Research Article

Existence of Periodic Solutions for a Class of Difference Systems with p-Laplacian

Kai Chen1 and Qiongfen Zhang2

1 Department of Information Engineering, Guilin University of Aerospace Technology, Guangxi, Guilin 541004, China
2 College of Science, Guilin University of Technology, Guangxi, Guilin 541004, China

Correspondence should be addressed to Qiongfen Zhang, qfzhangcsu@163.com

Received 15 February 2012; Revised 7 April 2012; Accepted 17 April 2012

Academic Editor: Yuriy Rogovchenko

Copyright © 2012 K. Chen and Q. Zhang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

By applying the least action principle and minimax methods in critical point theory, we prove the existence of periodic solutions for a class of difference systems with p-Laplacian and obtain some existence theorems.

1. Introduction

Consider the following p-Laplacian difference system:

\[
\Delta \left(|\Delta u(t-1)|^{p-2} \Delta u(t-1) \right) = \nabla F(t,u(t)), \quad t \in \mathbb{Z},
\]

(1.1)

where Δ is the forward difference operator defined by $\Delta u(t) = u(t+1) - u(t)$, $\Delta^2 u(t) = \Delta(\Delta u(t))$, $p \in (1, +\infty)$ such that $1/p + 1/q = 1$, $t \in \mathbb{Z}$, $u \in \mathbb{R}^N$, $F : \mathbb{Z} \times \mathbb{R}^N \to \mathbb{R}$, and $F(t,x)$ is continuously differentiable in x for every $t \in \mathbb{Z}$ and T-periodic in t for all $x \in \mathbb{R}^N$.

When $p = 2$, (1.1) reduces to the following second-order discrete Hamiltonian system:

\[
\Delta^2 u(t-1) = \nabla F(t,u(t)), \quad t \in \mathbb{Z}.
\]

(1.2)

Difference equations provide a natural description of many discrete models in real world. Since discrete models exist in various fields of science and technology such as statistics, computer science, electrical circuit analysis, biology, neural network, and optimal
control, it is of practical importance to investigate the solutions of difference equations. For more details about difference equations, we refer the readers to the books [1–3].

In some recent papers [4–18], the authors studied the existence of periodic solutions and subharmonic solutions of difference equations by applying critical point theory. These papers show that the critical point theory is an effective method to the study of periodic solutions for difference equations. Motivated by the above papers, we consider the existence of periodic solutions for problem (1.1) by using the least action principle and minimax methods in critical point theory.

2. Preliminaries

Now, we first present our main results.

Theorem 2.1. Suppose that F satisfies the following conditions:

(F1) there exists an integer $T > 1$ such that $F(t + T, x) = F(t, x)$ for all $(t, x) \in \mathbb{Z} \times \mathbb{R}^N$;

(F2) there exist $f, g \in l^1([1, T], \mathbb{R}^+)$ and $\alpha \in [0, p - 1)$ such that

$$|\nabla F(t, x)| \leq f(t)|x|^\alpha + g(t), \quad \forall (t, x) \in \mathbb{Z}[1, T] \times \mathbb{R}^N,$$

where $\mathbb{Z}[a, b] := \mathbb{Z} \cap [a, b]$ for every $a, b \in \mathbb{Z}$ with $a \leq b$,

(F3)

$$\liminf_{|x| \to +\infty} |x|^{-\alpha} \sum_{t=1}^{T} F(t, x) > \frac{2^{\alpha q} (T - 1)^{\frac{q(p - 1)}{q}}} {q^p} \sum_{t=1}^{T} f^q(t), \quad \forall t \in \mathbb{Z}[1, T].$$

Then problem (1.1) has at least one periodic solution with period T.

Theorem 2.2. Suppose that F satisfies (F1) and the following conditions:

$$\sum_{t=1}^{T} f(t) < \frac{T^p} {2^{p-1}(T - 1)^{p(1+q)/q}}.$$ \hspace{1cm} (2.3)

(F2') there exist $f, g \in l^1([1, T], \mathbb{R}^+)$ such that

$$|\nabla F(t, x)| \leq f(t)|x|^{p-1} + g(t), \quad \forall (t, x) \in \mathbb{Z}[1, T] \times \mathbb{R}^N,$$

where $\mathbb{Z}[a, b] := \mathbb{Z} \cap [a, b]$ for every $a, b \in \mathbb{Z}$ with $a \leq b$;

(F4)

$$\liminf_{|x| \to +\infty} |x|^{-p} \sum_{t=1}^{T} F(t, x) > \frac{2^{\frac{q(p-1)}{p}} (T - 1)^{\frac{q(p-1)}{p}}} {\left[T^p - 2^{p-1}(T - 1)^{p(1+q)/q} \sum_{t=1}^{T} f(t)\right]^{\frac{q}{p}}} \sum_{t=1}^{T} f^q(t), \quad \forall t \in \mathbb{Z}[1, T].$$

Then problem (1.1) has at least one periodic solution with period T.

Theorem 2.3. Suppose that F satisfies (F1), (F2), and the following condition:

\begin{align}
\limsup_{|x| \to +\infty} |x|^{-\a} \sum_{t=1}^{T} F(t, x) \\
< \left[\frac{2^{q_1} (T-1)^{(2q-1)/p}}{p^T} + \frac{2^{q_1} (T-1)^{(q-1)2(2p-1)/p}}{q^T(2p-1)/q} + \frac{2^{q_1} (T-1)^{(2p-1)(2p-1)/p}}{p^T(2p-1)/q} \right] \sum_{i=1}^{T} f^q(t)
\end{align}

Then problem (1.1) has at least one periodic solution with period T.

Theorem 2.4. Suppose that F satisfies (F1), (2.3), (F2)', and the following condition:

\begin{align}
\limsup_{|x| \to +\infty} |x|^T \sum_{t=1}^{T} F(t, x) \\
< \left[\frac{2^{p_1} (p^T)^{d/p} (T-1)^{(2q-1)/p} \left(T^p + 2^{p_1} (T-1)^{p(1+q)/q} \sum_{i=1}^{T} f(t) \right)}{p^T \sum_{i=1}^{T} f(t)} \right]^{1/p} \left[\frac{2^{p_1} (p^T)^{1/p} (T-1)^{(2p-1)(2p-1)/p} \sum_{i=1}^{T} f(t)}{q \sum_{i=1}^{T} f(t)} \right]^{1/p}
\end{align}

Then problem (1.1) has at least one periodic solution with period T.

Remark 2.5. The lower bounds and the upper bounds of our theorems are more accurate than the existing results in the literature. Moreover, there are functions satisfying our results but not satisfying the existing results in the literature.

Let the Sobolev space E_T be defined by

\[E_T = \left\{ u : \mathbb{Z} \to \mathbb{R}^N \mid u(t + T) = u(t), \ t \in \mathbb{Z} \right\}. \]

For $u \in E_T$, let $\bar{u} = (1/T) \sum_{t=1}^{T} u(t), u = \bar{u} + \tilde{u}$, and $E_T = \{ u \in E_T \mid \bar{u} = 0 \}$, then $E_T = \mathbb{R}^N \oplus E_T$. Let

\[\|u\| = \left(|\bar{u}|^p + \sum_{t=1}^{T} |\Delta \tilde{u}(t)|^p \right)^{1/p}, \ u \in E_T. \]

As usual, let

\[\|u\|_{\infty} = \sup\{|u(t)| : t \in \mathbb{Z}[1, T]\}, \ \forall u \in L^\infty(Z[1, T], \mathbb{R}^N). \]
For any \(u \in E_T \), let
\[
\varphi(u) = \frac{1}{p} \sum_{i=1}^{T} |\Delta u(t)|^p + \sum_{i=1}^{T} F(t, u(t)) = \frac{1}{p} \sum_{i=1}^{T} |\Delta \bar{u}(t)|^p + \sum_{i=1}^{T} F(t, u(t)). \tag{2.11}
\]

To prove our results, we need the following lemma.

Lemma 2.6 (see [18]). Let \(u \in E_T \). If \(\sum_{i=1}^{T} u(t) = 0 \), then
\[
\|u\|_\infty \leq \frac{(T-1)^{1+q}/q}{T} \|\bar{u}\|, \tag{2.12}
\]
\[
\|u\|_p^p = \sum_{i=1}^{T} |u(t)|^p \leq \frac{(T-1)^{2p-1}}{T^{p-1}} \|\bar{u}\|^p. \tag{2.13}
\]

3. Proofs

For the sake of convenience, we denote
\[
M_1 = \left(\sum_{i=1}^{T} f^q(t) \right)^{1/q}, \quad M_2 = \sum_{i=1}^{T} f(t), \quad M_3 = \sum_{i=1}^{T} g(t). \tag{3.1}
\]

Proof of Theorem 2.1. From (F3), we can choose \(a_1 > (T-1)^{(2p-1)/p} / T^{(p-1)/p} \) such that
\[
\liminf_{|x| \to +\infty} |x|^{-q} \sum_{i=1}^{T} F(t, x) > \frac{a_1^{2q} \alpha}{q} M_1^q. \tag{3.2}
\]
It follows from (F2), (2.12), and (2.13) that
\[
\left| \sum_{i=1}^{T} [F(t, u(t)) - F(t, \bar{u})] \right|
\leq \left| \sum_{i=1}^{T} \int_{0}^{1} (\nabla F(t, \bar{u} + s \bar{u}(t)), \bar{u}(t))ds \right|
\leq \sum_{i=1}^{T} \int_{0}^{1} f(t)(\bar{u} + s \bar{u}(t))|\bar{u}(t)|ds + \sum_{i=1}^{T} \int_{0}^{1} g(t)|\bar{u}(t)|ds
\leq 2^a \sum_{i=1}^{T} f(t)(|\bar{u}|^a + |\bar{u}(t)|^a)|\bar{u}(t)| + \sum_{i=1}^{T} g(t)|\bar{u}(t)|
\leq 2^a |\bar{u}|^a \left(\sum_{i=1}^{T} f^q(t) \right)^{1/q} \left(\sum_{i=1}^{T} |\bar{u}(t)|^p \right)^{1/p} + 2^a \|\bar{u}\|^{1+aq} \sum_{i=1}^{T} f(t) + \|\bar{u}\|_\infty \sum_{i=1}^{T} g(t)
\leq 2^a |\bar{u}|^a M_1 \|\bar{u}\|_p + 2^a M_2 \|\bar{u}\|^{1+aq} + M_3 \|\bar{u}\|_\infty
Abstract and Applied Analysis

It follows from

Hence, we have

\[
\varphi(u) = \frac{1}{p} \sum_{t=1}^{T} |\Delta u(t)|^p + \sum_{t=1}^{T} F(t, u(t)) \\
= \frac{1}{p} \sum_{t=1}^{T} |\Delta u(t)|^p + \sum_{t=1}^{T} [F(t, u(t)) - F(t, \bar{u})] + \sum_{t=1}^{T} F(t, \bar{u}) \\
\geq \frac{1}{p} \sum_{t=1}^{T} |\Delta u(t)|^p - \frac{2^q M_2 (T - 1)^{(1+p)(1+q)/q}}{T^{1+q}} ||\bar{u}||^{1+q} + \sum_{t=1}^{T} F(t, \bar{u}) \\
- \frac{(T - 1)^{2p-1}}{p a_1 T^{2p-1}} ||\bar{u}||^p - \frac{a_1^2 q^q}{q} ||\bar{u}||^{1+q} M_1^q - \frac{M_3 (T - 1)^{(1+p)(1+q)/q}}{T} ||\bar{u}|| \\
+ ||\bar{u}||^{1+q} \left(\sum_{t=1}^{T} F(t, \bar{u}) - \frac{a_1^2 q^q}{q} M_1^q \right) - \frac{M_3 (T - 1)^{(1+p)(1+q)/q}}{T} ||\bar{u}||.
\]

The above inequality and (3.2) imply that \(\varphi(u) \to +\infty\) as \(||u|| \to \infty\). Hence, by the least action principle, problem (1.1) has at least one periodic solution with period \(T\).

\[
(3.3)
\]

Proof of Theorem 2.2. From (2.3) and (F4), we can choose a constant \(a_3 \in \mathbb{R}\) such that

\[
a_3 > \frac{T^1/T (T - 1)^{(2p-1)/p}}{[T^{1/p} - 2^{p-1} M_2 (T - 1)^{p(1+q)/q}]^{1/p}} > 0,
\]

\[
\lim \inf_{|x| \to +\infty} |x|^{-p} \sum_{t=1}^{T} F(t, x) > \frac{a_3^2 q^p}{q} M_1^q.
\]

It follows from (F2)' and Lemma 2.6 that

\[
\left| \sum_{t=1}^{T} [F(t, u(t)) - F(t, \bar{u})] \right| = \left| \sum_{t=1}^{T} \int_{0}^{1} (\nabla F(t, \bar{u} + s\bar{u}(t)), \bar{u}(t)) \, ds \right| \\
\leq \sum_{t=1}^{T} \int_{0}^{1} f(t) ||\bar{u}|| s \bar{u}(t) ||^{p-1} ||\bar{u}(t)|| ds + \sum_{t=1}^{T} g(t) ||\bar{u}(t)||
\]

\[
(3.4)
\]
which implies that

\[\varphi(u) = \frac{1}{p} \sum_{t=1}^{T} |\Delta u(t)|^p + \frac{1}{p} \sum_{t=1}^{T} [F(t, u(t)) - F(t, \overline{u})] + \frac{1}{p} \sum_{t=1}^{T} F(t, \overline{u}) \]

\[\geq \left(\frac{1}{p} - \frac{(T-1)^{2p-1}}{p a_3^p T^{p-1}} - \frac{2^{p-1} M_2 (T-1)^{(1+q)/q}}{p T^p} \right) ||\overline{u}||^p \]

\[- \frac{M_2 (T-1)^{(1+q)/q}}{T} ||\overline{u}|| + ||\overline{u}||^p \left(||\overline{u}||^q \sum_{t=1}^{T} F(t, \overline{u}) - \frac{a_3^q M_1^q 2^p}{q} \right). \]

(3.6)

The above inequality and (3.5) imply that \(\varphi(u) \to +\infty \) as \(||u|| \to \infty \). Hence, by the least action principle, problem (1.1) has at least one periodic solution with period \(T \). \(\square \)

Proof of Theorem 2.3. First we prove that \(\varphi \) satisfies the (PS) condition. Assume that \(\{u_n\} \) is a (PS) sequence of \(\varphi \); that is, \(\varphi'(u_n) \to 0 \) as \(n \to \infty \) and \(\{\varphi(u_n)\} \) is bounded. By (F5), we can choose \(a_2 > (T-1)^{(2p-1)/p} / T^{(p-1)/p} \) such that

\[\limsup_{|x| \to +\infty} |x|^{-q \alpha} \sum_{t=1}^{T} F(t, x) < - \left(\frac{2^{q \alpha} a_2^q}{p} + \frac{2^{q \alpha} a_2^{2(q-1)}}{q} + \frac{2^{q \alpha} a_2 (T-1)^{2p-1}}{p T^{p-1}} \right) M_1^q. \]

(3.8)

In a similar way to the proof of Theorem 2.1, we have

\[\left| \sum_{t=1}^{T} (\nabla F(t, u_n(t)), \overline{u}_n(t)) \right| \leq \left(\frac{T-1}{p a_2^p T^{p-1}} \right) ||\overline{u}_n||^p + \frac{2^{q \alpha} M_2 (T-1)^{(1+q)/p}}{T^{1+\alpha}} ||\overline{u}_n||^{1+\alpha} \]

\[+ \frac{a_2^q 2^{q \alpha}}{q} ||\overline{u}_n||^{q \alpha} M_1^q + \frac{M_3 (T-1)^{(1+q)/q}}{T} ||\overline{u}_n||. \]

(3.9)
Hence, we have
\[\|\tilde{u}_n\|_p \geq \langle \varphi'(u_n), \tilde{u}_n \rangle \]
\[= \sum_{t=1}^{T} |\Delta u_n(t)|^p + \sum_{t=1}^{T} \langle \nabla F(t, u_n(t)), \tilde{u}_n(t) \rangle \]
\[\geq \left(1 - \frac{(T - 1)(\varphi^{-1})}{pa_2^q T p - 1} \right) \|\tilde{u}_n\|^p \]
\[- \frac{2^a M_2(T - 1)^{1+q}/q}{T^{1+a}} \|\tilde{u}_n\|^{1+a} - \frac{\alpha^q 2^{a+q}}{q} \|\tilde{u}_n\|^q M_1^q. \]

From (2.13), we have
\[\|\tilde{u}_n\|_p = \left(\sum_{t=1}^{T} |\tilde{u}_n(t)|^p \right)^{1/p} \leq \frac{(T - 1)(\varphi^{-1})}{p T^{1+a}/p} \|\tilde{u}_n\|. \]

From (3.10) and (3.11), we obtain
\[\frac{\alpha^q 2^{a+q} M_1^q}{q} |\tilde{u}_n|^q \geq \left(1 - \frac{(T - 1)(\varphi^{-1})}{pa_2^q T p - 1} \right) \|\tilde{u}_n\|^p \]
\[- \frac{2^a M_2(T - 1)^{1+q}/q}{T^{1+a}} \|\tilde{u}_n\|^{1+a} - \frac{M_3(T - 1)^{1+q}/q}{T} \|\tilde{u}_n\| \]
\[\geq \frac{p - 1}{p} \|\tilde{u}_n\|^p + C_1 \]
\[= \frac{1}{q} \|\tilde{u}_n\|^p + C_1, \]

where \(C_1 = \min_{s \in (0, 1]} \{(1/p - (T - 1)(\varphi^{-1})/pa_2^q T p - 1) s^p - (2^a M_2(T - 1)^{1+q}/q/T^{1+a}) s^{1+a} - (T - 1)^{1+q}/p T^{1+a} + M_3(T - 1)^{1+q}/q T\} \). Notice that \(a_2 > (T - 1)(\varphi^{-1})/T^{1+a}/p\) implies \(-\infty < C_1 < 0\). Hence, it follows from (3.12) that
\[\|\tilde{u}_n\|^p \leq 2^{a+q} \frac{\alpha a_2^q M_1^q}{q} |\tilde{u}_n|^q - q C_1, \]
\[\|\tilde{u}_n\| \leq 2^{a+q} \frac{\alpha a_2^q M_1^q}{q} |\tilde{u}_n|^q/p + C_2, \]

where \(C_2 > 0\). By the proof of Theorem 2.1, we have
\[\left| \sum_{t=1}^{T} [F(t, u_n(t)) - F(t, \tilde{u}_n)] \right| \leq 2^a M_1 \|\tilde{u}_n\|^q |\tilde{u}_n| + 2^a M_2 \|\tilde{u}_n\|^{1+a} + M_3 \|\tilde{u}_n\|_{\infty} \]
\[\leq \frac{(T - 1)(\varphi^{-1})}{pa_2^q T p - 1} \|\tilde{u}_n\|^p + \frac{2^a M_2(T - 1)^{1+q}/q}{T^{1+a}} \|\tilde{u}_n\|^{1+a} \]
\[+ \frac{\alpha a_2^{(q-1)/q} 2^{a+q} M_1^q}{q} \|\tilde{u}_n\|^{q} + \frac{M_3(T - 1)^{1+q}/q}{T} \|\tilde{u}_n\|. \]
It follows from the boundedness of \(\varphi(u_n) \), (3.13)–(3.15) that

\[
C_3 \leq \varphi(u_n)
\]

\[
= \frac{1}{p} \sum_{t=1}^{T} \left| \Delta u_n(t) \right|^p + \sum_{t=1}^{T} \left[F(t, u_n(t)) - F(t, \tilde{u}_n) \right] + \sum_{t=1}^{T} F(t, \tilde{u}_n)
\]

\[
\leq \left(\frac{1}{p} + \frac{(T - 1)^{2p-1}}{p a_2^{q-1} T^{p-1}} \right) \sum_{t=1}^{T} \left| \tilde{u}_n \right|^p + \frac{2^a M_2 (T - 1)^{(1+q)(1+a)/q}}{T^{1+a}} \sum_{t=1}^{T} F(t, \tilde{u}_n)
\]

\[
+ \frac{a_2^{(q-1)^2} 2^a \varphi}{q} |\tilde{u}_n|^{qa} M_1^q + \frac{M_3 (T - 1)^{(1+q)/q}}{T} \sum_{t=1}^{T} F(t, \tilde{u}_n)
\]

\[
\leq \left(\frac{1}{p} + \frac{(T - 1)^{2p-1}}{p a_2^{q-1} T^{p-1}} \right) \left(2^a a_2^q M_1^q |\tilde{u}_n|^{qa} - q C_1 \right) + \frac{a_2^{(q-1)^2} 2^a \varphi}{q} |\tilde{u}_n|^{qa} M_1^q + \frac{M_3 (T - 1)^{(1+q)/q}}{T} \sum_{t=1}^{T} F(t, \tilde{u}_n)
\]

\[
\leq \left(\frac{2^a a_2^q}{p} + \frac{a_2^{(q-1)^2} 2^a}{q} + \frac{a_2 a_2^q (T - 1)^{2p-1}}{p T^{p-1}} \right) \left(2^a a_2^q M_1^q |\tilde{u}_n|^{qa} + C_2 \right)
\]

\[
+ \frac{2^a M_2 (T - 1)^{(1+q)(1+a)/q}}{T^{1+a}} \left(2^a a_2^q M_1^q |\tilde{u}_n|^{qa} + C_2 \right)
\]

\[
+ \frac{M_3 (T - 1)^{(1+q)(1+a)/q}}{T} \sum_{t=1}^{T} F(t, \tilde{u}_n)
\]

\[
= |\tilde{u}_n|^{qa} \sum_{t=1}^{T} F(t, \tilde{u}_n) + \left(\frac{2^a a_2^q}{p} + \frac{a_2^{(q-1)^2} 2^a}{q} + \frac{a_2 a_2^q (T - 1)^{2p-1}}{p T^{p-1}} \right) M_1^q
\]

\[
+ \frac{2^a a_2^q M_1^q |\tilde{u}_n|^{qa}}{T} + \frac{M_3 (T - 1)^{(1+q)(1+a)/q}}{T} + C_4,
\]

where \(C_3 \) is a positive constant and \(C_4 \) is a constant. The above inequality and (3.8) imply that \(|\tilde{u}_n| \) is bounded. Hence \(\{u_n\} \) is bounded by (2.13) and (3.13). Since \(E_T \) is finite dimensional, we conclude that \(\varphi \) satisfies (PS) condition.

In order to use the saddle point theorem ([19], Theorem 4.6), we only need to verify the following conditions:

(11) \(\varphi(u) \to -\infty \) as \(|u| \to \infty \) in \(\mathbb{R}^N \),

(12) \(\varphi(u) \to +\infty \) as \(|u| \to \infty \) in \(\tilde{E}_T \),
In fact, from (F5), we have

$$
\sum_{t=1}^{T} F(t, u) \to -\infty \text{ as } |u| \to \infty \text{ in } \mathbb{R}^N, \quad (3.17)
$$

which together with (2.11) implies that

$$
\varphi(u) = \sum_{t=1}^{T} F(t, u) \to -\infty \text{ as } |u| \to \infty \text{ in } \mathbb{R}^N. \quad (3.18)
$$

Hence, (I1) holds.

Next, for all \(u \in \tilde{E}_T \), by (F2) and (2.12), we have

$$
\left| \sum_{t=1}^{T} [F(t, u(t)) - F(t, 0)] \right| = \left| \sum_{t=1}^{T} \int_0^1 (\nabla F(t, su(t)), u(t)) ds \right|
$$

$$
\leq \sum_{t=1}^{T} f(t)|u(t)|^{1+\alpha} + \sum_{t=1}^{T} g(t)|u(t)|
$$

$$
\leq M_2\|u\|_{\infty}^{1+\alpha} + M_3\|u\|_{\infty}
$$

$$
\leq \frac{M_2(T-1)^{(1+\alpha)(1+q)/q}}{T(1+\alpha)} \|\tilde{u}\|^{1+\alpha} + \frac{M_3(T-1)^{(1+q)/q}}{T}\|\tilde{u}\|,
$$

which implies that

$$
\varphi(u) = \frac{1}{p} \sum_{t=1}^{T} |\Delta u(t)|^p + \sum_{t=1}^{T} [F(t, u(t)) - F(t, 0)] + \sum_{t=1}^{T} F(t, 0)
$$

$$
\geq \frac{1}{p} \|\tilde{u}\|^p - \frac{M_2(T-1)^{(1+\alpha)(1+q)/q}}{T(1+\alpha)} \|\tilde{u}\|^{1+\alpha}
$$

$$
- \frac{M_3(T-1)^{(1+q)/q}}{T}\|\tilde{u}\| + \sum_{t=1}^{T} F(t, 0), \quad (3.20)
$$

for all \(u \in \tilde{E}_T \). By Lemma 2.6, \(\|u\| \to \infty \) in \(\tilde{E}_T \) if and only if \(\|\tilde{u}\| \to \infty \), so from (3.20), we obtain \(\varphi(u) \to +\infty \) as \(\|u\| \to \infty \) in \(\tilde{E}_T \); that is, (I2) is verified. Hence, the proof of Theorem 2.3 is complete.

Proof of Theorem 2.4. First we prove that \(\varphi \) satisfies the (PS) condition. Assume that \(\{u_n\} \) is a (PS) sequence of \(\varphi \); that is, \(\varphi'(u_n) \to 0 \) as \(n \to \infty \) and \(\{\varphi(u_n)\} \) is bounded. By (2.3) and (F6),
we can choose \(a_4 \in \mathbb{R} \) such that
\[
a_4 > \frac{p^{1/p}T^{1/p}(T-1)^{(2p-1)/p}}{pT^p - 2^{p-1}M_2(T-1)^{p(1+q)/q}} \right)^{1/p'} \tag{3.21}
\]

\[
\limsup_{|x| \to +\infty} |x|^{-p} \sum_{t=1}^T F(t,x)
\]

\[
< \left[\frac{2^p a_4^q (T^p + 2^{p-1}M_2(T-1)^{p(1+q)/q}) + 2^p T a_4(T-1)^{2p-1}}{pT^p - 2^{p-1}M_2(T-1)^{p(1+q)/q}} + \frac{2^p a_4^{(q-1)^2}}{q} \right] \frac{\bar{M}^q}{T}. \tag{3.22}
\]

In a similar way to the proof of Theorem 2.2, we obtain
\[
\left| \sum_{t=1}^T (\nabla F(t,u_n(t)), \bar{u}_n(t)) \right| \leq \left(\frac{(T-1)^{2p-1}}{p a_4^{q-1} T^{p-1}} + \frac{2^{p-1}M_2(T-1)^{p(1+q)/q}}{pT^p} \right) \| \bar{u}_n \|^p
\]

\[
+ \frac{a_4^2 M_1^q 2^p}{q} |\bar{u}_n|^p + \frac{M_3(T-1)^{(1+q)/q}}{T} \| \bar{u}_n \|. \tag{3.23}
\]

Hence, we have
\[
\| \bar{u}_n \|^p \geq \langle \varphi'(u_n), \bar{u}_n \rangle
\]

\[
= \frac{1}{p} \sum_{t=1}^T |\Delta u_n(t)|^p + \sum_{t=1}^T (\nabla F(t,u_n(t)), \bar{u}_n(t))
\]

\[
\geq \left(1 - \frac{(T-1)^{2p-1}}{p a_4^{q-1} T^{p-1}} - \frac{2^{p-1}M_2(T-1)^{p(1+q)/q}}{pT^p} \right) \| \bar{u}_n \|^p - \frac{a_4^2 M_1^q 2^p}{q} |\bar{u}_n|^p
\]

\[
- \frac{M_3(T-1)^{(1+q)/q}}{T} \| \bar{u}_n \|, \tag{3.24}
\]

which together with (3.11) implies that
\[
\frac{a_4^2 M_1^q 2^p}{q} |\bar{u}_n|^p \geq \left(1 - \frac{(T-1)^{2p-1}}{p a_4^{q-1} T^{p-1}} - \frac{2^{p-1}M_2(T-1)^{p(1+q)/q}}{pT^p} \right) \| \bar{u}_n \|^p
\]

\[
- \frac{M_3(T-1)^{(1+q)/q}}{T} \| \bar{u}_n \| - \frac{(T-1)^{(2p-1)/p}}{T^{1/q}} \| \bar{u}_n \| \tag{3.25}
\]

\[
\geq \frac{1}{q} \left(1 - \frac{2^{p-1}M_2(T-1)^{p(1+q)/q}}{pT^p} \right) \| \bar{u}_n \|^p + C_5,
\]
where \(C_5 = \min_{a \in (0, \infty)} \{(1/p - (T - 1)2^{p-1}/pa_4^{-1}T^{p-1} - 2^{p-1}M_2(T - 1)^{p(1+q)/q}/p^2T^p)s_p - [M_3(T - 1)^{(1+q)/q}/T + (T - 1)^{(2p-1)/p}/T^{1/q}]\}. \) It follows from (3.21) that \(-\infty < C_5 < 0\), so, we obtain

\[
\|\tilde{u}_n\| \leq \frac{p^{T_p}a_q^4M_1^p2^p}{pT^{p-2} - 2^{p-1}M_2(T - 1)^{p(1+q)/q}/p^2T^p} \|\tilde{u}_n\|^p - \frac{p^{T_p}qC_5}{pT^{p-2} - 2^{p-1}M_2(T - 1)^{p(1+q)/q}/p^2T^p},
\]

(3.26)

\[
\|\tilde{u}_n\| \leq \frac{2p^{1/pT}a_q^4M_1^{3/p}}{pT^{p-2} - 2^{p-1}M_2(T - 1)^{p(1+q)/q}/p^2T^p} \|\tilde{u}_n\|^p + C_6,
\]

(3.27)

where \(C_6 \) is a positive constant. By the proof of Theorem 2.2, we have

\[
\left| \sum_{t=1}^{T} (F(t, u_n(t)) - F(t, \tilde{u})) \right| \leq 2^{p-1}M_1\|\tilde{u}\|^{p-1}\|\tilde{u}\|_p + \frac{2^{p-1}}{p}M_2\|\tilde{u}\|^p_\infty + M_3\|\tilde{u}\|_\infty
\]

(3.28)

\[
\leq \left(\frac{(T - 1)2^{p-1}}{pa_4^{-1}T^{p-1}} + \frac{2^{p-1}M_2(T - 1)^{p(1+q)/q}}{pT^p} \right) \|\tilde{u}_n\|^p + \frac{a_4^{(q-1)/2}M_1^p2^p}{q} \|\tilde{u}_n\|^p
\]

\[
+ \frac{M_3(T - 1)^{(1+q)/q}}{T} \|\tilde{u}_n\|.
\]

It follows from the boundedness of \(\varphi(u_n) \), (3.26), (3.27), and the above inequality that

\[
C_7 \leq \varphi(u_n)
\]

\[
= \frac{1}{p} \sum_{t=1}^{T} |\Delta u(t)|^p + \sum_{t=1}^{T} \left[F(t, u(t)) - F(t, \tilde{u}) \right] + \sum_{t=1}^{T} F(t, \tilde{u})
\]

\[
\leq \left[\frac{1}{p} + \left(\frac{(T - 1)2^{p-1}}{pa_4^{-1}T^{p-1}} + \frac{2^{p-1}M_2(T - 1)^{p(1+q)/q}}{pT^p} \right) \|\tilde{u}_n\|^p + \sum_{t=1}^{T} F(t, \tilde{u}) \right]
\]

\[
+ \frac{M_3(T - 1)^{(1+q)/q}}{T} \|\tilde{u}_n\| + \frac{a_4^{(q-1)/2}M_1^p2^p}{q} \|\tilde{u}_n\|^p
\]

\[
\leq \left[\frac{1}{p} + \left(\frac{(T - 1)2^{p-1}}{pa_4^{-1}T^{p-1}} + \frac{2^{p-1}M_2(T - 1)^{p(1+q)/q}}{pT^p} \right) \right]
\]

\[
\times \left(\frac{p^{T_p}a_q^4M_1^p2^p}{pT^{p-2} - 2^{p-1}M_2(T - 1)^{p(1+q)/q}/p^2T^p} \|\tilde{u}_n\|^p - \frac{p^{T_p}qC_5}{pT^{p-2} - 2^{p-1}M_2(T - 1)^{p(1+q)/q}/p^2T^p} \right)
\]
\[+ \frac{\sum_{i=1}^{T} F(t, \overline{u}) + \frac{a^{(q-1)^2} M_1^{q} 2^p}{q} \|\overline{u}\|^p}{\frac{M_3(T-1)^{(1+q)/q}}{q}} \left(\left(\frac{2p^{1/p} T a_4^{q/p} M_1^{q/p}}{pT^p - 2p^{-1} M_2(T-1)^{p(1+q)/q}} \right)^{1/p} \|\overline{u}\| + C_6 \right)\]

\[= \|\overline{u}\|^p \left\{ \left[\frac{2p^{1/p} T a_4^{q/p} M_1^{q/p}}{pT^p - 2p^{-1} M_2(T-1)^{p(1+q)/q}} \right] \frac{M_1^q}{q} \right\} \]

\[+ \|\overline{u}\|^p \sum_{i=1}^{T} F(t, \overline{u}) + \frac{2p^{1/p} T a_4^{q/p} M_1^{q/p} M_3(T-1)^{(1+q)/q}}{T} \left[\frac{pT^p - 2p^{-1} M_2(T-1)^{p(1+q)/q}}{T} \right]^{1/p} \|\overline{u}\|^{-p+1} \right\} + C_8, \]

(3.29)

where \(C_7\) is a positive constant and \(C_8\) is a constant. The above inequality and (3.22) imply that \(\{\overline{u}_n\}\) is bounded. Hence, \(\{u_n\}\) is bounded by (2.13) and (3.26).

Similar to the proof of Theorem 2.3, we only need to verify (I1) and (I2). It is easy to verify (I1) by (F6). Now, we verify that (I2) holds. For \(u \in \overline{E}_T\), by (F2)' and (2.12), we have

\[\left| \sum_{i=1}^{T} (F(t, u(t)) - F(t, 0)) \right| = \left| \sum_{i=1}^{T} \int_{0}^{1} (\nabla F(t, su(t)), u(t)) ds \right| \]

\[\leq \sum_{i=1}^{T} \int_{0}^{1} f(t) |u(t)|^{p-1} |u(t)| ds + \sum_{i=1}^{T} g(t) |u(t)| \]

\[\leq \frac{M_2}{p} \|u\|_\infty^p + M_3 \|u\|_\infty \]

(3.30)

Thus, we have

\[\varphi(u) = \frac{1}{p} \sum_{i=1}^{T} |\Delta u(t)|^p + \sum_{i=1}^{T} (F(t, u(t)) - F(t, 0)) + \sum_{i=1}^{T} F(t, 0) \]

\[\geq \left(\frac{1}{p} - \frac{M_2(T-1)^{p(1+q)/q}}{pT^p} \right) \|\overline{u}\|^p - \frac{M_3(T-1)^{(1+q)/q}}{pT} \|\overline{u}\| + \sum_{i=1}^{T} F(t, 0), \]

(3.31)

for all \(u \in \overline{E}_T\). By Lemma 2.6, \(\|u\| \to \infty\) in \(\overline{E}_T\) if and only \(\|\overline{u}\| \to \infty\). So from the above inequality, we have \(\varphi(u) \to +\infty\) as \(\|u\| \to \infty\), that is (I2) is verified. Hence, the proof of Theorem 2.4 is complete.
4. Example

In this section, we give four examples to illustrate our results.

Example 4.1. Let $p = 5/2$ and

$$F(t, x) = \sin\left(\frac{2\pi t}{T}\right)|x|^{5/3} + \left(\sin\frac{2\pi t}{T} + 1\right)|x|^{4/3} + (h(t), x),$$

where $h \in L^1([1, T], \mathbb{R}^N)$ and $h(t + T) = h(t)$. It is easy to see that $F(t, x)$ satisfies (F1) and

$$|\nabla F(t, x)| \leq \frac{5}{3} \left| \sin \frac{2\pi t}{T} \right| |x|^{2/3} + \frac{4}{3} \left| \sin \frac{2\pi t}{T} + 1 \right| |x|^{1/3} + |h(t)|$$

$$\leq \frac{5}{3} \left(\left| \sin \frac{2\pi t}{T} \right| + \varepsilon \right) |x|^{2/3} + a(\varepsilon) + |h(t)|, \quad \forall (t, x) \in [1, T] \times \mathbb{R}^N,$$

where $\varepsilon > 0$, and $a(\varepsilon)$ is a positive constant and is dependent on ε. The above shows that (F2) holds with $\alpha = 2/3$ and

$$f(t) = \frac{5}{3} \left(\left| \sin \frac{2\pi t}{T} \right| + \varepsilon \right), \quad g(t) = a(\varepsilon) + |h(t)|. \quad (4.3)$$

Moreover, we have

$$\liminf_{|x| \to +\infty} |x|^{-2\alpha} \sum_{t=1}^{T} F(t, x) = T,$$

$$2^{\alpha} T \frac{q^{(2p-1)/p}}{qT} \sum_{t=1}^{T} f^q(t) = 3 \times 2^{10/9} (T - 1)^{8/3} \left(\frac{5}{3} \varepsilon \right)^{5/3}. \quad (4.4)$$

We can choose ε suitable such that

$$\liminf_{|x| \to +\infty} |x|^{-2\alpha} \sum_{t=1}^{T} F(t, x) > \frac{3}{5} \times 2^{10/9} (T - 1)^{8/3} \left(\frac{5}{3} \varepsilon \right)^{5/3} = \frac{2^{\alpha} T - 1}{qT} \sum_{t=1}^{T} f^q(t), \quad (4.5)$$

which shows that (F3) holds. Then from Theorem 2.1, problem (1.1) has at least one periodic solution with period T.

Example 4.2. Let $p = 2$, then $q = 2$. Let

$$F(t, x) = \frac{1}{6} \left(\frac{1}{2} + \sin \frac{2\pi t}{T} \right) |x|^2 + |x|^{3/2} + (h(t), x), \quad (4.6)$$
where \(h \in L^1(\mathbb{Z}[1,T],\mathbb{R}^N) \) and \(h(t+T) = h(t) \). It is easy to see that \(F(t,x) \) satisfies (F1) and

\[
|\nabla F(t,x)| \leq \frac{1}{3} \left| \frac{1}{2} + \sin \frac{2\pi t}{T} \right| |x| + \frac{3}{2} |x|^{1/2} + |h(t)| \\
\leq \frac{1}{3} \left(\left| \frac{1}{2} + \sin \frac{2\pi t}{T} \right| + \varepsilon \right) |x| + b(\varepsilon) + |h(t)|, \quad \forall (t,x) \in \mathbb{Z}[1,T] \times \mathbb{R}^N,
\]
(4.7)

where \(\varepsilon > 0 \), and \(b(\varepsilon) \) is a positive constant and is dependent on \(\varepsilon \). The above shows that (F2)' holds with

\[
f(t) = \frac{1}{3} \left(\left| \frac{1}{2} + \sin \frac{2\pi t}{T} \right| + \varepsilon \right), \quad g(t) = b(\varepsilon) + |h(t)|.
\]
(4.8)

Observe that

\[
|x|^{-p} \sum_{t=1}^{T} F(t,x) = |x|^{-2} \sum_{t=1}^{T} \left[\frac{1}{6} \left(\left| \frac{1}{2} + \sin \frac{2\pi t}{T} \right| + \varepsilon \right) |x|^2 + |x|^{3/2} + (h(t),x) \right] \\
= \frac{T}{12} + T|x|^{-1/2} + \left(\sum_{t=1}^{T} h(t), |x|^{-2} x \right).
\]
(4.9)

On the other hand, if we let \(T = 2 \), then we have

\[
\sum_{t=1}^{T} f(t) = \frac{2}{3} \left(\frac{1}{2} + \varepsilon \right), \quad \sum_{t=1}^{T} f^2(t) = \frac{1}{9} \sum_{t=1}^{T} \left(\left| \frac{1}{2} + \sin \frac{2\pi t}{T} \right| + \varepsilon \right)^2 = \frac{2}{9} \left(\frac{1}{2} + \varepsilon \right)^2,
\]

\[
\frac{2p T^{q/p} (T-1)^{q(2p-1)/p}}{[T^p - 2p^{-1}(T-1)^{p(1+q)/q}]^{4/q}} \sum_{t=1}^{T} f^q(t) = \frac{2 + 8\varepsilon + 8\varepsilon^2}{15 - 6\varepsilon}.
\]
(4.10)

We can choose \(\varepsilon \) sufficiently small such that

\[
\sum_{t=1}^{T} f(t) = \frac{2}{3} \left(\frac{1}{2} + \varepsilon \right) < 2 = \frac{T^p}{2p^{-1}(T-1)^{p-1}},
\]

\[
\liminf_{|x| \to +\infty} |x|^{-p} \sum_{t=1}^{T} F(t,x) = \frac{1}{6} \frac{2 + 8\varepsilon + 8\varepsilon^2}{15 - 6\varepsilon} = \frac{2p T^{q/p} (T-1)^{q(2p-1)/p}}{[T^p - 2p^{-1}(T-1)^{p(1+q)/q}]^{4/q}} \sum_{t=1}^{T} f^q(t),
\]
(4.11)

which shows that (2.3) and (F4) hold. Then from Theorem 2.2, problem (1.1) has at least one periodic solution with period \(T \).

Example 4.3. Let \(p = 2 \), then \(q = 2 \). Let

\[
F(t,x) = \sin \left(\frac{2\pi t}{T} \right) |x|^{7/4} + \left(\sin \frac{2\pi t}{T} - 1 \right) |x|^{3/2} + (h(t),x),
\]
(4.12)
where $h \in l^1(\mathbb{Z}[1, T], \mathbb{R}^N)$ and $h(t + T) = h(t)$. It is easy to see that $F(t, x)$ satisfies (F1) and

$$|\nabla F(t, x)| \leq \frac{7}{4} \left| \sin \frac{2\pi t}{T} \right| |x|^{3/4} + \frac{3}{2} \left| \sin \frac{2\pi t}{T} \right| - 1 |x|^{1/2} + |h(t)|$$

$$\leq \frac{7}{4} \left(\left| \sin \frac{2\pi t}{T} \right| + \varepsilon \right) |x|^{3/4} + c(\varepsilon) + |h(t)|, \quad \forall (t, x) \in \mathbb{Z}[1, T] \times \mathbb{R}^N,$$

where $\varepsilon > 0$ and $c(\varepsilon)$ is a positive constant and is dependent on ε. The above shows that (F2) holds with $\alpha = 3/4$ and

$$f(t) = \frac{7}{4} \left(\left| \sin \frac{2\pi t}{T} \right| + \varepsilon \right), \quad g(t) = c(\varepsilon) + |h(t)|.$$ (4.14)

Observe that

$$|x|^{q\alpha} \sum_{i=1}^{T} F(t, x) = |x|^{-3/2} \sum_{i=1}^{T} \left[\left(\sin \frac{2\pi t}{T} \right) |x|^{3/4} + \left(\sin \frac{2\pi t}{T} \right) - 1 |x|^{1/2} + (h(t), x) \right]$$

$$= -T + \left(\sum_{i=1}^{T} h(t), |x|^{-3/2} x \right).$$ (4.15)

On the other hand, we have

$$\left[\frac{2^{q\alpha}(T - 1)^{q(2p-1)/p}}{pT} + \frac{2^{q\alpha}(T - 1)^{q(1)^2(2p-1)/p}}{qT^{(q-1)^2/q}} + \frac{2^{q\alpha}(T - 1)^{2(p-1+(2p-1)/p)}}{pT^{(q+1)/q}} \right] \sum_{i=1}^{T} f^q(t)$$

$$= \left[\frac{\sqrt{2}(T - 1)^{3/2}}{T^{1/2}} + \frac{\sqrt{2}(T - 1)^{9/2}}{T^{3/2}} \right] \sum_{i=1}^{T} \frac{49}{16} \left(\left| \sin \frac{2\pi t}{T} \right| + \varepsilon \right)^2$$

$$= \frac{49\sqrt{2} \varepsilon^2 (T - 1)^{3/2} \left[T^{1/2} \left(T - 1 \right)^{3/2} + T + (T - 1)^3 \right]}{16T^{1/2}}.$$ (4.16)

We can choose ε suitable such that

$$\lim_{|x| \to +\infty} \sup |x|^{-q\alpha} \sum_{i=1}^{T} F(t, x)$$

$$= -T$$

$$< -\frac{49\sqrt{2} \varepsilon^2 (T - 1)^{3/2} \left[T^{1/2} \left(T - 1 \right)^{3/2} + T + (T - 1)^3 \right]}{16T^{1/2}}$$

$$= -\left[\frac{2^{q\alpha}(T - 1)^{q(2p-1)/p}}{pT} + \frac{2^{q\alpha}(T - 1)^{q(1)^2(2p-1)/p}}{qT^{(q-1)^2/q}} + \frac{2^{q\alpha}(T - 1)^{2(p-1+(2p-1)/p)}}{pT^{(q+1)/q}} \right] \sum_{i=1}^{T} f^q(t).$$ (4.17)
which shows that (F5) holds. Then from Theorem 2.3, problem (1.1) has at least one periodic solution with period T.

Example 4.4. Let $p = 2$, then $q = 2$. Let

$$
F(t, x) = \frac{1}{3} \left(\sin \frac{2\pi t}{T} - \frac{1}{8} \right) |x|^2 + |x|^{3/2} + (h(t), x),
$$

(4.18)

where $h \in l^1(\mathbb{Z}[1, T], \mathbb{R}^N)$ and $h(t + T) = h(t)$. It is easy to see that $F(t, x)$ satisfies (F1) and

$$
|\nabla F(t, x)| \leq \frac{2}{3} \left| \sin \frac{2\pi t}{T} - \frac{1}{8} \right| |x| + \frac{3}{2} |x|^{1/2} + |h(t)|
$$

\[
\leq \frac{2}{3} \left(\left| \sin \frac{2\pi t}{T} - \frac{1}{8} \right| + \varepsilon \right) |x| + d(\varepsilon) + |h(t)|, \quad \forall (t, x) \in \mathbb{Z}[1, T] \times \mathbb{R}^N,
\]

where $\varepsilon > 0$, $d(\varepsilon)$ is a positive constant and is dependent on ε. The above shows that (F2)' holds with

$$
f(t) = \frac{2}{3} \left(\left| \sin \frac{2\pi t}{T} - \frac{1}{8} \right| + \varepsilon \right), \quad g(t) = d(\varepsilon) + |h(t)|.
$$

(4.20)

Observe that

$$
|x|^{-p} \sum_{t=1}^{T} F(t, x) = |x|^{-2} \sum_{t=1}^{T} \left[\frac{1}{3} \left(\sin \frac{2\pi t}{T} - \frac{1}{8} \right) |x|^2 + |x|^{3/2} + (h(t), x) \right]
$$

\[
= -\frac{T}{24} + T|x|^{-1/2} + \left(\sum_{t=1}^{T} h(t), |x|^{-2} x \right).
\]

(4.21)

On the other hand, if we let $T = 2$, then we have

$$
\sum_{t=1}^{T} f(t) = \frac{4}{3} \left(\frac{1}{8} + \varepsilon \right), \quad \sum_{t=1}^{T} f^2(t) = \frac{4}{9} \sum_{t=1}^{T} \left(\left| \frac{1}{8} + \sin \frac{2\pi t}{T} \right| + \varepsilon \right)^2 = \frac{8}{9} \left(\frac{1}{8} + \varepsilon \right)^2.
$$

(4.22)
We can choose ε sufficiently small such that

\begin{equation}
\sum_{t=1}^{T} f(t) = \frac{4}{3} \left(\frac{1}{8} + \varepsilon \right) < 2 = \frac{T^{p}}{2^{p-1} (T-1)^{p-1}},
\end{equation}

\begin{equation}
\limsup_{|x| \to +\infty} |x|^p \sum_{t=1}^{T} F(t, x) = -\frac{1}{12} \begin{bmatrix}
\frac{192 + 128 \times (1/8 + \varepsilon)}{3 \times (8 - (8/3)(1/8 + \varepsilon))^2} + \frac{16}{(8 - (8/3)(1/8 + \varepsilon))^{3/2}}
+ \frac{8}{(8 - (8/3)(1/8 + \varepsilon))^{1/2}} \times \frac{8}{9} \left(\frac{1}{8} + \varepsilon \right)^2
\end{bmatrix}
\end{equation}

which shows that (F6) holds. Then from Theorem 2.4, problem (1.1) has at least one periodic solution with period T.
Acknowledgment

This work is partially supported by the Scientific Research Foundation of the Guangxi Education Office of China (201203YB093 and 200911MS270).

References

Submit your manuscripts at
http://www.hindawi.com