Research Article

Multiple Positive Solutions for Semilinear Elliptic Equations with Sign-Changing Weight Functions in \mathbb{R}^N

Tsing-San Hsu

Center for General Education, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan

Correspondence should be addressed to Tsing-San Hsu, tshsu@mail.cgu.edu.tw

Received 9 March 2011; Accepted 3 May 2011

Academic Editor: Nobuyuki Kenmochi

Copyright © 2011 Tsing-San Hsu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Existence and multiplicity of positive solutions for the following semilinear elliptic equation:

$$-\Delta u + u = a(x)|u|^{p-2}u + \lambda b(x)|u|^{q-2}u \quad \text{in} \quad \mathbb{R}^N,$$

$$u > 0 \quad \text{in} \quad \mathbb{R}^N,$$

$$u \in H^1(\mathbb{R}^N),$$

where $\lambda > 0, 1 < q < 2 < p < 2^* \quad (2^* = 2N/(N-2) \quad \text{if} \quad N \geq 3, \quad 2^* = \infty \quad \text{if} \quad N = 1, 2)$, a, b satisfy suitable conditions, and b maybe changes sign in \mathbb{R}^N. The study is based on the extraction of the Palais-Smale sequences in the Nehari manifold.

1. Introduction

In this paper, we deal with the multiplicity of positive solutions for the following semilinear elliptic equation:

$$-\Delta u + u = a(x)|u|^{p-1} + \lambda b(x)|u|^{q-1} \quad \text{in} \quad \mathbb{R}^N,$$

$$u > 0 \quad \text{in} \quad \mathbb{R}^N,$$

$$u \in H^1(\mathbb{R}^N),$$

where $\lambda > 0, 1 < q < 2 < p < 2^* \quad (2^* = 2N/(N-2) \quad \text{if} \quad N \geq 3, \quad 2^* = \infty \quad \text{if} \quad N = 1, 2)$ and a, b are measurable functions and satisfy the following conditions:

(a1) $0 < a \in L^{\infty}(\mathbb{R}^N)$, where $\lim_{|x| \to \infty} a(x) = 1$, and there exist $C_0 > 0$ and $\delta_0 > 0$ such that

$$a(x) \geq 1 - C_0 e^{-\delta_0 |x|} \quad \forall x \in \mathbb{R}^N.$$ (1.1)
(b1) \(b \in L^q(\mathbb{R}^N) \) \((q^* = p/(p-q))\), \(b^+ = \max\{b,0\} \neq 0 \), \(b^- = \max\{-b,0\} \) is bounded and
\(b^- \) has a compact support \(K \) in \(\mathbb{R}^N \).

(b2) There exist \(C_1 > 0 \), \(0 < \delta_1 < \min\{\delta_0, q\} \) and \(R_0 > 0 \) such that

\[b^+(x) - b(x) \geq C_1 e^{-\delta_1 |x|} \quad \forall |x| \geq R_0, \quad (1.2) \]

Semilinear elliptic equations with concave-convex nonlinearities in bounded domains are widely studied. For example, Ambrosetti et al. [1] considered the following equation:

\[-\Delta u = u^{p-1} + \lambda u^{\delta-1} \quad \text{in} \ \Omega, \]

\[u > 0 \quad \text{in} \ \Omega, \]

\[u = 0 \quad \text{on} \ \partial \Omega, \quad (E_1) \]

where \(\lambda > 0 \), \(1 < q < 2 < p < 2^* \). They proved that there exists \(\lambda_0 > 0 \) such that \((E_1)\) admits at least two positive solutions for all \(\lambda \in (0, \lambda_0) \), has one positive solution for \(\lambda = \lambda_0 \) and no positive solution for \(\lambda > \lambda_0 \). Actually, Adimurthi et al. [2], Damascelli et al. [3], Korman [4], Ouyang and Shi [5], and Tang [6] proved that there exists \(\lambda_0 > 0 \) such that \((E_1)\) in the unit ball \(B^N(0;1) \) has exactly two positive solutions for \(\lambda \in (0, \lambda_0) \), has exactly one positive solution for \(\lambda = \lambda_0 \) and no positive solution exists for \(\lambda > \lambda_0 \). For more general results of \((E_1)\) (involving sign-changing weights) in bounded domains; see, the work of Ambrosetti et al. in [7], of Garcia Azorero et al. in [8], of Brown and Wu in [9], of Brown and Zhang in [10], of Cao and Zhong in [11], of de Figueiredo et al. in [12], and their references.

However, little has been done for this type of problem in \(\mathbb{R}^N \). We are only aware of the works [13–17] which studied the existence of solutions for some related concave-convex elliptic problems (not involving sign-changing weights). Furthermore, we do not know of any results for concave-convex elliptic problems involving sign-changing weight functions except [18, 19]. Wu in [18] have studied the multiplicity of positive solutions for the following equation involving sign-changing weights:

\[-\Delta u + u = f_\lambda(x) u^{\delta-1} + g_\mu(x) u^{p-1} \quad \text{in} \ \mathbb{R}^N, \]

\[u > 0 \quad \text{in} \ \mathbb{R}^N, \]

\[u \in H^1(\mathbb{R}^N), \quad (E_{f_\lambda,g_\mu}) \]

where \(1 < q < 2 < p < 2^* \) the parameters \(\lambda, \mu \geq 0 \). He also assumed that \(f_\lambda(x) = \lambda f_1(x) + f_2(x) \) is sign changing and \(g_\mu(x) = a(x) + \mu b(x) \), where \(a \) and \(b \) satisfy suitable conditions and proved that \((E_{f_\lambda,g_\mu})\) has at least four positive solutions.

In a recent work [19], Hsu and Lin have studied \((E_{a,b})\) in \(\mathbb{R}^N \) with a sign-changing weight function. They proved there exists \(\lambda_0 > 0 \) such that \((E_{a,b})\) has at least two positive solutions for all \(\lambda \in (0, \lambda_0) \) provided that \(a, b \) satisfy suitable conditions and \(b \) maybe changes sign in \(\mathbb{R}^N \).

Continuing our previous work [19], we consider \((E_{a,b})\) in \(\mathbb{R}^N \) involving a sign-changing weight function with suitable assumptions which are different from the assumptions in [19].
In order to describe our main result, we need to define

\[\Lambda_0 = \left(\frac{2 - q}{(p - q)\|a\|_{L^\infty}} \right)^{(2-q)/(p-2)} \left(\frac{p - 2}{(p - q)\|b^*\|_{L^{p^*}}} \right) S_p^{(2-q)/(2(p-2)+q/2)} > 0, \tag{1.3} \]

where \(\|a\|_{L^\infty} = \sup_{x \in \mathbb{R}^N} a(x), \|b^*\|_{L^{p^*}} = (\int_{\mathbb{R}^N} |b^+(x)|^q \, dx)^{1/q} \) and \(S_p \) is the best Sobolev constant for the imbedding of \(H^1(\mathbb{R}^N) \) into \(L^p(\mathbb{R}^N) \).

Theorem 1.1. Assume that (a1), (b1)-(b2) hold. If \(\lambda \in (0, (q/2)\Lambda_0) \), \((E_{a,\lambda b})\) admits at least two positive solutions in \(H^1(\mathbb{R}^N) \).

This paper is organized as follows. In Section 2, we give some notations and preliminary results. In Section 3, we establish the existence of a local minimum. In Section 4, we prove the existence of a second solution of \((E_{a,\lambda b})\).

At the end of this section, we explain some notations employed. In the following discussions, we will consider \(H = H^1(\mathbb{R}^N) \) with the norm \(\|u\| = (\int_{\mathbb{R}^N} (|\nabla u|^2 + u^2) \, dx)^{1/2}. \) We denote by \(S_p \) the best constant which is given by

\[S_p = \inf_{u \in H^1(\mathbb{R}^N)} \frac{\|u\|^2}{(\int_{\mathbb{R}^N} |u|^p \, dx)^{2/p}}. \tag{1.4} \]

The dual space of \(H \) will be denoted by \(H^* \). \(\langle \cdot, \cdot \rangle \) denote the dual pair between \(H^* \) and \(H \). We denote the norm in \(L^s(\mathbb{R}^N) \) by \(\| \cdot \|_{L^s} \) for \(1 \leq s \leq \infty \). \(B_N(x; r) \) is a ball in \(\mathbb{R}^N \) centered at \(x \) with radius \(r \). \(o_n(1) \) denotes \(o_n(1) \to 0 \) as \(n \to \infty \). \(C, C_i \) will denote various positive constants, the exact values of which are not important.

2. Preliminary Results

Associated with (1.3), the energy functional \(J_\lambda : H \to \mathbb{R}^N \) defined by

\[J_\lambda(u) = \frac{1}{2}\|u\|^2 - \frac{1}{p} \int_{\mathbb{R}^N} a(x)|u|^p \, dx - \frac{1}{q} \int_{\mathbb{R}^N} b(x)|u|^q \, dx, \tag{2.1} \]

for all \(u \in H \) is considered. It is well-known that \(J_\lambda \in C^1(H, \mathbb{R}) \) and the solutions of \((E_{a,\lambda b})\) are the critical points of \(J_\lambda \).

Since \(J_\lambda \) is not bounded from below on \(H \), we will work on the Nehari manifold. For \(\lambda > 0 \) we define

\[\mathcal{N}_\lambda = \{ u \in H \setminus \{0\} : \langle J'_\lambda(u), u \rangle = 0 \}. \tag{2.2} \]

Note that \(\mathcal{N}_\lambda \) contains all nonzero solutions of \((E_{a,\lambda b})\) and \(u \in \mathcal{N}_\lambda \) if and only if

\[\langle J'_\lambda(u), u \rangle = \|u\|^2 - \int_{\mathbb{R}^N} a(x)|u|^p \, dx - \lambda \int_{\mathbb{R}^N} b(x)|u|^q \, dx = 0. \tag{2.3} \]

Lemma 2.1. \(J_\lambda \) is coercive and bounded from below on \(\mathcal{N}_\lambda \).
Proof. If \(u \in \mathcal{A}_\lambda \), then by (b1), (2.3), and the Hölder and Sobolev inequalities, one has

\[
J_\lambda(u) = \frac{p-2}{2p} \|u\|^2 - \lambda \left(\frac{p-q}{pq} \right) \int_{\mathbb{R}^N} b(x) |u|^q dx \\
\geq \frac{p-2}{2p} \|u\|^2 - \lambda \left(\frac{p-q}{pq} \right) s_p^{q/2} \|u\|_{L^p}^q.
\]

(2.4)

Since \(q < 2 < p \), it follows that \(J_\lambda \) is coercive and bounded from below on \(\mathcal{A}_\lambda \).

The Nehari manifold is closely linked to the behavior of the function of the form \(q_u : t \to J_\lambda(tu) \) for \(t > 0 \). Such maps are known as fibering maps and were introduced by Drábek and Pohozaev in [20] and are also discussed by Brown and Zhang in [10]. If \(u \in H \), we have

\[
q_u(t) = \frac{t^2}{2} \|u\|^2 - \frac{tp}{p} \int_{\mathbb{R}^N} a(x) |u|^p dx - \frac{tq}{q} \lambda \int_{\mathbb{R}^N} b(x) |u|^q dx, \\
q_u'(t) = t \|u\|^2 - (p-1) \frac{tp}{p} \int_{\mathbb{R}^N} a(x) |u|^p dx - \lambda \int_{\mathbb{R}^N} b(x) |u|^q dx, \\
q_u''(t) = \|u\|^2 - (p-1) \frac{tp}{p} \int_{\mathbb{R}^N} a(x) |u|^p dx - \lambda \int_{\mathbb{R}^N} b(x) |u|^q dx.
\]

(2.6)

It is easy to see that

\[
\lambda p q_u'(t) = \|tu\|^2 - \int_{\mathbb{R}^N} a(x) |tu|^p dx - \lambda \int_{\mathbb{R}^N} b(x) |tu|^q dx,
\]

(2.7)

and so, for \(u \in H \setminus \{0\} \) and \(t > 0 \), \(q_u'(t) = 0 \) if and only if \(tu \in \mathcal{A}_\lambda \) that is, the critical points of \(q_u \) correspond to the points on the Nehari manifold. In particular, \(q_u''(1) = 0 \) if and only if \(u \in \mathcal{A}_\lambda \). Thus, it is natural to split \(\mathcal{A}_\lambda \) into three parts corresponding to local minima, local maxima, and points of inflection. Accordingly, we define

\[
\mathcal{A}^+_\lambda = \{ u \in \mathcal{A}_\lambda : q_u''(1) > 0 \}, \\
\mathcal{A}^0_\lambda = \{ u \in \mathcal{A}_\lambda : q_u''(1) = 0 \}, \\
\mathcal{A}^-_\lambda = \{ u \in \mathcal{A}_\lambda : q_u''(1) < 0 \}.
\]

(2.8)

and note that if \(u \in \mathcal{A}_\lambda \), then \(q_u'(1) = 0 \), then

\[
q_u''(1) = (2-q) \|u\|^2 - (p-q) \int_{\mathbb{R}^N} a(x) |u|^p dx, \\
= (2-p) \|u\|^2 - (q-p) \lambda \int_{\mathbb{R}^N} b(x) |u|^q dx.
\]

(2.9)

(2.10)

We now derive some basic properties of \(\mathcal{A}^+_\lambda, \mathcal{A}^0_\lambda \) and \(\mathcal{A}^-_\lambda \).
Lemma 2.2. Suppose that \(u_0 \) is a local minimizer for \(J_\lambda \) on \(\mathcal{N}_\lambda \) and \(u_0 \notin \mathcal{N}_\lambda^0 \), then \(J_\lambda'(u_0) = 0 \) in \(H^* \).

Proof. See the work of Brown and Zhang in [10, Theorem 2.3]. \(\square \)

Lemma 2.3. If \(\lambda \in (0, \Lambda_0) \), then \(\mathcal{N}_\lambda^0 = \emptyset \).

Proof. We argue by contradiction. Suppose that there exists \(\lambda \in (0, \Lambda_0) \) such that \(\mathcal{N}_\lambda^0 \neq \emptyset \). Then for \(u \in \mathcal{N}_\lambda^0 \) by (2.9) and the Sobolev inequality, we have

\[
\frac{2 - q}{p - q} \|u\|^2 = \int_{\mathbb{R}^N} a(x)|u|^p dx \leq \|a\|_{L^p} S_p^{-p/2} \|u\|^p,
\]

and so

\[
\|u\| \geq \left(\frac{2 - q}{(p - q)\|a\|_{L^p}} \right)^{1/(p-2)} S_p^{p/2(p-2)}.
\]

Similarly, using (2.10), Hölder and Sobolev inequalities, we have

\[
\|u\|^2 = \lambda^{p - q} \parallel u \parallel_{L^q}^q \leq \lambda^{p - q} \|b^+\|_{L^q} S_p^{-q/2} \|u\|^q
\]

which implies

\[
\|u\| \leq \left(\frac{\lambda^{p - q} \|b^+\|_{L^q}}{p - 2} \right)^{1/(2-q)} S_p^{(2-q)/(2(p-2))^2}.
\]

Hence, we must have

\[
\lambda \geq \left(\frac{2 - q}{(p - q)\|a\|_{L^p}} \right)^{(2-q)/(p-2)} \left(\frac{p - 2}{(p - q)\|b^+\|_{L^q}} \right) S_p^{2(p-2)/(2(p-2)+q/2) = \Lambda_0}
\]

which is a contradiction. \(\square \)

In order to get a better understanding of the Nehari manifold and fibering maps, we consider the function \(q_u : \mathbb{R}^+ \to \mathbb{R} \) defined by

\[
q_u(t) = t^{2-q}\|u\|^2 - t^{p-q} \int_{\mathbb{R}^N} a(x)|u|^p dx \text{ for } t > 0.
\]

Clearly, \(tu \in \mathcal{N}_\lambda \) if and only if \(q_u(t) = \lambda \int_{\mathbb{R}^N} b(x)|u|^q dx \). Moreover,

\[
q_u'(t) = (2 - q)t^{1-q}\|u\|^2 - (p - q)t^{p-q-1} \int_{\mathbb{R}^N} a(x)|u|^p dx \text{ for } t > 0,
\]

and so

\[
h \text{ for } t > 0.
\]
and so it is easy to see that if $tu \in \mathcal{N}_\lambda$, then $t^{-1}q_u'(t) = q_u''(t)$. Hence, $tu \in \mathcal{N}_\lambda^+$ (or $tu \in \mathcal{N}_\lambda^-$) if and only if $q_u'(t) > 0$ (or $q_u'(t) < 0$).

Let $u \in H \setminus \{0\}$. Then, by (2.17), q_u has a unique critical point at $t = t_{\text{max}}(u)$, where

$$
 t_{\text{max}}(u) = \left(\frac{(2 - q)\|u\|^2}{(p - q) \int_{\mathbb{R}^N} a(x)|u|^p\,dx} \right)^{1/(p-2)} > 0,
$$

and clearly q_u is strictly increasing on $(0, t_{\text{max}}(u))$ and strictly decreasing on $(t_{\text{max}}(u), \infty)$ with $\lim_{u \to \infty}q_u(t) = -\infty$. Moreover, if $\lambda \in (0, \Lambda_0)$, then

$$
 q_u(t_{\text{max}}(u)) = \left[\left(\frac{2 - q}{p - q} \right)^{(2-q)/(p-2)} - \left(\frac{2 - q}{p - q} \right)^{(p-q)/(p-2)} \right] \frac{\|u\|^{2(p-q)/(p-2)}}{\int_{\mathbb{R}^N} a(x)|u|^p\,dx} \geq \lambda \|b^+\|_{L^r}^q S_p^{2(q^2)/(2p-2)} \|u\|^q.
$$

Therefore, we have the following lemma.

Lemma 2.4. Let $\lambda \in (0, \Lambda_0)$ and $u \in H \setminus \{0\}$.

(i) If $\lambda \int_{\mathbb{R}^N} b(x)|u|^q\,dx \leq 0$, then there exists a unique $t^- = t^-(u) > t_{\text{max}}(u)$ such that $t^-u \in \mathcal{N}_\lambda^-$, q_u is increasing on $(0, t^-)$ and decreasing on (t^-, ∞). Moreover,

$$
 J_1(t^-u) = \sup_{t \geq 0} J_1(tu).
$$

(ii) If $\lambda \int_{\mathbb{R}^N} b(x)|u|^q\,dx > 0$, then there exist unique $0 < t^+ = t^+(u) < t_{\text{max}}(u) < t^- = t^-(u)$ such that $t^+u \in \mathcal{N}_\lambda^+$, $t^-u \in \mathcal{N}_\lambda^-$, q_u is decreasing on $(0, t^+)$, increasing on (t^+, t^-) and decreasing on (t^-, ∞)

$$
 J_1(t^+u) = \inf_{0 \leq t \leq t_{\text{max}}(u)} J_1(tu), \quad J_1(t^-u) = \sup_{t \geq t^-} J_1(tu).
$$

(iii) $\mathcal{N}_{\lambda}^- = \{u \in H \setminus \{0\} : t^-(u) = (1/\|u\|)t^-(u/\|u\|) = 1\}$.

(iv) There exists a continuous bijection between $\mathcal{U} = \{u \in H \setminus \{0\} : \|u\| = 1\}$ and \mathcal{N}_{λ}^-. In particular, t^- is a continuous function for $u \in H \setminus \{0\}$.

Proof. See the work of Hsu and Lin in [19, Lemma 2.5].
Abstract and Applied Analysis

We remark that it follows Lemma 2.4, $\mathcal{M}_1 = \mathcal{M}_1^+ \cup \mathcal{M}_1^-$ for all $\lambda \in (0, \Lambda_0)$. Furthermore, by Lemma 2.4 it follows that \mathcal{M}_1^+ and \mathcal{M}_1^- are non-empty and by Lemma 2.1 we may define

$$\alpha_\lambda = \inf_{u \in \mathcal{M}_1} J_\lambda(u), \quad \alpha_\lambda^+ = \inf_{u \in \mathcal{M}_1^+} J_\lambda(u), \quad \alpha_\lambda^- = \inf_{u \in \mathcal{M}_1^-} J_\lambda(u).$$ \hspace{1cm} (2.22)

Theorem 2.5. (i) If $\lambda \in (0, \Lambda_0)$, then we have $\alpha_\lambda \leq \alpha_\lambda^+ < 0$.

(ii) If $\lambda \in (0, (q/2)\Lambda_0)$, then $\alpha_\lambda^+ > d_0$ for some $d_0 > 0$.

In particular, for each $\lambda \in (0, (q/2)\Lambda_0)$, we have $\alpha_\lambda^+ = \alpha_\lambda < 0 < \alpha_\lambda^-$.

Proof. See the work of Hsu and Lin in [19, Theorem 3.1]. \hspace{1cm} \Box

Remark 2.6. (i) If $\lambda \in (0, \Lambda_0)$, then by (2.9), H"older and Sobolev inequalities, for each $u \in \mathcal{M}_1^+$ we have

$$\|u\|^2 \leq \frac{p-q}{p-2} \frac{l}{R^\lambda} |b(x)||u|^q \lambda d x$$

$$\leq \frac{p-q}{p-2} \frac{l}{R^\lambda} \|b\|_{L^p} S_p^{-q/2} \|u\|^q$$

$$\leq \frac{p-q}{p-2} \Lambda_0 \|b\|_{L^p} S_p^{-q/2} \|u\|^q,$$

and so

$$\|u\| \leq \left(\frac{p-q}{p-2} \Lambda_0 \|b\|_{L^p} S_p^{-q/2} \right)^{1/(2-q)} \quad \forall u \in \mathcal{M}_1^+. \hspace{1cm} (2.24)$$

(ii) If $\lambda \in (0, (q/2)\Lambda_0)$, then by Lemma 2.4(i), (ii) and Theorem 2.5(ii), for each $u \in \mathcal{M}_1^-$ we have

$$J_\lambda(u) = \sup_{t \geq 0} J_\lambda(tu) \geq \alpha_\lambda^- > 0.$$ \hspace{1cm} (2.25)

3. Existence of a Positive Solution

First, we define the Palais-Smale (simply by (PS)) sequences, (PS)-values, and (PS)-conditions in H for J_λ as follows.

Definition 3.1. (i) For $c \in \mathbb{R}$, a sequence $\{u_n\}$ is a (PS)$_c$-sequence in H for J_λ if $J_\lambda(u_n) = c + o_n(1)$ and $J'_\lambda(u_n) = o_n(1)$ strongly in H^* as $n \to \infty$.

(ii) $c \in \mathbb{R}$ is a (PS)-value in H for J_λ if there exists a (PS)$_c$-sequence in H for J_λ.

(iii) J_λ satisfies the (PS)$_c$-condition in H if any (PS)$_c$-sequence $\{u_n\}$ in H for J_λ contains a convergent subsequence.

Now we will ensure that there are (PS)$_{\alpha_\lambda^-}$-sequence and (PS)$_{\alpha_\lambda^+}$-sequence in \mathcal{M}_1 and \mathcal{M}_1^-, respectively, for the functional J_λ.

Proposition 3.2. If $\lambda \in (0, (q/2)\Lambda_0)$, then

(i) there exists a $(PS)_{\alpha_1^*}$-sequence $\{u_n\} \subset \mathcal{N}_\lambda$ in H for J_λ.

(ii) there exists a $(PS)_{\alpha_1^*}$-sequence $\{u_n\} \subset \mathcal{N}_\lambda^*$ in H for J_λ.

Proof. See Wu [21, Proposition 9].

Now, we establish the existence of a local minimum for J_λ on \mathcal{N}_λ^*.

Theorem 3.3. Assume (a1) and (b1) hold. If $\lambda \in (0, (q/2)\Lambda_0)$, then there exists $u_\lambda \in \mathcal{N}_\lambda^*$ such that

(i) $J_\lambda(u_\lambda) = \alpha_\lambda = \alpha_1^* < 0$,

(ii) u_λ is a positive solution of $(E_{a,\lambda b})$,

(iii) $\|u_\lambda\| \to 0$ as $\lambda \to 0^+$.

Proof. From Proposition 3.2(i) it follows that there exists $\{u_n\} \subset \mathcal{N}_\lambda$ satisfying

$$J_\lambda(u_n) = \alpha_\lambda + o_n(1) = \alpha_1^* + o_n(1), \quad J'_\lambda(u_n) = o_n(1) \quad \text{in } H^*.$$ \hspace{1cm} (3.1)

By Lemma 2.1 we infer that $\{u_n\}$ is bounded on H. Passing to a subsequence (Still denoted by $\{u_n\}$), there exists $u_\lambda \in H$ such that as $n \to \infty$

$$u_n \rightharpoonup u_\lambda \quad \text{weakly in } H,$$

$$u_n \to u_\lambda \quad \text{almost everywhere in } \mathbb{R}^N,$$

$$u_n \to u_\lambda \quad \text{strongly in } L^s_{\text{loc}}(\mathbb{R}^N) \forall 1 \leq s < 2^*.$$ \hspace{1cm} (3.2)

By (b1), Egorov theorem and Hölder inequality, we have

$$\lambda \int_{\mathbb{R}^N} b(x)|u_n|^q dx = \lambda \int_{\mathbb{R}^N} b(x)|u_\lambda|^q dx + o_n(1) \quad \text{as } n \to \infty.$$ \hspace{1cm} (3.3)

By (3.1) and (3.2), it is easy to see that u_λ is a solution of $(E_{a,\lambda b})$. From $u_n \in \mathcal{N}_\lambda$ and (2.4), we deduce that

$$\lambda \int_{\mathbb{R}^N} b(x)|u_n|^q dx = \frac{q(p-2)}{2(p-q)}\|u_n\|^2 - \frac{pq}{p-q} J_\lambda(u_n).$$ \hspace{1cm} (3.4)

Let $n \to \infty$ in (3.4). By (3.1), (3.3) and $\alpha_1 < 0$, we get

$$\lambda \int_{\mathbb{R}^N} b(x)|u_\lambda|^q dx \geq - \frac{pq}{p-q} \alpha_1 > 0.$$ \hspace{1cm} (3.5)

Thus, $u_\lambda \in \mathcal{N}_\lambda$ is a nonzero solution of $(E_{a,\lambda b})$.
Abstract and Applied Analysis

Next, we prove that \(u_n \to u_1 \) strongly in \(H \) and \(J_1(u_1) = \alpha_1 \). From the fact \(u_n, u_1 \in \mathcal{N}_1 \) and applying Fatou’s lemma, we get

\[
\alpha_1 \leq J_1(u_1) = \frac{p-2}{2p} \| u_1 \|^2 - \frac{p-q}{pq} \int_{\mathbb{R}^N} b(x) |u_1|^q \, dx
\]

\[
\leq \liminf_{n \to \infty} \left(\frac{p-2}{2p} \| u_n \|^2 - \frac{p-q}{pq} \int_{\mathbb{R}^N} b(x) |u_n|^q \, dx \right)
\]

\[
\leq \liminf_{n \to \infty} J_1(u_n) = \alpha_1.
\]

This implies that \(J_1(u_1) = \alpha_1 \) and \(\lim_{n \to \infty} \| u_n \|^2 = \| u_1 \|^2 \). Standard argument shows that \(u_n \to u_1 \) strongly in \(H \). By Theorem 2.5, for all \(\lambda \in (0, (q/2) \Lambda_0) \) we have that \(u_1 \in \mathcal{N}_1 \) and \(J_1(u_1) = \alpha_1^* < \alpha_1^* \) which implies \(u_1 \in \mathcal{N}_1^* \). Since \(J_1(u_1) = J_1(|u_1|) \) and \(|u_1| \in \mathcal{N}_1^* \), by Lemma 2.2 we may assume that \(u_1 \) is a nonzero nonnegative solution of \((E_{a, b}) \). By Harnack inequality [22] we deduce that \(u_1 > 0 \) in \(\mathbb{R}^N \). Finally, by (2.10), Hölder and Sobolev inequalities,

\[
\| u_1 \|^{2-q} < \lambda \frac{p-q}{p-2} \| b^+ \|_{L^p} \Omega^{q/2},
\]

and thus we conclude the proof.

\[\square\]

4. Second Positive Solution

In this section, we will establish the existence of the second positive solution of \((E_{a, b}) \) by proving that \(J_1 \) satisfies the \((PS)_{\alpha_1^*} \)-condition.

Lemma 4.1. Assume that (a1) and (b1) hold. If \(\{u_n\} \subset H \) is a \((PS)_c \)-sequence for \(J_1 \), then \(\{u_n\} \) is bounded in \(H \).

Proof. See the work of Hsu and Lin in [19, Lemma 4.1].

\[\square\]

Let us introduce the problem at infinity associated with \((E_{a, b}) \):

\[-\Delta u + u = u^{p-1} \quad \text{in} \ \mathbb{R}^N, \ \ u \in H, \ \ u > 0 \ \text{in} \ \mathbb{R}^N. \quad (E^\infty)\]

We state some known results for problem \((E^\infty) \). First of all, we recall that by Lions [23] has studied the following minimization problem closely related to problem \((E^\infty) \):

\[
S^\infty = \inf \{ J^\infty(u) : u \in H, \ u \neq 0, \ (J^\infty)'(u) = 0 \} > 0,
\]

where \(J^\infty(u) = (1/2)\| u \|^2 - (1/p) \int_{\mathbb{R}^N} |u|^p \, dx \). Note that a minimum exists and is attained by a ground state \(w_0 > 0 \) in \(\mathbb{R}^N \) such that

\[
S^\infty = J^\infty(w_0) = \sup_{t \geq 0} J^\infty(tw_0) = \left(\frac{1}{2} - \frac{1}{p} \right) S_p^{p/(p-2)},
\]

(4.2)
exist positive constants C_ε, C_2 such that for all $x \in \mathbb{R}^N$,

$$C_\varepsilon \exp(-(1 + \varepsilon)|x|) \leq w_0(x) \leq C_2 \exp(-|x|).$$

We define

$$w_n(x) = w_0(x - ne), \quad \text{where } e = (0, 0, \ldots, 0, 1) \text{ is a unit vector in } \mathbb{R}^N. \quad (4.4)$$

Clearly, $w_n(x) \in H$.

Lemma 4.2. Let Ω be a domain in \mathbb{R}^N. If $f : \Omega \to \mathbb{R}$ satisfies

$$\int_{\Omega} \left| f(x)e^{\sigma|x|} \right| dx < \infty \quad \text{for some } \sigma > 0, \quad (4.5)$$

then

$$\left(\int_{\Omega} f(x)e^{-\sigma|x-\bar{x}|} dx \right)e^{\sigma|\bar{x}|} = \int_{\Omega} f(x)e^{\sigma(x,\bar{x})/|\bar{x}|}dx + o(1) \quad \text{as } |\bar{x}| \to \infty. \quad (4.6)$$

Proof. We know $\sigma|\bar{x}| \leq \sigma|x| + \sigma|x - \bar{x}|$. Then,

$$\left| f(x)e^{-\sigma|x-\bar{x}|}e^{\sigma|\bar{x}|} \right| \leq \left| f(x)e^{\sigma|x|} \right|. \quad (4.7)$$

Since $-\sigma|x - \bar{x}| + \sigma|\bar{x}| = \sigma(x,\bar{x})/|\bar{x}| + o(1)$ as $|\bar{x}| \to \infty$, then the lemma follows from the Lebesgue dominated convergence theorem. \qed

Lemma 4.3. Under the assumptions (a1), (b1)-(b2) and $\lambda \in (0, \Lambda_0)$. Then there exists a number $n_0 \in \mathbb{N}$ such that for $n \geq n_0$

$$\sup_{t \geq 0} J_1(tw_n) < S^\infty. \quad (4.8)$$

In particular, $a^*_1 < S^\infty$ for all $\lambda \in (0, \Lambda_0)$.

Proof. (i) First, since $\|w_n\| = \|w_0\|$ for all $n \in \mathbb{N}$ and J_1 is continuous in H and $J_1(0) = 0$, we infer that there exists $t_1 > 0$ such that

$$J_1(tw_n) < S^\infty \quad \forall n \in \mathbb{N}, \quad t \in [0, t_1]. \quad (4.9)$$
(ii) Since \(\lim_{|x| \to \infty} a(x) = 1 \), there exists \(n_1 \in \mathbb{N} \) such that if \(n \geq n_1 \), we get \(a(x) \geq 1/2 \) for \(x \in B^N(ne;1) \). Then, for \(n \geq n_1 \)

\[
J_1(tw_n) = \frac{t^2}{2} ||w_n||^2 - \frac{tp}{p} \int_{\mathbb{R}^N} a(x)|w_n|^p dx - \frac{tq}{q} \int_{\mathbb{R}^N} \lambda b(x)|w_n|^q dx
\]

\[
\leq \frac{t^2}{2} ||w_n||^2 - \frac{tp}{p} \int_{B^N(0;1)} a(x+ne)|w_0|^p dx + \frac{tq}{q} \lambda \|b^-\|_{L^\infty} \int_{\mathbb{R}^N} |w_0|^q dx
\]

\[
\leq \frac{t^2}{2} ||w_0||^2 - \frac{tp}{2p} \int_{B^N(0;1)} |w_0|^p dx + \frac{tq}{q} \lambda \|b^-\|_{L^\infty} \int_{\mathbb{R}^N} |w_0|^q dx
\]

\[
\longrightarrow -\infty \quad \text{as} \quad t \longrightarrow \infty.
\]

Thus, there exists \(t_2 > 0 \) such that for any \(t > t_2 \) and \(n > n_1 \) we get

\[
J_1(tw_n) < 0. \tag{4.11}
\]

(iii) By (i) and (ii), we need to show that there exists \(n_0 \) such that for \(n \geq n_0 \)

\[
\sup_{t_1 \leq t \leq t_2} J_1(tw_n) < S^\infty. \tag{4.12}
\]

We know that \(\sup_{t \geq 0} J^\infty(tw_0) = S^\infty \). Then, \(t_1 \leq t \leq t_2 \), we have

\[
J_1(tw_n) = \frac{1}{2} ||tw_n||^2 - \frac{1}{p} \int_{\mathbb{R}^N} a(x)(tw_n)^p dx - \frac{1}{q} \int_{\mathbb{R}^N} \lambda b(x)(tw_n)^q dx
\]

\[
\leq \frac{t^2}{2} ||w_0||^2 - \frac{tp}{p} \int_{\mathbb{R}^N} w^p_n dx + \frac{tq}{q} \int_{\mathbb{R}^N} (1 - a(x))w^p_n dx - \frac{tq}{q} \int_{\mathbb{R}^N} \lambda b(x)w^q_n dx
\]

\[
\leq S^\infty + \frac{tp}{p} \int_{\mathbb{R}^N} (1 - a)^+(x)w^p_n dx + \frac{tq}{q} \int_{\mathbb{R}^N} \lambda b^+(x)w^q_n dx
\]

Suppose \(a \) satisfies (a1), we get \((1 - a)^+(x) \leq C_0 e^{-\delta_0 |x|} \) for all \(x \in \mathbb{R}^N \) and some positive constant \(\delta_0 \). By (4.3) and Lemma 4.3, there exists \(n_2 > n_1 \) such that for any \(n \geq n_2 \)

\[
\int_{\mathbb{R}^N} (1 - a)^+(x)w^p_n dx \leq C_3 e^{-\min(\delta_0,n)} \tag{4.14}
\]

By (b1) and (4.3), we get

\[
\int_{\mathbb{R}^N} \lambda b^+(x)w^q_n dx \leq \lambda \|b^-\|_{L^\infty} C_2 \int_K e^{-q|x-ne|} dx
\]

\[
\leq \lambda C_3 e^{-qn}. \tag{4.15}
\]
By (b2), (4.3) and Lemma 4.3, we have
\[
\int_{\mathbb{R}^N} \lambda b^*(x) w_n^d dx \geq \lambda \mathcal{C}_1 \mathcal{C}_\epsilon \int_{|x| \geq R_0} e^{-\delta_1|x|} e^{-q(1+\epsilon)|x-n_0|} dx
\geq \lambda \mathcal{C}_1 e^{-\delta_1 n_0}. \tag{4.16}
\]

Since \(0 < \delta_1 < \min\{\delta_0, q\} \leq \min\{\delta_0, p\}\) and \(\lambda \in (0, \Lambda_0)\) and using (4.13)–(4.16), we have there exists \(n_0 > n_2\) such that for all \(n \geq n_0\), then
\[
\sup_{t \leq t_0} J_1(tw_n) < S^\infty, \quad \lambda \int_{\mathbb{R}^N} b(x)|w_n|^d dx > 0. \tag{4.17}
\]
This implies that if \(\lambda \in (0, \Lambda_0)\), then for all \(n \geq n_0\) we get
\[
\sup_{t \geq 0} J_1(tw_n) < S^\infty. \tag{4.18}
\]
From \(a(x) > 0\) for all \(x \in \mathbb{R}^N\) and (4.17), we have
\[
\int_{\mathbb{R}^N} a(x)|w_n|^p dx > 0, \quad \int_{\mathbb{R}^N} b(x)|w_n|^q dx > 0. \tag{4.19}
\]
Combining this with Lemma 2.4(ii), from the definition of \(\alpha_\lambda^*\) and \(\sup_{t \geq 0} J_1(tw_n) < S^\infty\), for all \(\lambda \in (0, \Lambda_0)\), we obtain that there exists \(t_0 > 0\) such that \(t_0 w_n \in \mathcal{M}_\lambda^*\) and
\[
\alpha_\lambda^* \leq J_1(t_0 w_n) \leq \sup_{t \geq 0} J_1(tw_n) < S^\infty. \tag{4.20}
\]

Lemma 4.4. Assume that (a1) and (b1) hold. If \(\{u_n\} \subset H\) is a \((PS)_c\)-sequence for \(J_1\) with \(c \in (0, S^\infty)\), then there exists a subsequence of \(\{u_n\}\) converging weakly to a nonzero solution of \((E_{a,\lambda b})\) in \(\mathbb{R}^N\).

Proof. Let \(\{u_n\} \subset H\) be a \((PS)_c\)-sequence for \(J_1\) with \(c \in (0, S^\infty)\). We know from Lemma 4.1 that \(\{u_n\}\) is bounded in \(H\), and then there exist a subsequence of \(\{u_n\}\) (still denoted by \(\{u_n\}\)) and \(u_0 \in H\) such that
\[
u_n \rightharpoonup u_0 \quad \text{weakly in } H,
\]
\[
u_n \rightarrow u_0 \quad \text{almost everywhere in } \mathbb{R}^N,
\]
\[
u_n \rightarrow u_0 \quad \text{strongly in } L^s_{\text{loc}}(\mathbb{R}^N), \forall 1 \leq s < 2^*.
\]
It is easy to see that \(J_1'(u_0) = 0\) and by (b1), Egorov theorem and Hölder inequality, we have
\[
\lambda \int_{\mathbb{R}^N} b(x)|u_n|^q dx = \lambda \int_{\mathbb{R}^N} b(x)|u_0|^q dx + o_n(1). \tag{4.22}
\]
Next we verify that \(u_0 \neq 0 \). Arguing by contradiction, we assume \(u_0 \equiv 0 \). By (a1), for any \(\varepsilon > 0 \), there exists \(R_0 > 0 \) such that \(|a(x) - 1| < \varepsilon \) for all \(x \in \mathbb{R}^N \). Since \(u_n \to 0 \) strongly in \(L^s_{\text{loc}}(\mathbb{R}^N) \) for \(1 \leq s < 2^* \), \(\{u_n\} \) is a bounded sequence in \(H \), therefore \(\int_{\mathbb{R}^N} (a(x) - 1)|u_n|^p \leq C \int_{B(0; R_0)} |u_n|^p + \varepsilon C \). Setting \(n \to \infty \), then \(\varepsilon \to 0 \), we have

\[
\lim_{n \to \infty} \int_{\mathbb{R}^N} a(x)|u_n|^p \, dx = \lim_{n \to \infty} \int_{\mathbb{R}^N} |u_n|^p \, dx. \tag{4.23}
\]

We set

\[
l = \lim_{n \to \infty} \int_{\mathbb{R}^N} a(x)|u_n|^p \, dx = \lim_{n \to \infty} \int_{\mathbb{R}^N} |u_n|^p \, dx. \tag{4.24}
\]

Since \(f_{\lambda}'(u_n) = o_n(1) \) and \(\{u_n\} \) is bounded, then by (4.22), we can deduce that

\[
0 = \lim_{n \to \infty} \langle f_{\lambda}'(u_n), u_n \rangle = \lim_{n \to \infty} \left(\|u_n\|^2 - \int_{\mathbb{R}^N} a(x)|u_n|^p \, dx \right) = \lim_{n \to \infty} \|u_n\|^2 - l, \tag{4.25}
\]

that is,

\[
\lim_{n \to \infty} \|u_n\|^2 = l. \tag{4.26}
\]

If \(l = 0 \), then we get \(c = \lim_{n \to \infty} f_{\lambda}(u_n) = 0 \), which contradicts to \(c > 0 \). Thus we conclude that \(l > 0 \). Furthermore, by the definition of \(S_p \) we obtain

\[
\|u_n\|^2 \geq S_p \left(\int_{\mathbb{R}^N} |u_n|^p \, dx \right)^{2/p}. \tag{4.27}
\]

Then, as \(n \to \infty \), we have

\[
l = \lim_{n \to \infty} \|u_n\|^2 \geq S_p l^{2/p}, \tag{4.28}
\]

which implies that

\[
l \geq S_p^{p/(p-2)}. \tag{4.29}
\]
Hence, from (4.2) and (4.22)–(4.29), we get

\[
c = \lim_{n \to \infty} J_1(u_n)
= \frac{1}{2} \lim_{n \to \infty} \|u_n\|^2 - \frac{1}{p} \lim_{n \to \infty} \int_{\mathbb{R}^N} a(x)|u_n|^p \, dx - \frac{1}{q} \lim_{n \to \infty} \int_{\mathbb{R}^N} b(x)|u_n|^q \, dx
= \left(\frac{1}{2} - \frac{1}{p} \right) l
\geq \frac{p-2}{2p} S_p/(p-2) = S^\infty.
\]

(4.30)

This is a contradiction to \(c < S^\infty \). Therefore, \(u_0 \) is a nonzero solution of \((E_{a,lb})\). \(\square\)

Now, we establish the existence of a local minimum of \(J_1 \) on \(\mathcal{N}_1 \).

Theorem 4.5. Assume that (a1) and (b1)-(b2) hold. If \(\lambda \in (0, (q/2)\Lambda_0) \), then there exists \(U_1 \in \mathcal{N}_1 \) such that

(i) \(J_1(U_1) = \alpha_1^\infty \),

(ii) \(U_1 \) is a positive solution of \((E_{a,lb})\).

Proof. If \(\lambda \in (0, (q/2)\Lambda_0) \), then by Theorem 2.5(ii), Proposition 3.2(ii) and Lemma 4.3(ii), there exists a \((PS)_{\alpha_1}\)-sequence \(\{u_n\} \subset \mathcal{N}_1^\infty \) in \(H \) for \(J_1 \) with \(\alpha_1^\infty \in (0, S^\infty) \). From Lemma 4.4, there exist a subsequence still denoted by \(\{u_n\} \) and a nonzero solution \(U_1 \in H \) of \((E_{a,lb})\) such that \(u_n \rightharpoonup U_1 \) weakly in \(H \).

First, we prove that \(U_1 \in \mathcal{N}_1^\infty \). On the contrary, if \(U_1 \notin \mathcal{N}_1^\infty \), then by \(\mathcal{N}_1^\infty \) is closed in \(H \), we have \(\|U_1\|^2 < \inf_{n \to \infty} \|u_n\|^2 \). From (2.9) and \(a(x) > 0 \) for all \(x \in \mathbb{R}^N \), we get

\[
\int_{\mathbb{R}^N} b(x)|U_1|^q \, dx > 0, \quad \int_{\mathbb{R}^N} a(x)|U_1|^p \, dx > 0.
\]

(4.31)

By Lemma 2.4(ii), there exists a unique \(t_1^\infty \) such that \(t_1^\infty U_1 \in \mathcal{N}_1^\infty \). If \(u \in \mathcal{N}_1 \), then it is easy to see that

\[
J_1(u) = \frac{p-2}{2p} \|u\|^2 - \frac{p-q}{pq} \int_{\mathbb{R}^N} b(x)|u|^q \, dx.
\]

(4.32)

From (3.1), \(u_n \in \mathcal{N}_1^\infty \) and (4.32), we can deduce that

\[
\alpha_1^\infty = J_1(t_1^\infty U_1) < \lim_{n \to \infty} J_1(t_1^\infty u_n) \leq \lim_{n \to \infty} J_1(u_n) = \alpha_1
\]

(4.33)

which is a contradiction. Thus, \(U_1 \in \mathcal{N}_1^\infty \).

Next, by the same argument as that in Theorem 3.3, we get that \(u_n \rightharpoonup U_1 \) strongly in \(H \) and \(J_1(U_1) = \alpha_1 > 0 \) for all \(\lambda \in (0, (q/2)\Lambda_0) \). Since \(J_1(U_1) = J_1(|U_1|) \) and \(|U_1| \in \mathcal{N}_1^\infty \) by Lemma 2.2 we may assume that \(U_1 \) is a nonzero nonnegative solution of \((E_{a,lb})\). Finally, by the Harnack inequality [22] we deduce that \(U_1 > 0 \) in \(\mathbb{R}^N \). \(\square\)
Now, we complete the proof of Theorem 1.1. By Theorems 3.3, 4.5, we obtain \((E_{a,bb})\) has two positive solutions \(u_1\) and \(U_1\) such that \(u_1 \in \mathcal{M}_f, U_1 \in \mathcal{M}_r\). Since \(\mathcal{M}_f \cap \mathcal{M}_r = \emptyset\), this implies that \(u_1\) and \(U_1\) are distinct. It completes the proof of Theorem 1.1.

References

Submit your manuscripts at http://www.hindawi.com