1. Introduction

A double sequence \(x = [x_{jk}]_{j,k=0}^{\infty} \) is said to be convergent in the Pringsheim sense or \(P \)-convergent if for every \(\varepsilon > 0 \) there exists an \(N \in \mathbb{N} \) such that \(|x_{jk} - \ell| < \varepsilon \) whenever \(j, k > N \), [1]. In this case, we write \(P \lim x = \ell \). By \(c_2 \), we mean the space of all \(P \)-convergent sequences.

A double sequence \(x \) is bounded if

\[
\|x\| = \sup_{j,k \geq 0} |x_{jk}| < \infty. \tag{1.1}
\]

By \(\ell_2^2 \), we denote the space of all bounded double sequences.

Note that, in contrast to the case for single sequences, a convergent double sequence need not be bounded. So, we denote by \(c_2^2 \) the space of double sequences which are bounded and convergent.

A double sequence \(x = [x_{jk}] \) is said to converge regularly if it converges in Pringsheim’s sense and, in addition, the following finite limits exist:

\[
\lim_{k \to \infty} x_{jk} = \ell_j, \quad (j = 1, 2, 3, \ldots),
\]

\[
\lim_{j \to \infty} x_{jk} = t_k, \quad (k = 1, 2, 3, \ldots). \tag{1.2}
\]
Let $A = [a_{jk}^{mn}]_{j,k=0}^{\infty}$ be a four-dimensional infinite matrix of real numbers for all $m, n = 0, 1, \ldots$. The sums

$$y_{mn} = \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} a_{jk}^{mn} x_{jk}$$

are called the A-transforms of the double sequence $x = [x_{jk}]$. We say that a sequence $x = [x_{jk}]$ is A-summable to the limit ℓ if the A-transform of $x = [x_{jk}]$ exists for all $m, n = 0, 1, \ldots$ and is convergent to ℓ in the Pringsheim sense, that is,

$$\lim_{m,n \to \infty} y_{mn} = \ell.$$

We say that a matrix A is bounded-regular if every bounded-convergent sequence x is A-summable to the same limit and the A-transforms are also bounded. The necessary and sufficient conditions for A to be bounded-regular or RH-regular (cf., Robison [2]) are

$$\lim_{m,n \to \infty} a_{jk}^{mn} = 0, \quad (j, k = 0, 1, \ldots),$$

$$\lim_{m,n \to \infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} a_{jk}^{mn} = 1,$$

$$\lim_{m,n \to \infty} \sum_{j=0}^{\infty} |a_{jk}^{mn}| = 0, \quad (k = 0, 1, \ldots),$$

$$\lim_{m,n \to \infty} \sum_{k=0}^{\infty} |a_{jk}^{mn}| = 0, \quad (j = 0, 1, \ldots),$$

$$\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} |a_{jk}^{mn}| \leq C < \infty \quad (m, n = 0, 1, \ldots).$$

A double sequence $x = [x_{jk}]$ is said to be almost convergent (see [3]) to a number L if

$$\lim_{p,q \to \infty} \sup_{s,t \geq 0} \frac{1}{pq} \sum_{j=0}^{p} \sum_{k=0}^{q} x_{s+j+t+k} = L.$$

Let σ be a one-to-one mapping from \mathbb{N} into itself. The almost convergence of double sequences has been generalized to the σ-convergence in [4] as follows:

$$\lim_{p,q \to \infty} \sup_{s,t \geq 0} \frac{1}{pq} \sum_{j=0}^{p} \sum_{k=0}^{q} x_{\sigma^j(s),\sigma^k(t)} = \ell.$$

(1.7)
where $\sigma^i(s) = \sigma(\sigma^{i-1}(s))$. In this case, we write $\sigma - \lim x = \ell$. By V_2^σ, we denote the set of all σ-convergent and bounded double sequences. One can see that in contrast to the case for single sequences, a convergent double sequence need not be σ-convergent. But every bounded convergent double sequence is σ-convergent. So, $c_2^\infty \subset V_2^\sigma \subset c_2^\infty$. In the case $\sigma(i) = i + 1$, σ-convergence of double sequences reduces to the almost convergence. A matrix $A = [a_{m,n}]$ is said to be σ-regular if $Ax \in V_2^\sigma$ for $x = [x_{j,k}] \in c_2^\infty$ with $\sigma - \lim Ax = \lim x$, and we denote this by $A \in (c_2^\infty, V_2^\sigma)_{reg}$ (see [5, 6]). Mursaleen and Mohiuddine defined and characterized σ-conservative and σ-coercive matrices for double sequences [6].

A double sequence $x = [x_{j,k}]$ of real numbers is said to be Cesàro convergent (or C_1-convergent) to a number L if and only if

$$C_1 = \left\{ x \in c_2^\infty : \lim_{p,q \to \infty} T_{pq}(x) = L ; L = C_1 - \lim x \right\},$$

$$T_{pq}(x) = \frac{1}{(p+1)(q+1)} \sum_{j=1}^{p} \sum_{k=1}^{q} x_{j,k}^m,$$

We shall denote by C_1 the space of Cesàro convergent (C_1-convergent) double sequences.

A matrix $A = (a_{j,k})$ is said to be C_1-multiplicative if $Ax \in C_1$ for $x = [x_{j,k}] \in c_2^\infty$ with $C_1 - \lim Ax = \alpha \lim x$, and in this case we write $A \in (c_2^\infty, C_1)_\alpha$. Note that if $\alpha = 1$, then C_1-multiplicative matrices are said to be C_1-regular matrices.

Recall that the Knopp core (or K-core) of a real number single sequence $x = (x_k)$ is defined by the closed interval $[\ell(x), L(x)]$, where $\ell(x) = \lim \inf x$ and $L(x) = \lim \sup x$. The well-known Knopp core theorem states (cf., Maddox [7] and Knopp [8]) that in order that $L(Ax) \leq L(x)$ for every bounded real sequence x, it is necessary and sufficient that $A = (a_{j,k})$ should be regular and $\lim_{n \to \infty} \sum_{k=0}^{\infty} |a_{n,k}| = 1$. Patterson [9] extended this idea for double sequences by defining the Pringsheim core (or P-core) of a real bounded double sequence $x = [x_{j,k}]$ as the closed interval $[P - \lim \inf x, P - \lim \sup x]$. Some inequalities related to the these concepts have been studied in [5, 9, 10]. Let

$$L^*(x) = \lim sup_{p,q \to \infty} \sup_{s,t \geq 0} \frac{1}{pq} \sum_{j=0}^{p} \sum_{k=0}^{q} x_{j,k} s + t,$$

$$C_\sigma(x) = \lim sup_{p,q \to \infty} \sup_{s,t \geq 0} \frac{1}{pq} \sum_{j=0}^{p} \sum_{k=0}^{q} x_{j,k} s^\sigma(s), t^\sigma(t).$$

Then, MR- (Moricz-Rhoades) and σ-core of a double sequence have been introduced by the closed intervals $[-L^*(x), L^*(x)]$ and $[-C_\sigma(x), C_\sigma(x)]$, and also the inequalities

$$L(Ax) \leq L^*(x), L^*(Ax) \leq L(x), L^*(Ax) \leq L^*(x), L(Ax) \leq C_\sigma(x), C_\sigma(Ax) \leq L(x)$$

have been studies in [3-5, 11].
Abstract and Applied Analysis

In this paper, we introduce the concept of C_1-multiplicative matrices and determine the necessary and sufficient conditions for a matrix $A = (a_{jk}^{mn})$ to belong to the class (c_2^∞, C_1). Further we investigate the necessary and sufficient conditions for the inequality

$$C_1^*(Ax) \leq \alpha L(x)$$

(1.11)

for all $x \in \ell_2^\infty$.

2. Main Results

Let us write

$$C_1^*(x) = \limsup_{p,q \to \infty} \frac{1}{(p+1)(q+1)} \sum_{j=0}^{p} \sum_{k=0}^{q} x_{jk}.$$

(2.1)

Then, we will define the P_C-core of a realvalued bounded double sequence $x = [x_{jk}]$ by the closed interval $[-C_1^*(-x), C_1^*(x)]$. Since every bounded convergent double sequence is Cesàro convergent, we have $C_1^*(x) \leq P - \limsup x$, and hence it follows that P_C-core$(x) \subseteq P$-core(x) for a bounded double sequence $x = [x_{jk}]$.

Lemma 2.1. A matrix $A = (a_{jk}^{mn})$ is C_1-multiplicative if and only if

$$\lim_{p,q \to \infty} \beta(j,k,p,q) = 0 \quad (j,k = 0, 1, \ldots),$$

(2.2)

$$\lim_{p,q \to \infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \beta(j,k,p,q) = \alpha,$$

(2.3)

$$\lim_{p,q \to \infty} \sum_{j=0}^{\infty} |\beta(j,k,p,q)| = 0 \quad (k = 0, 1, \ldots),$$

(2.4)

$$\lim_{p,q \to \infty} \sum_{k=0}^{\infty} |\beta(j,k,p,q)| = 0 \quad (j = 0, 1, \ldots),$$

(2.5)

$$\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} |a_{jk}^{mn}| \leq C < \infty, \quad (m,n = 0, 1, \ldots),$$

(2.6)

where the \lim means $P - \lim$ and

$$\beta(j,k,p,q) = \frac{1}{(p+1)(q+1)} \sum_{j=0}^{p} \sum_{k=0}^{q} a_{jk}^{mn}.$$

(2.7)

Proof. Sufficiency. Suppose that the conditions (2.2)-(2.6) hold and $x = [x_{jk}] \in c_2^\infty$ with $P - \lim_{j,k} x_{jk} = L$, say. So that for every $\varepsilon > 0$ there exists $N > 0$ such that $|x_{jk}| < |\ell| + \varepsilon$ whenever $j, k > N$.

Then, we can write
\[
\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \beta(j, k, p, q) x_{jk} = \sum_{j=0}^{N} \sum_{k=0}^{N} \beta(j, k, p, q) x_{jk} + \sum_{j=N+1}^{\infty} \sum_{k=0}^{\infty} \beta(j, k, p, q) x_{jk} \\
+ \sum_{j=0}^{N-1} \sum_{k=N}^{\infty} \beta(j, k, p, q) x_{jk} + \sum_{j=N+1}^{\infty} \sum_{k=N+1}^{\infty} \beta(j, k, p, q) x_{jk}
\] (2.8)

Therefore,
\[
\left| \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \beta(j, k, p, q) x_{jk} \right| \leq \|x\| \left(\sum_{j=0}^{N} \sum_{k=0}^{N} |\beta(j, k, p, q)| + \sum_{j=N+1}^{\infty} \sum_{k=0}^{\infty} |\beta(j, k, p, q)| \right) \\
+ \|x\| \sum_{j=0}^{N-1} \sum_{k=N}^{\infty} |\beta(j, k, p, q)| \\
+ (|L| + \epsilon) \sum_{j=N+1}^{\infty} \sum_{k=N+1}^{\infty} \beta(j, k, p, q)
\] (2.9)

Letting \(p, q \to \infty\) and using the conditions (2.2)–(2.6), we get
\[
\lim_{p, q \to \infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \beta(j, k, p, q) x_{jk} \leq (|L| + \epsilon) \alpha.
\] (2.10)

Since \(\epsilon\) is arbitrary, \(C_1 - \lim Ax = \alpha L\). Hence \(A \in (c_2^\infty, C_1)_\alpha\), that is, \(A\) is \(C_1\)-multiplicative.

Necessity 1. Suppose that \(A\) is \(C_1\)-multiplicative. Then, by the definition, the \(A\)-transform of \(x\) exists and \(Ax \in C_1\) for each \(x \in c_2^\infty\). Therefore, \(Ax\) is also bounded. Then, we can write
\[
\sup_{m,n} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} |a_{jk}^{mn} x_{jk}| < M < \infty,
\] (2.11)

for each \(x \in c_2^\infty\). Now, let us define a sequence \(y = [y_{jk}]\) by
\[
y_{jk} = \begin{cases}
\text{sgn} a_{jk}^{mn}, & 0 \leq j \leq r, \ 0 \leq k \leq r, \\
0, & \text{otherwise},
\end{cases}
\] (2.12)

\(m, n = 0, 1, 2, \ldots\). Then, the necessity of (10) follows by considering the sequence \(y = [y_{jk}]\) in (2.11).
Also, by the assumption, we have
\[
\lim_{p,q \to \infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \beta(j, k, p, q)x_{jk} = a \lim_{j,k \to \infty} x_{jk}. \quad (2.13)
\]

Now let us define the sequence \(e^{il}\) as follows:
\[
e^{il} = \begin{cases}
1, & (j, k) = (i, l), \\
0, & \text{otherwise},
\end{cases}
\quad (2.14)
\]

and write \(s^i = \sum_l e^{il} (i \in \mathbb{N})\), \(r^i = \sum_l e^{il} (i \in \mathbb{N})\). Then, the necessity of (2.2), (2.4), and (2.5) follows from \(C_1 - \lim A e^{il}, C_1 - \lim A r^i\) and \(C_1 - \lim A s^k\), respectively.

Note that when \(a = 1\), the above theorem gives the characterization of \(A \in (c_2^\infty, C_1)_{\text{reg}}\).

Now, we are ready to construct our main theorem.

Theorem 2.2. For every bounded double sequence \(x\),
\[
C_1^*(Ax) \leq aL(x), \quad (2.15)
\]

or \(\langle P_{c} - \text{core} \{Ax\}\rangle \subseteq a(\langle P - \text{core} \{x\}\rangle)\) if and only if \(A\) is \(C_1\)-multiplicative and
\[
\limsup_{p,q \to \infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} |\beta(j, k, p, q)| = a. \quad (2.16)
\]

Proof. Necessity. Let (2.15) hold and for all \(x \in \ell^2_\infty\). So, since \(c_2^\infty \subset \ell^2_\infty\), then, we get
\[
a(-L(-x)) \leq -C_1^*(-Ax) \leq C_1^*(Ax) \leq aL(x). \quad (2.17)
\]

That is,
\[
a \liminf x \leq -C_1^*(-Ax) \leq C_1^*(Ax) \leq a \limsup x, \quad (2.18)
\]

where
\[
-C_1^*(-Ax) = \liminf_{p,q \to \infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \beta(j, k, p, q)x_{jk}. \quad (2.19)
\]

By choosing \(x = [x_{jk}] \in c_2^\infty\), we get from (2.17) that
\[
-C_1^*(-Ax) = C_1^*(Ax) = C_1 - \lim Ax = a \lim x. \quad (2.20)
\]

This means that \(A\) is \(C_1\)-multiplicative.
By Lemma 3.1 of Patterson [9], there exists a \(y \in \ell^2_{\infty} \) with \(\|y\| \leq 1 \) such that

\[
C_1^*(Ay) = \limsup_{p,q \to \infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \beta(j,k,p,q).
\] (2.21)

If we choose \(y = \nu = [v_{jk}] \), it follows

\[
v_{jk} = \begin{cases}
1 & \text{if } j = k, \\
0, & \text{elsewhere.}
\end{cases}
\] (2.22)

Since \(\|v_{jk}\| \leq 1 \), we have from (2.15) that

\[
\alpha = C_1^*(Av) = \limsup_{p,q \to \infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} |\beta(j,k,p,q)| \leq \alpha L(v_{jk}) \leq \alpha \|v\| \leq \alpha.
\] (2.23)

This gives the necessity of (2.16).

\[\square\]

Sufficiency 1. Suppose that \(A \) is \(C_1 \)-regular and (2.16) holds. Let \(x = [x_{jk}] \) be an arbitrary bounded sequence. Then, there exist \(M, N > 0 \) such that \(x_{jk} \leq K \) for all \(j, k \geq 0 \). Now, we can write the following inequality:

\[
\left| \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \beta(j,k,p,q) x_{jk} \right| = \left| \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \left(\frac{|\beta(j,k,p,q)| + \beta(j,k,p,q)}{2} - \frac{|\beta(j,k,p,q)| - \beta(j,k,p,q)}{2} \right) x_{jk} \right|
\]

\[
\leq \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} |\beta(j,k,p,q)| |x_{jk}|
\]

\[
+ \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} |(\beta(j,k,p,q) - \beta(j,k,p,q)) x_{jk}|
\]

\[
\leq \|x\| \sum_{j=0}^{M} \sum_{k=0}^{N} |\beta(j,k,p,q)|
\]

\[
+ \|x\| \sum_{j=M+1}^{\infty} \sum_{k=0}^{N} |\beta(j,k,p,q)|
\]

\[
+ \|x\| \sum_{j=0}^{M} \sum_{k=N+1}^{\infty} |\beta(j,k,p,q)|
\]

\[
+ \|x\| \sum_{j=M+1}^{\infty} \sum_{k=N+1}^{\infty} |\beta(j,k,p,q)|
\]
Using the condition of C_1-multiplicative and condition (2.16), we get

$$C_1^*(Ax) \leq aL(x). \quad (2.25)$$

This completes the proof of the theorem.

Theorem 2.3. For $x, y \in \ell_2^\infty$, if $C_1 - \lim |x - y| = 0$, then $C_1 - \text{core} |x| = C_1 - \text{core} |y|.$

Proof. Since $C_2 - \lim |x - y| = 0$, we have $C_1 - \lim (x - y) = 0$ and $C_1 - \lim (- (x - y)) = 0$. Using definition of $C_1 - \text{core}$, we take $C_1^*(x - y) = C_1^*(- (x - y)) = 0$. Since C_1^* is sublinear,

$$0 = -C_1^*(- (x - y)) \leq -C_1^*(- x) - C_1^*(y). \quad (2.26)$$

Therefore, $C_1^*(y) \leq -C_1^*(- x)$. Since $-C_1^*(- x) \leq C_1^*(x)$, this implies that $C_1^*(y) \leq C_1^*(x)$. By an argument similar as above, we can show that $C_1^*(x) \leq C_1^*(y)$. This completes the proof. \(\square\)

Acknowledgment

The authors would like to state their deep thanks to the referees for their valuable suggestions improving the paper.

References

Submit your manuscripts at http://www.hindawi.com