, as desired.
Remark that, from the proof of Lemma 2.1, if 
	
		
			

				𝛽
			

		
	
 is a root of 
	
		
			

				𝑃
			

		
	
 and 
	
		
			
				R
				e
				{
				(
				𝑧
				−
				𝛽
				)
				𝑃
			

			

				
			

			
				(
				𝑧
				)
				/
				𝑃
				(
				𝑧
				)
				}
				≥
				1
				/
				2
			

		
	
 for all 
	
		
			
				|
				𝑧
				−
				𝛽
				|
				≤
				𝑟
			

		
	
, then the closed ball 
	
		
			
				
			
			
				𝐵
				(
				𝛽
				,
				𝑟
				)
			

		
	
 is contained in the immediate basin of 
	
		
			

				𝛽
			

		
	
.
Lemma 2.2.  Let 
	
		
			

				𝑃
			

		
	
 be a polynomial of degree 
	
		
			
				𝑑
				≥
				3
			

		
	
. Let 
	
		
			

				𝛼
			

			

				1
			

		
	
 be a root of 
	
		
			

				𝑃
			

		
	
 and 
	
		
			

				𝛼
			

			

				2
			

		
	
 the nearest root to 
	
		
			

				𝛼
			

			

				1
			

		
	
. Let 
	
		
			
				𝛽
				=
				|
				𝛼
			

			

				1
			

			
				−
				𝛼
			

			

				2
			

			

				|
			

		
	
, and let 
	
		
			

				𝑚
			

		
	
 be the multiplicity of 
	
		
			

				𝛼
			

			

				1
			

		
	
. Suppose that there is a root 
	
		
			

				𝛼
			

		
	
 of 
	
		
			

				𝑃
			

		
	
 such that 
	
		
			
				|
				𝛼
			

			

				1
			

			
				−
				𝛼
				|
				≥
				𝑏
			

		
	
 for some positive number 
	
		
			
				𝑏
				≥
				𝛽
			

		
	
. Then the closed ball 
	
		
			
				{
				𝑧
				∈
				ℂ
				∶
				|
				𝑧
				−
				𝛼
			

			

				1
			

			
				|
				≤
				𝛿
				}
			

		
	
 is contained entirely in the immediate basin of 
	
		
			

				𝛼
			

			

				1
			

		
	
, where 
							
	
 		
 			
				(
				2
				.
				2
				)
			
 		
	

	
		
			
				1
				𝛿
				=
			

			
				
			
			
				
				
				2
				(
				2
				𝑑
				−
				1
				)
				(
				2
				𝑚
				+
				1
				)
				𝛽
				+
				(
				2
				𝑑
				−
				3
				)
				𝑏
				−
			

			
				
			
			
				[
				]
				(
				2
				𝑚
				+
				1
				)
				𝛽
				+
				𝑏
				(
				2
				𝑑
				−
				3
				)
			

			

				2
			

			
				
				.
				−
				4
				(
				2
				𝑑
				−
				1
				)
				(
				2
				𝑚
				−
				1
				)
				𝑏
				𝛽
			

		
	

Proof. Without loss of generality, we assume that 
	
		
			

				𝛼
			

			

				1
			

			
				=
				0
			

		
	
. From the previous remark, it suffices to show that 
	
		
			
				R
				e
				{
				𝑧
				𝑃
			

			

				
			

			
				(
				𝑧
				)
				/
				𝑃
				(
				𝑧
				)
				}
				≥
				1
				/
				2
			

		
	
 for all 
	
		
			
				|
				𝑧
				|
				≤
				𝛿
			

		
	
. Let 
	
		
			
				𝑃
				(
				𝑧
				)
				=
				𝑧
			

			

				𝑚
			

			

				∏
			

			
				𝑑
				−
				𝑚
				𝑘
				=
				2
			

			
				(
				𝑧
				−
				𝛼
			

			

				𝑘
			

			

				)
			

		
	
. We have 
							
	
 		
 			
				(
				2
				.
				3
				)
			
 		
	

	
		
			
				𝑧
				𝑃
			

			

				
			

			
				(
				𝑧
				)
			

			
				
			
			
				𝑃
				(
				𝑧
				)
				=
				𝑚
				+
			

			
				𝑑
				−
				𝑚
			

			

				
			

			
				𝑘
				=
				2
			

			

				𝑧
			

			
				
			
			
				𝑧
				−
				𝛼
			

			

				𝑘
			

			

				.
			

		
	

						Hence 
							
	
 		
 			
				(
				2
				.
				4
				)
			
 		
	

	
		
			
				
				R
				e
				𝑧
				𝑃
			

			

				
			

			
				(
				𝑧
				)
			

			
				
			
			
				𝑃
				
				(
				𝑧
				)
				=
				𝑚
				+
			

			
				𝑑
				−
				𝑚
			

			

				
			

			
				𝑘
				=
				2
			

			
				
				𝑧
				R
				e
			

			
				
			
			
				𝑧
				−
				𝛼
			

			

				𝑘
			

			
				
				≥
				𝑚
				+
				𝑟
				(
				𝑑
				−
				𝑚
				−
				1
				)
			

			
				
			
			
				+
				𝑟
				𝑟
				−
				𝛽
			

			
				
			
			
				,
				𝑟
				−
				𝑏
			

		
	

						where 
	
		
			
				𝑟
				=
				|
				𝑧
				|
			

		
	
. Note that 
	
		
			
				𝛽
				≤
				𝑏
			

		
	
. For 
	
		
			
				𝑟
				<
				𝛽
			

		
	
, we have 
							
	
 		
 			
				(
				2
				.
				5
				)
			
 		
	

	
		
			
				𝑚
				+
				𝑟
				(
				𝑑
				−
				𝑚
				−
				1
				)
			

			
				
			
			
				+
				𝑟
				𝑟
				−
				𝛽
			

			
				
			
			
				≥
				1
				𝑟
				−
				𝑏
			

			
				
			
			
				2
				,
			

		
	

						if 
	
		
			
				𝑟
				≤
				𝛿
			

		
	
. This shows that 
	
		
			
				R
				e
				{
				𝑧
				𝑃
			

			

				
			

			
				(
				𝑧
				)
				/
				𝑃
				(
				𝑧
				)
				}
				≥
				1
				/
				2
			

		
	
 for all 
	
		
			
				|
				𝑧
				|
				≤
				𝛿
			

		
	
, as needed.
Note that if we set 
	
		
			
				𝑏
				=
				𝛽
			

		
	
 in Lemma 2.2, then the closed ball centered at 
	
		
			

				𝛼
			

			

				1
			

		
	
 of radius 
	
		
			
				𝛽
				(
				2
				𝑚
				−
				1
				)
				/
				(
				2
				𝑑
				−
				1
				)
			

		
	
 is contained in the immediate basin of 
	
		
			

				𝛼
			

			

				1
			

		
	
. Furthermore, if 
	
		
			
				𝑚
				=
				1
			

		
	
, the radius of the ball is 
	
		
			
				𝛽
				/
				(
				2
				𝑑
				−
				1
				)
			

		
	
. (Schleicher [3, Lemma 4, page 938] made a small mistake about the radius of the ball. Indeed, he should get 
	
		
			
				𝛽
				/
				(
				2
				𝑑
				−
				1
				)
			

		
	
 instead of 
	
		
			
				𝛽
				/
				2
				(
				𝑑
				−
				1
				)
				)
			

		
	
.
Lemma 2.3.  Let 
	
		
			

				𝑃
			

		
	
 be a polynomial of degree 
	
		
			

				𝑑
			

		
	
. For any complex number 
	
		
			

				𝑧
			

		
	
 and any positive number 
	
		
			
				𝑦
				>
				1
			

		
	
, if 
	
		
			
				|
				𝑁
			

			

				𝑝
			

			
				(
				𝑧
				)
				−
				𝑧
				|
				=
				𝜀
			

		
	
 and there is a root 
	
		
			

				𝛼
			

			

				𝑑
			

		
	
 of 
	
		
			

				𝑃
			

		
	
 with 
	
		
			
				|
				𝑧
				−
				𝛼
			

			

				𝑑
			

			
				|
				≥
				𝑦
				𝜀
			

		
	
, then there is a root 
	
		
			

				𝛼
			

		
	
 of 
	
		
			

				𝑃
			

		
	
 such that 
	
		
			
				|
				𝑧
				−
				𝛼
				|
				≤
				𝑦
				(
				𝑑
				−
				1
				)
				𝜀
				/
				(
				𝑦
				−
				1
				)
			

		
	
.
Proof. Let 
	
		
			

				𝛼
			

			

				1
			

			
				,
				𝛼
			

			

				2
			

			
				,
				…
				,
				𝛼
			

			

				𝑑
			

		
	
 be all roots of 
	
		
			

				𝑃
			

		
	
. Suppose that 
	
		
			
				|
				𝑧
				−
				𝛼
			

			

				𝑑
			

			
				|
				≥
				𝑦
				𝜀
			

		
	
. If 
	
		
			
				|
				𝑧
				−
				𝛼
			

			

				𝑗
			

			
				|
				>
				𝑦
				(
				𝑑
				−
				1
				)
				𝜀
				/
				𝑦
				−
				1
			

		
	
 for 
	
		
			
				1
				≤
				𝑗
				≤
				𝑑
				−
				1
			

		
	
, then 
							
	
 		
 			
				(
				2
				.
				6
				)
			
 		
	

	
		
			
				|
				|
				𝑁
			

			

				𝑝
			

			
				|
				|
				≥
				
				(
				𝑧
				)
				−
				𝑧
			

			

				𝑑
			

			

				
			

			
				𝑗
				=
				1
			

			

				1
			

			
				
			
			
				|
				|
				𝑧
				−
				𝛼
			

			

				𝑗
			

			
				|
				|
				
			

			
				−
				1
			

			
				>
				
				𝑦
				−
				1
			

			
				
			
			
				1
				𝑦
				(
				𝑑
				−
				1
				)
				𝜀
				(
				𝑑
				−
				1
				)
				+
			

			
				
			
			
				
				𝑦
				𝜀
			

			
				−
				1
			

			
				=
				𝜀
				,
			

		
	

						a contradiction.
We are now ready to prove our main theorem.
3. Proof of Main Theorem
Let 
	
		
			

				𝛼
			

			

				1
			

			
				,
				𝛼
			

			

				2
			

			
				,
				…
				,
				𝛼
			

			

				𝑑
			

		
	
 be all roots of 
	
		
			

				𝑃
			

		
	
 such that 
	
		
			

				𝛼
			

			

				1
			

		
	
 is the nearest root to 
	
		
			

				𝑧
			

			

				0
			

		
	
 and 
	
		
			
				|
				𝛼
			

			

				1
			

			
				−
				𝛼
			

			

				𝑘
			

			
				|
				≤
				|
				𝛼
			

			

				1
			

			
				−
				𝛼
			

			
				𝑘
				+
				1
			

			

				|
			

		
	
 for 
	
		
			
				𝑘
				=
				2
				,
				…
				,
				𝑑
				−
				1
			

		
	
. Suppose that 
	
		
			
				|
				𝑧
			

			

				0
			

			
				−
				𝛼
			

			

				𝑑
			

			
				|
				≥
				𝑦
				𝜀
			

		
	
. By Lemma 2.3, we have 
	
		
			
				|
				𝑧
			

			

				0
			

			
				−
				𝛼
			

			

				1
			

			
				|
				≤
				𝑦
				(
				𝑑
				−
				1
				)
				𝜀
				/
				(
				𝑦
				−
				1
				)
			

		
	
. Note that 
	
		
			
				|
				𝛼
			

			

				1
			

			
				−
				𝛼
			

			

				𝑑
			

			
				|
				≥
				𝑏
				𝜀
			

		
	
. If 
	
		
			
				𝛼
				=
				𝛼
			

			

				1
			

		
	
, we are done. Otherwise, 
	
		
			

				𝑧
			

		
	
 is not in the immediate basin of 
	
		
			

				𝛼
			

			

				1
			

		
	
; thus by Lemma 2.2 with 
	
		
			
				𝑚
				=
				1
			

		
	
, we get that 
	
		
			
				|
				𝑧
			

			

				0
			

			
				−
				𝛼
			

			

				1
			

			
				|
				>
				𝛿
			

		
	
, where 
	
		
			

				𝛿
			

		
	
 is defined in Lemma 2.2, that is,
	
 		
 			
				(
				3
				.
				1
				)
			
 		
	

	
		
			
				𝛿
				=
				3
				𝑟
			

			

				2
			

			
				
				+
				𝑏
				𝜀
				(
				2
				𝑑
				−
				3
				)
				−
			

			
				
			
			
				[
				3
				𝑟
			

			

				2
			

			
				+
				𝑏
				𝜀
				(
				2
				𝑑
				−
				3
				)
				]
			

			

				2
			

			
				−
				4
				(
				2
				𝑑
				−
				1
				)
				𝑏
				𝜀
				𝑟
			

			

				2
			

			
				
			
			
				,
				2
				(
				2
				𝑑
				−
				1
				)
			

		
	

					where 
	
		
			

				𝑟
			

			

				2
			

			
				=
				|
				𝛼
			

			

				1
			

			
				−
				𝛼
			

			

				2
			

			

				|
			

		
	
. Thus 
	
		
			

				𝑧
			

			

				0
			

		
	
 satisfies the inequalities
	
 		
 			
				(
				3
				.
				2
				)
			
 		
	

	
		
			
				|
				|
				𝑧
				𝛿
				<
			

			

				0
			

			
				−
				𝛼
			

			

				1
			

			
				|
				|
				≤
				𝑦
				(
				𝑑
				−
				1
				)
				𝜀
			

			
				
			
			
				,
				𝑦
				−
				1
			

		
	

					which holds if 
	
		
			
				|
				𝛼
			

			

				1
			

			
				−
				𝛼
			

			

				2
			

			
				|
				<
				𝐴
			

			

				2
			

			

				𝜀
			

		
	
. If 
	
		
			
				𝛼
				=
				𝛼
			

			

				2
			

		
	
, we are done. Suppose next that 
	
		
			
				𝛼
				≠
				𝛼
			

			

				2
			

		
	
.
 Now let 
	
		
			
				|
				𝛼
			

			

				1
			

			
				−
				𝛼
			

			

				𝑘
			

			
				|
				=
				𝜀
				𝑟
			

			

				𝑘
			

		
	
. If 
	
		
			
				|
				𝑧
				−
				𝛼
			

			

				1
			

			
				|
				=
				𝐴
			

			

				2
			

			

				𝜀
			

		
	
 and 
	
		
			

				𝑟
			

			

				3
			

			
				>
				𝐴
			

			

				3
			

		
	
, then 
	
 		
 			
				(
				3
				.
				3
				)
			
 		
	

	
		
			
				
				
				R
				e
				𝑧
				−
				𝛼
			

			

				1
			

			
				
				𝑃
			

			

				
			

			
				(
				𝑧
				)
			

			
				
			
			
				
				𝐴
				𝑃
				(
				𝑧
				)
				≥
				1
				+
			

			

				2
			

			
				
			
			

				𝐴
			

			

				2
			

			
				+
				𝑟
			

			

				2
			

			
				+
				𝐴
			

			

				2
			

			
				(
				𝑑
				−
				3
				)
			

			
				
			
			

				𝐴
			

			

				2
			

			
				−
				𝑟
			

			

				3
			

			
				+
				𝐴
			

			

				2
			

			
				
			
			

				𝐴
			

			

				2
			

			
				−
				𝑟
			

			

				𝑑
			

			
				1
				>
				1
				+
			

			
				
			
			
				2
				+
				𝐴
			

			

				2
			

			
				(
				𝑑
				−
				3
				)
			

			
				
			
			

				𝐴
			

			

				2
			

			
				−
				𝑟
			

			

				3
			

			
				+
				𝐴
			

			

				2
			

			
				
			
			

				𝐴
			

			

				2
			

			
				>
				1
				−
				𝑏
			

			
				
			
			
				2
				.
			

		
	

					hence by Lemma 2.1 
	
		
			

				𝛼
			

		
	
 must be either 
	
		
			

				𝛼
			

			

				1
			

		
	
 or 
	
		
			

				𝛼
			

			

				2
			

		
	
 which is not the case. Therefore 
	
		
			

				𝑟
			

			

				3
			

			
				≤
				𝐴
			

			

				3
			

		
	
, and if 
	
		
			

				𝛼
			

		
	
 is 
	
		
			

				𝛼
			

			

				3
			

		
	
 we are done. Otherwise, let 
	
		
			
				|
				𝑧
				−
				𝛼
			

			

				1
			

			
				|
				=
				𝐴
			

			

				3
			

			

				𝜀
			

		
	
 and suppose 
	
		
			

				𝑟
			

			

				4
			

			
				>
				𝐴
			

			

				4
			

		
	
; then 
	
		
			
				R
				e
				{
				(
				𝑧
				−
				𝛼
			

			

				1
			

			
				)
				𝑃
			

			

				
			

			
				(
				𝑧
				)
				/
				𝑃
				(
				𝑧
				)
				}
				>
				1
				/
				2
			

		
	
, and by Lemma 2.1 we get a contradiction. Thus we obtain 
	
		
			

				𝑟
			

			

				4
			

			
				≤
				𝐴
			

			

				4
			

		
	
, and if 
	
		
			

				𝛼
			

		
	
 is 
	
		
			

				𝛼
			

			

				4
			

		
	
 we are done. Continuing this process, finally we get 
	
		
			

				𝑟
			

			

				𝑑
			

			
				≤
				𝐴
			

			

				𝑑
			

		
	
 which gives 
	
		
			
				|
				𝑧
			

			

				0
			

			
				−
				𝛼
			

			

				𝑑
			

			
				|
				≤
				𝜀
				(
				𝐴
			

			

				𝑑
			

			
				+
				𝑦
				(
				𝑑
				−
				1
				)
				/
				(
				𝑦
				−
				1
				)
				)
			

		
	
.
Note that if 
	
		
			

				𝐴
			

			

				𝑑
			

			
				<
				𝑏
			

		
	
, it is a contradiction to the fact that 
	
		
			
				𝜀
				𝑟
			

			

				𝑑
			

			
				=
				|
				𝛼
			

			

				1
			

			
				−
				𝛼
			

			

				𝑑
			

			
				|
				≥
				𝑏
				𝜀
			

		
	
, which implies that assumption 
	
		
			
				|
				𝑧
			

			

				0
			

			
				−
				𝛼
			

			

				𝑑
			

			
				|
				≥
				𝑦
				𝜀
			

		
	
 is false. Hence in this case we have 
	
		
			
				|
				𝑧
			

			

				0
			

			
				−
				𝛼
			

			

				𝑑
			

			
				|
				<
				𝑦
				𝜀
			

		
	
. The proof is now complete.
4. Discussion
For a fixed 
	
		
			

				𝑑
			

		
	
, 
	
		
			
				𝑀
				(
				𝑑
				,
				𝑦
				)
			

		
	
 depends on only 
	
		
			

				𝑦
			

		
	
. If we choose 
	
		
			

				𝑦
			

		
	
 too large (for instance, 
	
		
			
				𝑦
				≥
				𝑓
			

			

				𝑑
			

		
	
), the value of 
	
		
			
				𝑀
				(
				𝑑
				,
				𝑦
				)
			

		
	
 is useless when it is compared to 
	
		
			

				𝑓
			

			

				𝑑
			

		
	
. So we have to choose 
	
		
			

				𝑦
			

		
	
 carefully so that 
	
		
			
				𝑀
				(
				𝑑
				,
				𝑦
				)
			

		
	
 is minimal as possible. We do not know yet whether there is an explicit formula for the value 
	
		
			

				𝑦
			

		
	
 that minimizes 
	
		
			
				𝑀
				(
				𝑑
				,
				𝑦
				)
			

		
	
. Table 1 below shows the values of 
	
		
			
				𝑀
				(
				𝑑
				,
				𝑦
				)
			

		
	
 where we set 
	
		
			
				𝑦
				=
				𝑑
			

			
				1
				.
				5
			

			

				2
			

			
				4
				𝑑
				/
				3
				−
				2
			

		
	
. It seems that this method can reduce upper bounds for the distance of 
	
		
			

				𝑧
			

			

				0
			

		
	
 to the root it converges to at least 
	
		
			

				2
			

			
				𝑑
				/
				2
			

		
	
 times compared to 
	
		
			

				𝑓
			

			

				𝑑
			

		
	
. If we replace 
	
		
			

				𝑓
			

			

				𝑑
			

		
	
 in (1.1) by 
	
		
			
				𝑀
				(
				𝑑
				,
				𝑦
				)
			

		
	
, we derive a new upper bound for the number of iterations.
Table 1: Examples of values of 
	
		
			
				𝑀
				(
				𝑑
				,
				𝑦
				)
			

		
	
 compared to 
	
		
			

				𝑓
			

			

				𝑑
			

		
	
 when 
	
		
			
				𝑦
				=
				𝑑
			

			
				1
				.
				5
			

			

				2
			

			
				4
				𝑑
				/
				3
				−
				2
			

		
	
.
	

	
	
		
			
				𝑑
				=
			

		
	
	
	
		
			
				𝑀
				(
				𝑑
				,
				𝑦
				)
			

		
	
 is less than	
	
		
			

				𝑓
			

			

				𝑑
			

		
	
 is greater than	
	
		
			

				𝑓
			

			

				𝑑
			

			
				/
				2
			

			
				𝑑
				/
				2
			

			
				𝑀
				(
				𝑑
				,
				𝑦
				)
			

		
	
 is greater than
	

	10	
	
		
			
				1
				.
				3
				3
				8
				5
				×
				1
				0
			

			

				5
			

		
	
	
	
		
			
				4
				.
				3
				7
				5
				8
				×
				1
				0
			

			

				6
			

		
	
	
										1.0216
									
	20	
	
		
			
				1
				.
				0
				1
				3
				1
				×
				1
				0
			

			
				1
				0
			

		
	
	
	
		
			
				1
				.
				3
				4
				3
				×
				1
				0
			

			
				1
				3
			

		
	
	
										1.2946
									
	30	
	
		
			
				4
				.
				4
				5
				5
				9
				×
				1
				0
			

			
				1
				4
			

		
	
	
	
		
			
				2
				.
				6
				1
				5
				8
				×
				1
				0
			

			
				1
				9
			

		
	
	
										1.7915
									
	40	
	
		
			
				1
				.
				5
				8
				7
				8
				×
				1
				0
			

			
				1
				9
			

		
	
	
	
		
			
				4
				.
				2
				4
				5
				8
				×
				1
				0
			

			
				2
				5
			

		
	
	
										2.5502
									
	50	
	
		
			
				5
				.
				0
				0
				5
				9
				×
				1
				0
			

			
				2
				3
			

		
	
	
	
		
			
				6
				.
				2
				4
				2
				0
				×
				1
				0
			

			
				3
				1
			

		
	
	
										3.7162
									
	60	
	
		
			
				1
				.
				1
				4
				8
				6
				×
				1
				0
			

			
				2
				8
			

		
	
	
	
		
			
				8
				.
				6
				2
				2
				2
				×
				1
				0
			

			
				3
				7
			

		
	
	
										5.4054
									
	70	
	
		
			
				4
				.
				2
				0
				5
				4
				×
				1
				0
			

			
				3
				2
			

		
	
	
	
		
			
				1
				.
				1
				4
				1
				0
				×
				1
				0
			

			
				4
				4
			

		
	
	
										7.8967
									
	80	
	
		
			
				1
				.
				1
				4
				2
				9
				×
				1
				0
			

			
				3
				7
			

		
	
	
	
		
			
				1
				.
				4
				6
				3
				4
				×
				1
				0
			

			
				5
				0
			

		
	
	
										11.6467
									
	90	
	
		
			
				3
				.
				0
				4
				2
				4
				×
				1
				0
			

			
				4
				1
			

		
	
	
	
		
			
				1
				.
				8
				3
				2
				7
				×
				1
				0
			

			
				5
				6
			

		
	
	
										17.1212
									
	100	
	
		
			
				7
				.
				9
				3
				7
				6
				×
				1
				0
			

			
				4
				5
			

		
	
	
	
		
			
				2
				.
				2
				5
				2
				3
				×
				1
				0
			

			
				6
				2
			

		
	
	
										25.2027
									
	110	
	
		
			
				2
				.
				0
				2
				7
				4
				×
				1
				0
			

			
				5
				0
			

		
	
	
	
		
			
				2
				.
				7
				2
				6
				2
				×
				1
				0
			

			
				6
				8
			

		
	
	
										37.3244
									
	120	
	
		
			
				5
				.
				1
				3
				0
				2
				×
				1
				0
			

			
				5
				4
			

		
	
	
	
		
			
				3
				.
				2
				5
				8
				8
				×
				1
				0
			

			
				7
				4
			

		
	
	
										55.0978
									
	130	
	
		
			
				1
				.
				2
				8
				3
				9
				×
				1
				0
			

			
				5
				9
			

		
	
	
	
		
			
				3
				.
				8
				5
				4
				6
				×
				1
				0
			

			
				8
				0
			

		
	
	
										81.3792
									
	140	
	
		
			
				3
				.
				1
				6
				9
				7
				×
				1
				0
			

			
				6
				3
			

		
	
	
	
		
			
				4
				.
				5
				1
				8
				6
				×
				1
				0
			

			
				8
				6
			

		
	
	
										120.7511
									
	150	
	
		
			
				7
				.
				7
				8
				8
				9
				×
				1
				0
			

			
				6
				7
			

		
	
	
	
		
			
				5
				.
				2
				5
				6
				3
				×
				1
				0
			

			
				9
				2
			

		
	
	
										178.6315
									
	160	
	
		
			
				1
				.
				8
				9
				5
				4
				×
				1
				0
			

			
				7
				2
			

		
	
	
	
		
			
				6
				.
				0
				7
				3
				5
				×
				1
				0
			

			
				9
				8
			

		
	
	
										265.0635
									
	170	
	
		
			
				4
				.
				5
				9
				3
				2
				×
				1
				0
			

			
				7
				6
			

		
	
	
	
		
			
				6
				.
				9
				7
				6
				4
				×
				1
				0
			

			
				1
				0
				4
			

		
	
	
										392.6175
									
	180	
	
		
			
				1
				.
				1
				0
				7
				4
				×
				1
				0
			

			
				8
				1
			

		
	
	
	
		
			
				7
				.
				9
				7
				1
				8
				×
				1
				0
			

			
				1
				1
				0
			

		
	
	
										581.5469
									
	190	
	
		
			
				2
				.
				6
				4
				5
				0
				×
				1
				0
			

			
				8
				5
			

		
	
	
	
		
			
				9
				.
				0
				6
				6
				9
				×
				1
				0
			

			
				1
				1
				6
			

		
	
	
										863.7282
									
	200	
	
		
			
				6
				.
				3
				2
				6
				8
				×
				1
				0
			

			
				8
				9
			

		
	
	
	
		
			
				1
				.
				0
				2
				6
				9
				×
				1
				0
			

			
				1
				2
				3
			

		
	
	
										1280.4536
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