We find the greatest value \(p \) and the least value \(q \) in \((0, 1/2)\) such that the double inequality
\[
H(pa + (1 - p)b, pb + (1 - p)a) < I(a, b) < H(qa + (1 - q)b, qb + (1 - q)a)
\]
holds for all \(a, b > 0 \) with \(a \neq b \). Here, \(H(a, b) \) and \(I(a, b) \) denote the harmonic and identric means of two positive numbers \(a \) and \(b \), respectively.

1. Introduction

The classical harmonic mean \(H(a, b) \) and identric mean \(I(a, b) \) of two positive numbers \(a \) and \(b \) are defined by
\[
H(a, b) = \frac{2ab}{a + b}, \quad \text{and} \quad I(a, b) = \begin{cases}
\frac{1}{e} \left(\frac{b^a}{a^b} \right)^{1/(b-a)}, & a \neq b, \\
\frac{1}{e}, & a = b,
\end{cases}
\]
respectively. Recently, both mean values have been the subject of intensive research. In particular, many remarkable inequalities for \(H \) and \(I \) can be found in the literature [1–17].

Let \(M_p(a, b) = [(a^p + b^p)/2]^{1/p}, L(a, b) = (a - b)/(\log a - \log b), G(a, b) = \sqrt{ab}, A(a, b) = (a + b)/2, \) and \(P(a, b) = (a - b)/[4 \arctan(\sqrt{a/b}) - \pi] \) be the \(p \)th power, logarithmic,
geometric, arithmetic, and Seiffert means of two positive numbers a and b with $a \neq b$, respectively. Then it is well-known that

$$\min \{a, b\} < H(a, b) = M_{1/3}(a, b) < G(a, b)$$
$$= M_0(a, b) < L(a, b)$$
$$< P(a, b) < I(a, b) < A(a, b)$$
$$= M_1(a, b) < \max \{a, b\}$$

for all $a, b > 0$ with $a \neq b$.

Long and Chu [18] answered the question: what are the greatest value p and the least value q such that $M_p(a, b) < A^p(a, b)G^p(a, b)H^{1-p}(a, b) < M_q(a, b)$ for all $a, b > 0$ with $a \neq b$ and $\alpha, \beta > 0$ with $\alpha + \beta < 1$.

In [19], the authors proved that the double inequality

$$\alpha A(a, b) + (1 - \alpha)H(a, b) < P(a, b) < \beta A(a, b) + (1 - \beta)H(a, b)$$

holds for all $a, b > 0$ with $a \neq b$ if and only if $\alpha \leq 2/\pi$ and $\beta \geq 5/6$.

The following sharp bounds for I_1, $(LI)^{1/2}$, and $(L + I)/2$ in terms of power means are presented in [20]:

$$M_{2/3}(a, b) < I(a, b) < M_{\log_2(a, b)}(a, b), \quad M_0(a, b) < \sqrt{L(a, b)I(a, b)} < M_{1/2}(a, b),$$
$$M_{\log_2/(1+\log_2)(a, b)} < \frac{L(a, b) + I(a, b)}{2} < M_{1/2}(a, b)$$

for all $a, b > 0$ with $a \neq b$.

Alzer and Qiu [21] proved that the inequalities

$$\alpha A(a, b) + (1 - \alpha)G(a, b) < I(a, b) < \beta A(a, b) + (1 - \beta)G(a, b)$$

hold for all positive real numbers a and b with $a \neq b$ if and only if $\alpha \leq 2/3$ and $\beta \geq 2/e = 0.73575$, and so forth.

For fixed $a, b > 0$ with $a \neq b$ and $x \in [0, 1/2]$, let

$$f(x) = H(xa + (1 - x)b, xb + (1 - x)a).$$

Then it is not difficult to verify that $f(x)$ is continuous and strictly increasing in $[0, 1/2]$. Note that $f(0) = H(a, b) < I(a, b)$ and $f(1/2) = A(a, b) > I(a, b)$. Therefore, it is natural to ask what are the greatest value p and the least value q in $(0, 1/2)$ such that the double inequality $H(pa + (1 - p)b, pb + (1 - p)a) < I(a, b) < H(qa + (1 - q)b, qb + (1 - q)a)$ holds for all $a, b > 0$ with $a \neq b$. The main purpose of this paper is to answer these questions. Our main result is Theorem 1.1.
Abstract and Applied Analysis

Theorem 1.1. If \(p, q \in (0, 1/2) \), then the double inequality

\[
H(pa + (1-p)b, pb + (1-p)a) < I(a, b) < H(qa + (1-q)b, qb + (1-q)a)
\]

holds for all \(a, b > 0 \) with \(a \neq b \) if and only if \(p \leq (1 - \sqrt{1 - 2/e})/2 \) and \(q \geq (6 - \sqrt{6})/12 \).

2. Proof of Theorem 1.1

Proof of Theorem 1.1. Let \(\lambda = (6 - \sqrt{6})/12 \) and \(\mu = (1 - \sqrt{1 - 2/e})/2 \). Then from the monotonicity of the function \(f(x) = H(xa + (1-x)b, xb + (1-x)a) \) in \([0, 1/2]\) we know that to prove inequality (1.8) we only need to prove that inequalities

\[
I(a, b) < H(\lambda a + (1-\lambda)b, \lambda b + (1-\lambda)a), \quad (2.1)
\]

\[
I(a, b) > H(\mu a + (1-\mu)b, \mu b + (1-\mu)a), \quad (2.2)
\]

hold for all \(a, b > 0 \) with \(a \neq b \).

Without loss of generality, we assume that \(a > b \). Let \(t = a/b > 1 \) and \(r \in (0, 1/2) \), then from (1.1) and (1.2) one has

\[
\log H(ra + (1-r)b, rb + (1-r)a) - \log I(a, b) = \log \left\{ r(1-r)t^2 + t^2 + (1-r)^2 \right\} + r(1-r)
\]

\[
- \log(t+1) - \frac{t \log t}{t-1} + 1 + \log 2.
\]

Let

\[
g(t) = \log \left\{ r(1-r)t^2 + t^2 + (1-r)^2 \right\} + r(1-r)
\]

\[
- \log(t+1) - \frac{t \log t}{t-1} + 1 + \log 2.
\]

Then simple computations lead to

\[
g(1) = 0,
\]

\[
\lim_{t \to +\infty} g(t) = \log [r(1-r)] + 1 + \log 2,
\]

\[
g'(t) = \frac{g_1(t)}{(t-1)^2},
\]
where

\[g_1(t) = \log t - \frac{(t - 1) [(2r^2 - 2r + 1)^2 + 4r(1 - r)t + 2r^2 - 2r + 1]}{(t + 1)[r(1 - r)t^2 + (2r^2 - 2r + 1)t + r(1 - r)]}, \quad (2.8) \]

\[g_1(1) = 0, \]

\[\lim_{t \to \infty} g_1(t) = +\infty, \quad (2.9) \]

\[g_1'(t) = \frac{g_2(t)}{t(t + 1)^2[r(1 - r)t^2 + (2r^2 - 2r + 1)t + r(1 - r)]^2}, \quad (2.11) \]

where

\[g_2(t) = r^2(1 - r)^2t^6 + (2r^4 - 4r^3 - 2r^2 + 4r - 1)t^5 - (17r^4 - 34r^3 + 25r^2 - 8r + 1)t^4 \\
+4(7r^4 - 14r^3 + 13r^2 - 6r + 1)t^3 - (17r^4 - 34r^3 + 25r^2 - 8r + 1)t^2 \\
+2r^4 - 4r^3 - 2r^2 + 4r - 1, \]

\[g_2(1) = 0, \]

\[\lim_{t \to \infty} g_2(t) = +\infty, \quad (2.13) \]

\[g_2'(t) = 6r^2(1 - r)^2t^5 + 5(2r^4 - 4r^3 - 2r^2 + 4r - 1)t^4 - 4(17r^4 - 34r^3 + 25r^2 - 8r + 1)t^3 \\
+12(7r^4 - 14r^3 + 13r^2 - 6r + 1)t^2 - 2(17r^4 - 34r^3 + 25r^2 - 8r + 1)t \\
+2r^4 - 4r^3 - 2r^2 + 4r - 1, \]

\[g_2'(1) = 0, \]

\[\lim_{t \to \infty} g_2'(t) = +\infty, \quad (2.16) \]

\[g_2''(t) = 30r^2(1 - r)^2t^4 + 20(2r^4 - 4r^3 - 2r^2 + 4r - 1)t^3 - 12(17r^4 - 34r^3 + 25r^2 - 8r + 1)t^2 \\
+24(7r^4 - 14r^3 + 13r^2 - 6r + 1)t - 2(17r^4 - 34r^3 + 25r^2 - 8r + 1), \]

\[g_2''(1) = -2\left(24r^2 - 24r + 5\right), \]

\[\lim_{t \to \infty} g_2''(t) = +\infty, \quad (2.19) \]

\[g_2'''(t) = 120r^2(1 - r)^2t^3 + 60(2r^4 - 4r^3 - 2r^2 + 4r - 1)t^2 \\
-24(17r^4 - 34r^3 + 25r^2 - 8r + 1)t + 24(7r^4 - 14r^3 + 13r^2 - 6r + 1), \]

\[g_2'''(1) = -12\left(24r^2 - 24r + 5\right), \]

\[\lim_{t \to \infty} g_2'''(t) = +\infty, \quad (2.22) \]

\[g_2^{(4)}(t) = 360r^2(1 - r)^2t^2 + 120(2r^4 - 4r^3 - 2r^2 + 4r - 1)t \\
-24(17r^4 - 34r^3 + 25r^2 - 8r + 1), \]

\[g_2^{(4)}(1) = 360\left(24r^2 - 24r + 5\right), \]

\[\lim_{t \to \infty} g_2^{(4)}(t) = +\infty. \quad (2.24) \]
Abstract and Applied Analysis

\[g_2^{(4)}(1) = 48\left(4r^4 - 8r^3 - 10r^2 + 14r - 3\right), \]
(2.25)

\[\lim_{t \to +\infty} g_2^{(4)}(t) = +\infty, \]
(2.26)

\[g_2^{(5)}(t) = 720r^2(1 - r)^2t + 120\left(2r^4 - 4r^3 - 2r^2 + 4r - 1\right), \]
(2.27)

\[g_2^{(5)}(1) = 120\left(8r^4 - 16r^3 + 4r^2 + 4r - 1\right). \]
(2.28)

We divide the proof into two cases.

Case 1 \((r = \lambda = (6 - \sqrt{6})/12)\). Then (2.19), (2.22), (2.25), and (2.28) lead to

\[g_2''(1) = 0, \]
(2.29)

\[g_2''(1) = 0, \]
(2.30)

\[g_2^{(4)}(1) = \frac{13}{3} > 0, \]
(2.31)

\[g_2^{(5)}(1) = \frac{65}{3} > 0. \]
(2.32)

From (2.27) we clearly see that \(g_2^{(5)}(t)\) is strictly increasing in \([1, +\infty)\), then inequality (2.32) leads to the conclusion that \(g_2^{(5)}(t) > 0\) for \(t \in [1, +\infty)\), hence \(g_2^{(4)}(t)\) is strictly increasing in \([1, +\infty)\).

It follows from inequality (2.31) and the monotonicity of \(g_2^{(4)}(t)\) that \(g_2''(t)\) is strictly increasing in \([1, +\infty)\). Then (2.30) implies that \(g_2''(t) > 0\) for \(t \in [1, +\infty)\), so \(g_2''(t)\) is strictly increasing in \([1, +\infty)\).

From (2.29) and the monotonicity of \(g_2''(t)\) we clearly see that \(g_2'(t)\) is strictly increasing in \([1, +\infty)\).

From (2.5), (2.7), (2.9), (2.11), (2.13), (2.16), and the monotonicity of \(g_2'(t)\) we conclude that

\[g(t) > 0 \]
(2.33)

for \(t \in (1, +\infty)\).

Therefore, inequality (2.1) follows from (2.3) and (2.4) together with inequality (2.33).

Case 2 \((r = \mu = (1 - \sqrt{1 - 2/e})/2)\). Then (2.19), (2.22), (2.25), and (2.28) lead to

\[g_2''(1) = -\frac{2}{e}(5e - 12) < 0, \]
(2.34)

\[g_2'''(1) = -\frac{12}{e^2}(5e - 12) < 0, \]
(2.35)

\[g_2^{(4)}(1) = -\frac{48}{e^2}\left(3e^2 - 7e - 1\right) < 0, \]
(2.36)

\[g_2^{(5)}(1) = \frac{120}{e^2}\left(2 + 2e - e^2\right) > 0. \]
(2.37)
From (2.27) and (2.37) we know that $g_2^{(4)}(t)$ is strictly increasing in $[1, +\infty)$. Then (2.26) and (2.36) lead to the conclusion that there exists $t_1 > 1$ such that $g_2^{(4)}(t) < 0$ for $t \in [1, t_1)$ and $g_2^{(4)}(t) > 0$ for $t \in (t_1, +\infty)$, hence $g_2'''(t)$ is strictly decreasing in $[1, t_1]$ and strictly increasing in $[t_1, +\infty)$.

It follows from (2.23) and (2.35) together with the piecewise monotonicity of $g_2''(t)$ that there exists $t_2 > t_1 > 1$ such that $g_2''(t)$ is strictly decreasing in $[1, t_2]$ and strictly increasing in $[t_2, +\infty)$. Then (2.20) and (2.34) lead to the conclusion that there exists $t_3 > t_2 > 1$ such that $g_2'(t)$ is strictly decreasing in $[1, t_3]$ and strictly increasing in $[t_3, +\infty)$.

From (2.16) and (2.17) together with the piecewise monotonicity of $g_1'(t)$ we clearly see that there exists $t_4 > t_3 > 1$ such that $g_1'(t) < 0$ for $t \in (1, t_4)$ and $g_1'(t) > 0$ for $t \in (t_4, +\infty)$. Therefore, $g_2(t)$ is strictly decreasing in $[1, t_4]$ and strictly increasing in $[t_4, +\infty)$. Then (2.11)–(2.14) lead to the conclusion that there exists $t_5 > t_4 > 1$ such that $g_1(t)$ is strictly decreasing in $[1, t_5]$ and strictly increasing in $[t_5, +\infty)$.

It follows from (2.7)–(2.10) and the piecewise monotonicity of $g_1(t)$ that there exists $t_6 > t_5 > 1$ such that $g(t)$ is strictly decreasing in $[1, t_6]$ and strictly increasing in $[t_6, +\infty)$.

Note that (2.6) becomes

$$\lim_{t \to +\infty} g(t) = \log[r(1 - r)] + 1 + \log 2 = 0 \quad (2.38)$$

for $r = \mu = (1 - \sqrt{1 - 2/\sqrt{2}})/2$.

From (2.5) and (2.38) together with the piecewise monotonicity of $g(t)$ we clearly see that

$$g(t) < 0 \quad (2.39)$$

for $t \in (1, +\infty)$.

Therefore, inequality (2.2) follows from (2.3) and (2.4) together with inequality (2.39).

Next, we prove that the parameter $\lambda = (6 - \sqrt{6})/12$ is the best possible parameter in $(0, 1/2)$ such that inequality (2.1) holds for all $a, b > 0$ with $a \neq b$. In fact, if $r < \lambda = (6 - \sqrt{6})/12$, then (2.19) leads to $g_2''(1) = -2(24r^2 - 24r + 9) < 0$. From the continuity of $g_2''(t)$ we know that there exists $\delta > 0$ such that

$$g_2''(t) < 0 \quad (2.40)$$

for $t \in (1, 1 + \delta)$.

It follows from (2.3)–(2.5), (2.7), (2.9), (2.11), (2.13), and (2.16) that $I(a, b) > H(ra + (1 - r)b, rb + (1 - r)a)$ for $a/b \in (1, 1 + \delta)$.

Finally, we prove that the parameter $\mu = (1 - \sqrt{1 - 2/\sqrt{2}})/2$ is the best possible parameter in $(0, 1/2)$ such that inequality (2.2) holds for all $a, b > 0$ with $a \neq b$. In fact, if $(1 - \sqrt{1 - 2/\sqrt{2}})/2 = \mu < r < 1/2$, then (2.6) leads to $\lim_{t \to +\infty} g(t) > 0$. Hence, there exists $T > 1$ such that

$$g(t) > 0 \quad (2.41)$$

for $t \in (T, +\infty)$.

Therefore, \(H(ra + (1 - r)b, rb + (1 - r)a) > I(a/b) \) for \(a/b \in (T, +\infty) \), follows from (2.3) and (2.4) together with inequality (2.41).

Acknowledgments

This research was supported by the Natural Science Foundation of China under Grant 11071069 and Innovation Team Foundation of the Department of Education of Zhejiang Province under Grant T200924.

References

Submit your manuscripts at http://www.hindawi.com