Research Article

Univalence Conditions Related to a General Integral Operator

Nicoleta Breaz¹ and Virgil Pescar²

¹ Department of Mathematics, Faculty of Science, “1 Decembrie 1918” University of Alba Iulia, Nicolae Iorga Street No. 11-13, 510009 Alba Iulia, Romania
² Department of Mathematics, Faculty of Mathematics and Computer Science, Transilvania University of Brașov, 500091 Brașov, Romania

Correspondence should be addressed to Nicoleta Breaz, nicoletabreaz@yahoo.com

Received 28 June 2012; Revised 29 October 2012; Accepted 31 October 2012

Academic Editor: Naseer Shahzad

Copyright © 2012 N. Breaz and V. Pescar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We consider a general integral operator based on two types of analytic functions, namely, regular functions and, respectively, functions having a positive real part. Some univalence conditions for this integral operator are obtained.

1. Introduction

Let $\mathcal{A}$ be the class of functions of the form

$$f(z) = z + \sum_{i=2}^{\infty} a_i z^i,$$

which are analytic in the open unit disk, $\mathcal{U} = \{z \in \mathbb{C} : |z| < 1\}$ and normalized by $f(0) = f'(0) - 1 = 0$. Also, let $\mathcal{S}$ denote the subclass of $\mathcal{A}$ consisting of univalent functions, in the open unit disk. We denote by $\mathcal{P}$, the class of functions $p$ which are analytic in $\mathcal{U}$, $\text{Re} p(z) > 0$, for all $z \in \mathcal{U}$ and $p(0) = 1$, the so-called Carathéodory functions.

In [1], Pescar introduced and studied the following integral operator:

$$E_\alpha(z) = \int_0^z \prod_{j=1}^{n} \left( \frac{f_j(u)}{u} \right)^{\alpha_j} (g_j(u))^{\beta_j} du,$$

where $\alpha_j, \beta_j$ are complex numbers, $f_j \in \mathcal{A}$, $g_j \in \mathcal{P}$, $j = 1, n$. 
In this paper, we generalize this integral operator, by considering the general integral operator defined as follows:

$$K_n(z) = \left( \delta \int_0^z u^{\delta-1} \prod_{j=1}^n \left( \frac{f_j(u)}{u} \right)^{\alpha_j} (g_j(u))^{\beta_j} \, du \right)^{1/\delta},$$

(1.3)

where $\delta, \alpha_j, \beta_j$ are complex numbers, $\delta \neq 0, f_j \in \mathcal{A}, g_j \in \mathcal{D}, j = 1, n$.

**Remarks.** This integral operator extends many other integral operators from related works on this field as those given by Srivastava, Mocanu, Owa, Pescar, Orhan, Breaz, and others. Using this new operator and the related univalence conditions that are going to be proved here, one can study some other already known operators in a unified perspective. Thus, for different particular cases of the parameters $\delta, \alpha_j, \beta_j$, our integral operator $K_n$ is shown to be an extension of the following integral operators.

(i) For $\delta = 1$, the integral operator $K_n$ is the operator $E_n$ from (1.2), introduced by Pescar in [1].

(ii) For $n = 1, \alpha_j = \delta, \beta_j = 0$, the integral operator $K_n$ was studied in [2], by Miller and Mocanu.

(iii) For $\beta_j = 0, j = 1, n$, the integral operator $K_n$ was studied in [3], by Pescar and Breaz.

(iv) For $\beta_j = 0, j = 1, n, \alpha_j = \alpha - 1$, and $\delta = n(\alpha - 1) + 1$, the integral operator $K_n$ was studied in [4], by Breaz et al. and also in [5], by Srivastava et al.

(v) For $\delta = 1, \beta_j = 0, j = 1, n$, we get the integral operator defined by D. Breaz and N. Breaz, in the paper [6].

(vi) For $\delta = 1, \alpha_j = 0, \beta_j > 0$, and $g_j = f'_j$, the operator was studied by Breaz et al., in the paper [7].

More precisely, if we are interested to study various properties of two or more different operators reminded above (and other similar operators which are not mentioned here), we can do this in an integrated manner by simply allowing the parameters involved in the definition, to be more general and consequently by studying only one operator, having the form (1.3). In this paper, we will study some univalence criteria for this new operator.

The following known results will be used in order to prove our results.

**Lemma 1.1** (see [8]). Let $\gamma$ be a complex number, $\text{Re} \, \gamma > 0$ and $f \in \mathcal{A}$. If

$$\frac{1 - |z|^2 \text{Re} \, \gamma}{\text{Re} \, \gamma} \left| \frac{zf''(z)}{f'(z)} \right| \leq 1,$$

(1.4)

for all $z \in \mathcal{U}$, then for any complex number $\delta$, $\text{Re} \, \delta \geq \text{Re} \, \gamma$,

$$F_\delta(z) = \left( \delta \int_0^z u^{\delta-1} f'(u) \, du \right)^{1/\delta} \in \mathcal{S}.$$

(1.5)
Lemma 1.2 (see [9]). Let $f$ be a regular function in the open disk $\mathcal{U}_R = \{ z \in \mathbb{C} : |z| < R \}$ with $|f(z)| < M$, $M$ fixed. If $f$ has in $z = 0$ one zero with multiplicity $\geq m$, then

$$|f(z)| \leq \frac{M}{R^m}|z|^m, \quad (z \in \mathcal{U}_R),$$

(1.6)

the equality for $(z \neq 0)$ can hold only if

$$f(z) = e^{i\theta} \frac{M}{R^m} z^m,$$

(1.7)

where $\theta$ is constant.

Lemma 1.3 (see [10]). For each $f \in \mathcal{S}$,

$$\frac{1-r}{1+r} \leq \left| \frac{zf'(z)}{f(z)} \right| \leq \frac{1+r}{1-r}, \quad |z| = r < 1.$$

(1.8)

Lemma 1.4 (see [11]). If $g(z) = 1 + \sum_{n=1}^{\infty} b_n z^n$ is regular in $|z| < 1$ and $\text{Re}(g(z)) > 0$, then

$$\left| \frac{zg'(z)}{g(z)} \right| \leq \frac{2|z|}{1 - |z|^2}.$$  

(1.9)

Also, for the statement of our main results, we need to define the following classes:

$$\mathcal{A}_M = \left\{ f \in \mathcal{A} : \left| \frac{zf'(z)}{f(z)} - 1 \right| \leq M, M \geq 1 \right\},$$

$$\mathcal{P}_L = \left\{ f \in \mathcal{P} : \left| \frac{zf'(z)}{f(z)} \right| \leq L, L > 0 \right\}.$$  

(1.10)

2. Main Results

Theorem 2.1. Let $\delta, \alpha_j, \beta_j$ be complex numbers, $\text{Re} \delta \geq 1$, $M_j, L_j$ positive real numbers, $M_j \geq 1$, $j = 1, n$, and the functions $f_j \in \mathcal{A}_{M_j}$, $g_j \in \mathcal{P}_{L_j}$, $j = 1, n$.

If

$$\sum_{j=1}^{n} \left[ |\alpha_j| M_j + |\beta_j| L_j \right] \leq \frac{3\sqrt{3}}{2},$$

(2.1)

then the general integral operator $K_n$, defined by (1.3), is in the class $\mathcal{S}$.  

Proof. We consider the regular function

\[ h_n(z) = \frac{\int_0^z \left( \frac{f_1(u)}{u} \right)^{a_1} \cdots \left( \frac{f_n(u)}{u} \right)^{a_n} \cdot (g_1(u))^{b_1} \cdots (g_n(u))^{b_n} du}{z}. \] (2.2)

After some calculus, we have

\[ (1 - |z|^2) \left| \frac{z h''_n(z)}{h'_n(z)} \right| \leq \left( 1 - |z|^2 \right) \sum_{j=1}^{n} \left| \alpha_j \right| \left| \frac{z f'_j(z)}{f_j(z)} - 1 \right| + \left| \beta_j \right| \left| \frac{z g'_j(z)}{g_j(z)} \right|, \] (2.3)

for all \( z \in U \).

Since \( f_j \in A_{M_j} \), by applying Lemma 1.2 for \( m = 1 \), we get

\[ \left| \frac{z f'_j(z)}{f_j(z)} - 1 \right| \leq M_j |z|, \quad (j = 1, n; z \in U). \] (2.4)

Also since \( g_j \in P_{L_j} \), from Lemma 1.2, we have

\[ \left| \frac{z g'_j(z)}{g_j(z)} \right| \leq L_j |z|, \quad (j = 1, n; z \in U). \] (2.5)

If we put these last two inequalities in (2.3), together with the inequality from the hypothesis, we get

\[ (1 - |z|^2) \left| \frac{z h''_n(z)}{h'_n(z)} \right| \leq \left( 1 - |z|^2 \right) |z| \cdot \frac{3\sqrt{3}}{2}. \] (2.6)

Now we take into account the fact that

\[ \max_{|z|<1} \left( 1 - |z|^2 \right) |z| = \frac{2}{3\sqrt{3}}, \] (2.7)

thus obtaining

\[ (1 - |z|^2) \left| \frac{z h''_n(z)}{h'_n(z)} \right| \leq 1, \quad (z \in U). \] (2.8)

Further from Lemma 1.1, for \( \Re \delta \geq \Re \gamma = 1 \), it is obvious that \( K_n \in S \).

**Corollary 2.2.** Let \( \delta, \alpha_j \) be complex numbers, \( \Re \delta \geq 1 \), \( M_j \) positive real numbers, \( M_j \geq 1 \), \( f_j \in A_{M_j}, j = 1, n \). If

\[ \sum_{j=1}^{n} \left| \alpha_j \right| M_j \leq \frac{3\sqrt{3}}{2}, \] (2.9)
then the function

\[ K_n(z) = \left[ \delta \int_0^z u^{\delta - 1} \prod_{j=1}^n \left( \frac{f_j(u)}{u} \right)^{\alpha_j} \right]^{1/\delta} \quad (2.10) \]

is in the class \( S \).

**Proof.** In Theorem 2.1, we take \( \beta_j = 0, \ j = 1, n \). \( \square \)

**Corollary 2.3.** Let \( \delta, \beta_j \) be complex numbers, \( \Re \delta \geq 1, L_j \) positive real numbers and \( g_j \in P_{L_j}, \ j = 1, n \) if

\[ \sum_{j=1}^n |\beta_j| L_j \leq \frac{3\sqrt{3}}{2}, \quad (2.11) \]

then the function

\[ K_n(z) = \left[ \delta \int_0^z u^{\delta - 1} \prod_{j=1}^n (g_j(u))^{\beta_j} \right]^{1/\delta} \quad (2.12) \]

belongs to the class \( S \).

**Proof.** In Theorem 2.1, we take \( \alpha_j = 0, \ j = 1, n \). \( \square \)

**Theorem 2.4.** Let \( \gamma, \delta, \alpha_j, \beta_j \) be complex numbers, \( j = 1, n \), \( \Re \delta \geq \Re \gamma > 0 \), and the functions \( f_j \in A_{\mu}, \ g_j \in P_{\mu}, \ \mu \geq 1 \), with

\[ \mu = \frac{(2\Re \gamma + 1)^{1+1/2(\Re \gamma)}}{2}. \quad (2.13) \]

If

\[ \sum_{j=1}^n (|\alpha_j| + |\beta_j|) \leq 1, \quad (2.14) \]

then the general integral operator \( K_n \) belongs to the class \( S \).

**Proof.** Let consider again the regular function:

\[ h_n(z) = \int_0^z \left( \frac{f_1(u)}{u} \right)^{\alpha_1} \cdots \left( \frac{f_n(u)}{u} \right)^{\alpha_n} \cdot (g_1(u))^{\beta_1} \cdots (g_n(u))^{\beta_n} du. \quad (2.15) \]
After some calculus, we have
\[
1 - |z|^{2\Re \gamma} \left| \frac{z h_n''(z)}{h_n'(z)} \right| \leq 1 - |z|^{2\Re \gamma} \sum_{j=1}^{n} \left| \frac{\alpha_j}{f_j(z)} \right| + \left| \frac{\beta_j}{g_j(z)} \right|, \quad (z \in \mathcal{H}). \tag{2.16}
\]

Since \( f_j \in A_\mu \) and \( g_j \in P_\mu \), for all \( j = 1, n \), from Lemma 1.2, we obtain
\[
\left| \frac{z f_j'(z)}{f_j(z)} - 1 \right| \leq \mu |z|, \quad (j = 1, n; z \in \mathcal{U}),
\]
\[
\left| \frac{z g_j'(z)}{g_j(z)} \right| \leq \mu |z|, \quad (j = 1, n; z \in \mathcal{U}). \tag{2.17}
\]

Using these last two inequalities, the inequality from the hypothesis, and the fact that
\[
\max_{|z| < 1} \left[ \frac{1 - |z|^{2\Re \gamma}}{\Re \gamma} \right] = \frac{1}{\mu}, \tag{2.18}
\]
from (2.16) we get
\[
1 - |z|^{2\Re \gamma} \left| \frac{z h_n''(z)}{h_n'(z)} \right| \leq 1, \tag{2.19}
\]
for all \( z \in \mathcal{H} \).

Hence, by Lemma 1.1, we have that \( K_n \in \mathcal{S} \). \( \square \)

**Corollary 2.5.** Let \( \gamma, \delta, \alpha_j \) be complex numbers, \( \Re \delta \geq \Re \gamma > 0 \), and \( f_j \in A_\mu, j = 1, n, \mu \geq 1 \), with
\[
\mu = \frac{(2\Re \gamma + 1)^{1+(1/2\Re \gamma)}}{2}. \tag{2.20}
\]

If
\[
\sum_{j=1}^{n} |\alpha_j| \leq 1, \tag{2.21}
\]
then the integral operator defined by
\[
K_n(z) = \left[ \delta \int_{0}^{z} u^{\delta-1} \prod_{j=1}^{n} \left( \frac{f_j(u)}{u} \right)^{\alpha_j} \, du \right]^{1/\delta}, \tag{2.22}
\]
is in the class \( \mathcal{S} \).
Proof. In Theorem 2.4, we take \( \beta_1 = \cdots = \beta_n = 0 \).

**Corollary 2.6.** Let \( \gamma, \delta, \beta_j \) be complex numbers, \( j = 1, n \), \( \Re \delta \geq \Re \gamma > 0 \), and \( g_j \in \mathcal{P} \), with

\[
\mu = \frac{(2 \Re \gamma + 1)^{1+(1/2 \Re \gamma)}}{2}.
\]

If

\[
\sum_{j=1}^{n} |\beta_j| \leq 1,
\]

then the integral operator defined by

\[
K_n(z) = \left[ \delta \int_{0}^{z} u^{\delta-1} \prod_{j=1}^{n} (g_j(u))^{\beta_j} \, du \right]^{1/\delta},
\]

is in the class \( \mathcal{S} \).

Proof. We put in Theorem 2.4, \( \alpha_1 = \cdots = \alpha_n = 0 \).

**Theorem 2.7.** Let \( \gamma, \delta, \alpha_j, \beta_j \) be complex numbers, \( j = 1, n \), \( \Re \delta \geq \Re \gamma > 0 \) and \( f_j \in \mathcal{S} \), \( g_j \in \mathcal{P} \). If

\[
2 \sum_{j=1}^{n} |\alpha_j| + \sum_{j=1}^{n} |\beta_j| \leq \min \left\{ \frac{\Re \gamma}{2}, \frac{1}{2} \right\},
\]

then the general integral operator \( K_n \in \mathcal{S} \).

Proof. We consider the same regular function \( h_n \) as in the proof of the previous theorems, and after some calculus we get

\[
1 - \frac{|z|^{2 \Re \gamma}}{\Re \gamma} \frac{zh'_n(z)}{h_n(z)} \leq 1 - \frac{|z|^{2 \Re \gamma}}{\Re \gamma} \sum_{j=1}^{n} \left| \alpha_j \right| \left( \left| \frac{zf_j'(z)}{f_j(z)} \right| + 1 \right) + \left| \beta_j \right| \left| \frac{zg'_j(z)}{g_j(z)} \right|,
\]

for all \( z \in \mathcal{U} \).

Since \( f_j \in \mathcal{S} \), from Lemma 1.3, we get

\[
\left| \frac{zf_j'(z)}{f_j(z)} \right| \leq \frac{1 + |z|}{1 - |z'|},
\]
Abstract and Applied Analysis

$j = 1, n, z \in \mathcal{U}$, and since $g_j \in P$, from Lemma 1.4, we get

$$\left\lvert \frac{zg_j'(z)}{g_j(z)} \right\rvert \leq \frac{2|z|}{1 - |z|^2} \quad (2.29)$$

Now if we use (2.28) and (2.29) in (2.27), we obtain

$$\frac{1 - |z|^{2\Re \gamma}}{\Re \gamma} \left\lvert \frac{zh''_n(z)}{h'_n(z)} \right\rvert \leq \frac{1 - |z|^{2\Re \gamma}}{\Re \gamma} \left[ \frac{2}{1 - |z|} \sum_{j=1}^{n} |\alpha_j| + \frac{2|z|}{1 - |z|^2} \sum_{j=1}^{n} |\beta_j| \right], \quad (2.30)$$

for all $z \in \mathcal{U}$.

We consider two cases.

1. If $\min\{\Re \gamma/2, 1/2\} = \Re \gamma/2$, we have

$$1 - |z|^{2\Re \gamma} \leq 1 - |z|^2 \quad (2.31)$$

and further if we use this inequality together with the inequality from the hypothesis, from (2.30), we get

$$\frac{1 - |z|^{2\Re \gamma}}{\Re \gamma} \left\lvert \frac{zh''_n(z)}{h'_n(z)} \right\rvert \leq 1, \quad (2.32)$$

for all $z \in \mathcal{U}$, and with Lemma 1.1 the proof is complete.

2. If $\min\{\Re \gamma/2, 1/2\} = 1/2$, we obtain

$$\frac{1 - |z|^{2\Re \gamma}}{\Re \gamma} \leq 1 - |z|^2, \quad (2.33)$$

$z \in \mathcal{U}$ and further if we put this last inequality in (2.30) we get

$$\frac{1 - |z|^{2\Re \gamma}}{\Re \gamma} \left\lvert \frac{zh''_n(z)}{h'_n(z)} \right\rvert \leq 4 \sum_{j=1}^{n} |\alpha_j| + 2 \sum_{j=1}^{n} |\beta_j|, \quad (2.34)$$

for all $z \in \mathcal{U}$.

Now by applying first the inequality condition from the hypothesis and then Lemma 1.1 for $h_n$, the proof is complete.

\[\square\]

Corollary 2.8. Let $\gamma, \delta, \alpha_j$ be complex numbers, $j = 1, n, \Re \delta \geq \Re \gamma > 0$ and $f_j \in S$. If

$$\sum_{j=1}^{n} |\alpha_j| \leq \min \left\{ \frac{\Re \gamma}{4}, \frac{1}{4} \right\}, \quad (2.35)$$
Abstract and Applied Analysis

then the integral operator

$$K_n(z) = \left[ \int_0^z u^{\delta-1} \prod_{j=1}^n \left( \frac{f_j(u)}{u} \right)^{a_j} \, du \right]^{1/\delta}$$ (2.36)

is in the class $S$.

Proof. In Theorem 2.7, we take $\beta_1 = \cdots = \beta_n = 0$. \qed

Corollary 2.9. Let $\gamma, \delta, \beta_j$ be complex numbers, $j = 1, n$, $\Re \delta \geq \Re \gamma > 0$ and $g_j \in P$. If

$$\sum_{j=1}^n |\beta_j| \leq \min \left\{ \frac{\Re \gamma}{2}, \frac{1}{2} \right\}$$ (2.37)

then the integral operator

$$K_n(z) = \left[ \int_0^z u^{\delta-1} \prod_{j=1}^n (g_j(u))^{\beta_j} \, du \right]^{1/\delta}$$ (2.38)

is in the class $S$.

Proof. In Theorem 2.7 we take $\alpha_1 = \cdots = \alpha_n = 0$. \qed

Acknowledgment

The authors wish to thank the reviewers for their constructive comments which helped them to improve the quality of the paper.

References

Submit your manuscripts at http://www.hindawi.com