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Abstract. 
We discuss the existence of positive solutions of a boundary value problem of nonlinear fractional differential equation with changing sign nonlinearity. We first derive some properties of the associated Green function and then obtain some results on the existence of positive solutions by means of the Krasnoselskii's fixed point theorem in a cone.


1.  Introduction
 Recently, much attention has been paid to the existence of solutions for fractional differential equations due to its wide range of applications in engineering, economics, and many other fields, and for more details see, for instance, [1–17] and the references therein. In most of the works in literature, the nonlinearity needs to be nonnegative to get positive solutions [10–17]. In particular, by using the Krasnosel’skii fixed-point theorem and the Leray-Schauder nonlinear alternative, Bai and Qiu [14] consider the positive solution for the following boundary value problem:
	
 		
 			
				(
				P
				)
			
 		
	

	
		
			

				𝑐
			

			

				𝐷
			

			
				𝛼
				0
				+
			

			
				𝑢
				(
				𝑡
				)
				+
				𝑓
				(
				𝑡
				,
				𝑢
				(
				𝑡
				)
				)
				=
				0
				,
				0
				<
				𝑡
				<
				1
				,
				𝑢
				(
				0
				)
				=
				𝑢
			

			

				
			

			
				(
				1
				)
				=
				𝑢
			

			
				
				
			

			
				(
				0
				)
				=
				0
				,
			

		
	

					where 
	
		
			
				2
				<
				𝛼
				≤
				3
			

		
	
 is a real number, 
	
		
			

				𝑐
			

			

				𝐷
			

			
				𝛼
				0
				+
			

		
	
 is the Caputo fractional derivative, 
	
		
			
				𝑓
				∶
				(
				0
				,
				1
				]
				×
				[
				0
				,
				∞
				)
				→
				[
				0
				,
				∞
				)
			

		
	
 is continuous and singular at 
	
		
			
				𝑡
				=
				0
			

		
	
.
To the best of our knowledge, there are only very few papers dealing with the existence of positive solutions of semipositone fractional boundary value problems due to the difficulties in finding and analyzing the corresponding Green function. The purpose of this paper is to establish the existence of positive solutions to the following nonlinear fractional differential equation boundary value problem:
	
 		
 			
				(
				1
				.
				1
				)
			
 		
	

	
		
			

				𝑐
			

			

				𝐷
			

			
				𝛼
				0
				+
			

			
				𝑢
				(
				𝑡
				)
				+
				𝜆
				𝑓
				(
				𝑡
				,
				𝑢
				(
				𝑡
				)
				)
				=
				0
				,
				0
				<
				𝑡
				<
				1
				,
				𝑢
				(
				0
				)
				=
				𝑢
			

			

				
			

			
				(
				1
				)
				=
				𝑢
			

			
				
				
			

			
				(
				0
				)
				=
				0
				,
			

		
	

					where 
	
		
			
				2
				<
				𝛼
				≤
				3
			

		
	
 is a real number, 
	
		
			

				𝑐
			

			

				𝐷
			

			
				𝛼
				0
				+
			

		
	
 is the Caputo fractional derivative, 
	
		
			

				𝜆
			

		
	
 is a positive parameter, and  
	
		
			

				𝑓
			

		
	
 may change sign and may be singular at 
	
		
			
				𝑡
				=
				0
				,
				1
			

		
	
. In this paper, by a positive solution to (1.1), we mean a function 
	
		
			
				𝑢
				∈
				𝐶
				[
				0
				,
				1
				]
			

		
	
, which is positive on 
	
		
			
				(
				0
				,
				1
				]
			

		
	
 and satisfies (1.1).
The rest of the paper is organized as follows. In Section 2, we present some preliminaries and lemmas that will be used to prove our main results. We also develop some properties of the associated Green function. In Section 3, we discuss the existence of positive solutions of the semipositone BVP (1.1). In Section 4, we give two examples to illustrate the application of our main results.
2.  Basic Definitions and Preliminaries
In this section, we present some preliminaries and lemmas that are useful to the proof of our main results. For the convenience of the reader, we also present here some necessary definitions from fractional calculus theory. These definitions can be found in the recent literature.
Definition 2.1.  The Riemann-Liouville fractional integral of order 
	
		
			
				𝛼
				>
				0
			

		
	
 of a function   
	
		
			
				𝑢
				∶
				(
				0
				,
				+
				∞
				)
				→
				𝑅
			

		
	
 is given by
							
	
 		
 			
				(
				2
				.
				1
				)
			
 		
	

	
		
			

				𝐼
			

			
				𝛼
				0
				+
			

			
				1
				𝑢
				(
				𝑡
				)
				=
			

			
				
			
			
				
				Γ
				(
				𝛼
				)
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			
				𝑢
				(
				𝑠
				)
				𝑑
				𝑠
			

		
	

						provided that the right-hand side is pointwise defined on 
	
		
			
				(
				0
				,
				+
				∞
				)
			

		
	
.
Definition 2.2.  The Caputo’s fractional derivative of order   
	
		
			
				𝛼
				>
				0
			

		
	
   of a function 
	
		
			
				𝑢
				∶
				(
				0
				,
				+
				∞
				)
				→
				𝑅
			

		
	
 is given by
							
	
 		
 			
				(
				2
				.
				2
				)
			
 		
	

	
		
			

				𝑐
			

			

				𝐷
			

			
				𝛼
				0
				+
			

			
				1
				𝑢
				(
				𝑡
				)
				=
			

			
				
			
			
				
				Γ
				(
				𝑛
				−
				𝛼
				)
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑠
				)
			

			
				𝑛
				−
				𝛼
				−
				1
			

			

				𝑢
			

			
				(
				𝑛
				)
			

			
				(
				𝑠
				)
				𝑑
				𝑠
				,
			

		
	

						where 
	
		
			
				𝑛
				−
				1
				<
				𝛼
				≤
				𝑛
			

		
	
, provided that the right-hand side is pointwise defined on 
	
		
			
				(
				0
				,
				+
				∞
				)
			

		
	
.
Lemma 2.3 (see [14]).   Given 
	
		
			
				𝑦
				(
				𝑡
				)
				∈
				𝐶
				(
				0
				,
				1
				)
				∩
				𝐿
				(
				0
				,
				1
				)
			

		
	
,  the unique solution of the problem
							
	
 		
 			
				(
				2
				.
				3
				)
			
 		
	

	
		
			

				𝑐
			

			

				𝐷
			

			
				𝛼
				0
				+
			

			
				𝑢
				(
				𝑡
				)
				+
				𝑦
				(
				𝑡
				)
				=
				0
				,
				0
				<
				𝑡
				<
				1
				,
				𝑢
				(
				0
				)
				=
				𝑢
			

			

				
			

			
				(
				1
				)
				=
				𝑢
			

			
				
				
			

			
				(
				0
				)
				=
				0
			

		
	

						is
							
	
 		
 			
				(
				2
				.
				4
				)
			
 		
	

	
		
			
				
				𝑢
				(
				𝑡
				)
				=
			

			
				1
				0
			

			
				𝐺
				(
				𝑡
				,
				𝑠
				)
				𝑦
				(
				𝑠
				)
				𝑑
				𝑠
				,
			

		
	

						where
							
	
 		
 			
				(
				2
				.
				5
				)
			
 		
	

	
		
			
				1
				𝐺
				(
				𝑡
				,
				𝑠
				)
				=
			

			
				
			
			
				
				Γ
				(
				𝛼
				)
				(
				𝛼
				−
				1
				)
				𝑡
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				,
				0
				≤
				𝑡
				≤
				𝑠
				≤
				1
				,
				(
				𝛼
				−
				1
				)
				𝑡
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				−
				(
				𝑡
				−
				𝑠
				)
			

			
				𝛼
				−
				1
			

			
				,
				0
				≤
				𝑠
				≤
				𝑡
				≤
				1
				.
			

		
	

Lemma 2.4.   The function 
	
		
			
				𝐺
				(
				𝑡
				,
				𝑠
				)
			

		
	
 has the following properties: (1)
	
		
			
				𝐺
				(
				𝑡
				,
				𝑠
				)
				≤
				(
				1
				/
				Γ
				(
				𝛼
				−
				1
				)
				)
				𝑡
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			

				,
			

		
	
 for
	
		
			
				𝑡
				,
				𝑠
				∈
				[
				0
				,
				1
				]
			

		
	
,(2)
	
		
			
				𝐺
				(
				𝑡
				,
				𝑠
				)
				≤
				(
				1
				/
				Γ
				(
				𝛼
				−
				1
				)
				)
				(
				𝛼
				−
				2
				+
				𝑠
				)
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			

				,
			

		
	
 for  
	
		
			
				𝑡
				,
				𝑠
				∈
				[
				0
				,
				1
				]
			

		
	
,(3)
	
		
			
				𝐺
				(
				𝑡
				,
				𝑠
				)
				≥
				(
				1
				/
				Γ
				(
				𝛼
				)
				)
				(
				𝛼
				−
				2
				+
				𝑠
				)
				𝑡
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			

				,
			

		
	
 for 
	
		
			
				𝑡
				,
				𝑠
				∈
				[
				0
				,
				1
				]
			

		
	
.
Proof. It is obvious that (1) holds. In the following, we will prove (2) and (3).(i) When 
	
		
			
				0
				≤
				𝑠
				≤
				𝑡
				≤
				1
			

		
	
, as 
	
		
			
				2
				<
				𝛼
				≤
				3
			

		
	
, we have
							
	
 		
 			
				(
				2
				.
				6
				)
			
 		
	

	
		
			
				𝜕
				𝐺
				(
				𝑡
				,
				𝑠
				)
			

			
				
			
			
				=
				𝜕
				𝑡
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				−
				(
				𝑡
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				
			
			
				Γ
				(
				𝛼
				−
				1
				)
				≥
				0
				,
			

		
	

						therefore
							
	
 		
 			
				(
				2
				.
				7
				)
			
 		
	

	
		
			
				𝐺
				(
				𝑡
				,
				𝑠
				)
				≤
				𝐺
				(
				1
				,
				𝑠
				)
				=
				(
				𝛼
				−
				2
				+
				𝑠
				)
			

			
				
			
			
				Γ
				(
				𝛼
				)
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				≤
				1
			

			
				
			
			
				Γ
				(
				𝛼
				−
				1
				)
				(
				𝛼
				−
				2
				+
				𝑠
				)
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			

				.
			

		
	
On the other hand, since 
	
		
			
				0
				<
				𝛼
				−
				2
				≤
				1
			

		
	
, we have
							
	
 		
 			
				(
				2
				.
				8
				)
			
 		
	

	
		
			
				𝐺
				(
				𝑡
				,
				𝑠
				)
				=
				(
				𝛼
				−
				1
				)
				𝑡
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				−
				(
				𝑡
				−
				𝑠
				)
				(
				𝑡
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				
			
			
				≥
				Γ
				(
				𝛼
				)
				(
				𝛼
				−
				1
				)
				𝑡
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				−
				(
				𝑡
				−
				𝑠
				)
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				
			
			
				=
				Γ
				(
				𝛼
				)
				(
				𝛼
				−
				2
				)
				𝑡
				+
				𝑠
			

			
				
			
			
				Γ
				(
				𝛼
				)
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				≥
				(
				𝛼
				−
				2
				)
				𝑡
				+
				𝑠
				𝑡
			

			
				
			
			
				Γ
				(
				𝛼
				)
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				=
				1
			

			
				
			
			
				Γ
				(
				𝛼
				)
				(
				𝛼
				−
				2
				+
				𝑠
				)
				𝑡
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			

				.
			

		
	

					(ii) When 
	
		
			
				0
				≤
				𝑡
				≤
				𝑠
				≤
				1
			

		
	
, we have
							
	
 		
 			
				(
				2
				.
				9
				)
			
 		
	

	
		
			
				𝐺
				(
				𝑡
				,
				𝑠
				)
				=
				(
				𝛼
				−
				1
				)
				𝑡
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				
			
			
				≤
				Γ
				(
				𝛼
				)
				(
				𝛼
				−
				1
				)
				𝑠
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				
			
			
				≤
				1
				Γ
				(
				𝛼
				)
			

			
				
			
			
				Γ
				(
				𝛼
				−
				1
				)
				(
				𝛼
				−
				2
				+
				𝑠
				)
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			

				.
			

		
	
On the other hand, as 
	
		
			
				𝛼
				−
				1
				≥
				𝛼
				−
				2
				+
				𝑠
			

		
	
 for 
	
		
			
				0
				≤
				𝑠
				≤
				1
			

		
	
, we have
							
	
 		
 			
				(
				2
				.
				1
				0
				)
			
 		
	

	
		
			
				𝐺
				(
				𝑡
				,
				𝑠
				)
				=
				(
				𝛼
				−
				1
				)
				𝑡
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				
			
			
				≥
				1
				Γ
				(
				𝛼
				)
			

			
				
			
			
				Γ
				(
				𝛼
				)
				(
				𝛼
				−
				2
				+
				𝑠
				)
				𝑡
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			

				.
			

		
	

						The proof is completed. 
Remark 2.5.  By Lemma 2.4, there exists 
	
		
			
				𝐾
				>
				0
			

		
	
 such that the positive solution 
	
		
			

				𝑢
			

		
	
 in [14] satisfies
							
	
 		
 			
				(
				2
				.
				1
				1
				)
			
 		
	

	
		
			
				𝑢
				𝑡
				(
				𝑡
				)
				≥
			

			
				
			
			
				𝛼
				−
				1
				‖
				𝑢
				‖
				,
				𝑢
				(
				𝑡
				)
				≤
				𝐾
				𝑡
				,
			

		
	

						where 
	
		
			
				‖
				𝑢
				‖
				=
				m
				a
				x
			

			
				0
				≤
				𝑡
				≤
				1
			

			
				|
				𝑢
				(
				𝑡
				)
				|
			

		
	
.
Proof. In [14], the positive solution of (P) is equivalent to the fixed point of 
	
		
			

				𝐴
			

		
	
 in 
	
		
			

				𝑄
			

		
	
, where 
	
		
			
				𝑄
				=
				{
				𝑢
				(
				𝑡
				)
				∈
				𝐶
				[
				0
				,
				1
				]
				∶
				𝑢
				(
				𝑡
				)
				≥
				0
				}
			

		
	
 and
							
	
 		
 			
				(
				2
				.
				1
				2
				)
			
 		
	

	
		
			
				
				𝐴
				𝑢
				(
				𝑡
				)
				=
			

			
				1
				0
			

			
				𝐺
				(
				𝑡
				,
				𝑠
				)
				𝑓
				(
				𝑠
				,
				𝑢
				(
				𝑠
				)
				)
				𝑑
				𝑠
				.
			

		
	
For any 
	
		
			
				𝑢
				∈
				𝑄
			

		
	
, by (1) of Lemma 2.4, we have
							
	
 		
 			
				(
				2
				.
				1
				3
				)
			
 		
	

	
		
			
				𝑡
				𝐴
				𝑢
				(
				𝑡
				)
				≤
			

			
				
			
			
				
				Γ
				(
				𝛼
				−
				1
				)
			

			
				1
				0
			

			
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				𝑓
				(
				𝑠
				,
				𝑢
				(
				𝑠
				)
				)
				𝑑
				𝑠
				.
			

		
	

						On the other hand, by 
	
		
			
				(
				2
				)
				,
				(
				3
				)
			

		
	
 of Lemma 2.4, we get
							
	
 		
 			
				(
				2
				.
				1
				4
				)
			
 		
	

	
		
			
				𝑡
				𝐴
				𝑢
				(
				𝑡
				)
				≥
			

			
				
			
			
				
				Γ
				(
				𝛼
				)
			

			
				1
				0
			

			
				(
				𝛼
				−
				2
				+
				𝑠
				)
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				1
				𝑓
				(
				𝑠
				,
				𝑢
				(
				𝑠
				)
				)
				𝑑
				𝑠
				,
				𝐴
				𝑢
				(
				𝑡
				)
				≤
			

			
				
			
			
				Γ
				
				(
				𝛼
				−
				1
				)
			

			
				1
				0
			

			
				(
				𝛼
				−
				2
				+
				𝑠
				)
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				𝑓
				(
				𝑠
				,
				𝑢
				(
				𝑠
				)
				)
				𝑑
				𝑠
				,
			

		
	

						which implies 
	
		
			
				𝐴
				𝑢
				(
				𝑡
				)
				≥
				(
				𝑡
				/
				(
				𝛼
				−
				1
				)
				)
				‖
				𝐴
				𝑢
				(
				𝑡
				)
				‖
			

		
	
.If 
	
		
			

				𝑢
			

		
	
 is a positive solution of (P), then 
	
		
			

				𝑢
			

		
	
 is a fixed point of 
	
		
			

				𝐴
			

		
	
 in 
	
		
			

				𝑄
			

		
	
, therefore
							
	
 		
 			
				(
				2
				.
				1
				5
				)
			
 		
	

	
		
			
				𝑢
				𝑡
				(
				𝑡
				)
				≥
			

			
				
			
			
				𝛼
				−
				1
				‖
				𝑢
				‖
				,
				𝑢
				(
				𝑡
				)
				≤
				𝐾
				𝑡
				,
			

		
	

						where 
	
		
			
				∫
				𝐾
				=
				(
				1
				/
				(
				Γ
				(
				𝛼
				−
				1
				)
				)
				)
			

			
				1
				0
			

			
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				𝑓
				(
				𝑠
				,
				𝑢
				(
				𝑠
				)
				)
				𝑑
				𝑠
			

		
	
. The proof is completed.
For the convenience of presentation, we list here the hypotheses to be used later.
	
		
			
				(
				𝐻
			

			

				1
			

			

				)
			

		
	
 
	
		
			
				𝑓
				∈
				𝐶
				(
				(
				0
				,
				1
				)
				×
				[
				0
				,
				+
				∞
				)
				,
				(
				−
				∞
				,
				+
				∞
				)
				)
			

		
	
 and satisfies
								
	
 		
 			
				(
				2
				.
				1
				6
				)
			
 		
	

	
		
			
				−
				𝑟
				(
				𝑡
				)
				≤
				𝑓
				(
				𝑡
				,
				𝑥
				)
				≤
				𝑧
				(
				𝑡
				)
				𝑔
				(
				𝑥
				)
				,
			

		
	

							where 
	
		
			
				𝑟
				,
				𝑧
				∈
				𝐶
				(
				(
				0
				,
				1
				)
				,
				[
				0
				,
				+
				∞
				)
				)
			

		
	
, 
	
		
			
				𝑔
				∈
				𝐶
				(
				[
				0
				,
				+
				∞
				)
				,
				[
				0
				,
				+
				∞
				)
				)
			

		
	
.
	
		
			
				(
				𝐻
			

			

				2
			

			

				)
			

		
	
 
	
		
			
				∫
				0
				<
			

			
				1
				0
			

			
				𝑟
				(
				𝑠
				)
				𝑑
				𝑠
				<
				+
				∞
			

		
	
, 
	
		
			
				∫
				0
				<
			

			
				1
				0
			

			
				(
				𝛼
				−
				2
				+
				𝑠
				)
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				(
				𝑧
				(
				𝑠
				)
				+
				𝑟
				(
				𝑠
				)
				)
				𝑑
				𝑠
				<
				+
				∞
			

		
	
.
	
		
			
				(
				𝐻
			

			

				3
			

			

				)
			

		
	
  There exists 
	
		
			
				[
				𝑎
				,
				𝑏
				]
				⊂
				(
				0
				,
				1
				)
			

		
	
 such that
								
	
 		
 			
				(
				2
				.
				1
				7
				)
			
 		
	

	
		
			
				l
				i
				m
				i
				n
				f
			

			
				𝑢
				→
				+
				∞
			

			
				m
				i
				n
			

			
				𝑡
				∈
				[
				𝑎
				,
				𝑏
				]
			

			
				𝑓
				(
				𝑡
				,
				𝑢
				)
			

			
				
			
			
				𝑢
				=
				+
				∞
				.
			

		
	

	
		
			
				(
				𝐻
			

			

				4
			

			

				)
			

		
	
  There exists 
	
		
			
				[
				𝑐
				,
				𝑑
				]
				⊂
				(
				0
				,
				1
				)
			

		
	
 such that
								
	
 		
 			
				(
				2
				.
				1
				8
				)
			
 		
	

	
		
			
				l
				i
				m
				i
				n
				f
			

			
				𝑢
				→
				+
				∞
			

			
				m
				i
				n
			

			
				[
				]
				𝑡
				∈
				𝑐
				,
				𝑑
			

			
				𝑓
				(
				𝑡
				,
				𝑢
				)
				>
				2
				(
				𝛼
				−
				1
				)
			

			

				2
			

			

				∫
			

			
				1
				0
			

			
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				𝑟
				(
				𝑠
				)
				𝑑
				𝑠
			

			
				
			
			

				∫
			

			
				𝑑
				𝑐
			

			
				(
				𝛼
				−
				2
				+
				𝑠
				)
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				,
				𝑑
				𝑠
				l
				i
				m
			

			
				𝑢
				→
				+
				∞
			

			
				𝑔
				(
				𝑢
				)
			

			
				
			
			
				𝑢
				=
				0
				.
			

		
	

Lemma 2.6.   Assume that 
	
		
			
				(
				𝐻
			

			

				1
			

			

				)
			

		
	
 and 
	
		
			
				(
				𝐻
			

			

				2
			

			

				)
			

		
	
 hold, then the boundary value problem
							
	
 		
 			
				(
				2
				.
				1
				9
				)
			
 		
	

	
		
			

				𝑐
			

			

				𝐷
			

			
				𝛼
				0
				+
			

			
				𝑢
				(
				𝑡
				)
				+
				𝑟
				(
				𝑡
				)
				=
				0
				,
				0
				<
				𝑡
				<
				1
				,
				𝑢
				(
				0
				)
				=
				𝑢
			

			

				
			

			
				(
				1
				)
				=
				𝑢
			

			
				
				
			

			
				(
				0
				)
				=
				0
				,
			

		
	

						has a unique solution 
	
		
			
				∫
				𝜔
				(
				𝑡
				)
				=
			

			
				1
				0
			

			
				𝐺
				(
				𝑡
				,
				𝑠
				)
				𝑟
				(
				𝑠
				)
				𝑑
				𝑠
			

		
	
 with
							
	
 		
 			
				(
				2
				.
				2
				0
				)
			
 		
	

	
		
			
				
				𝜔
				(
				𝑡
				)
				≤
				𝑡
			

			
				1
				0
			

			

				1
			

			
				
			
			
				Γ
				(
				𝛼
				−
				1
				)
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				[
				]
				.
				𝑟
				(
				𝑠
				)
				𝑑
				𝑠
				,
				𝑡
				∈
				0
				,
				1
			

		
	

Proof.  By Lemma 2.3, we have that 
	
		
			
				∫
				𝜔
				(
				𝑡
				)
				=
			

			
				1
				0
			

			
				𝐺
				(
				𝑡
				,
				𝑠
				)
				𝑟
				(
				𝑠
				)
				𝑑
				𝑠
			

		
	
 is the unique solution of (2.19). By (1) of Lemma 2.4, we have
							
	
 		
 			
				(
				2
				.
				2
				1
				)
			
 		
	

	
		
			
				
				𝜔
				(
				𝑡
				)
				=
			

			
				1
				0
			

			
				
				𝐺
				(
				𝑡
				,
				𝑠
				)
				𝑟
				(
				𝑠
				)
				𝑑
				𝑠
				≤
				𝑡
			

			
				1
				0
			

			

				1
			

			
				
			
			
				Γ
				(
				𝛼
				−
				1
				)
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				𝑟
				(
				𝑠
				)
				𝑑
				𝑠
				.
			

		
	

						The proof is completed.
Let 
	
		
			
				𝐸
				=
				𝐶
				[
				0
				,
				1
				]
			

		
	
 be endowed with the maximum norm 
	
		
			
				‖
				𝑢
				‖
				=
				m
				a
				x
			

			
				0
				≤
				𝑡
				≤
				1
			

			
				|
				𝑢
				(
				𝑡
				)
				|
			

		
	
. Define a cone 
	
		
			

				𝑃
			

		
	
 by
	
 		
 			
				(
				2
				.
				2
				2
				)
			
 		
	

	
		
			
				
				𝑡
				𝑃
				=
				𝑢
				(
				𝑡
				)
				∈
				𝐸
				∶
				𝑢
				(
				𝑡
				)
				≥
			

			
				
			
			
				
				.
				𝛼
				−
				1
				‖
				𝑢
				‖
			

		
	

					Set 
	
		
			

				𝐵
			

			

				𝑟
			

			
				=
				{
				𝑢
				(
				𝑡
				)
				∈
				𝐸
				∶
				‖
				𝑢
				‖
				<
				𝑟
				}
			

		
	
, 
	
		
			

				𝑃
			

			

				𝑟
			

			
				=
				𝑃
				∩
				𝐵
			

			

				𝑟
			

		
	
, 
	
		
			
				𝜕
				𝑃
			

			

				𝑟
			

			
				=
				𝑃
				∩
				𝜕
				𝐵
			

			

				𝑟
			

		
	
.
Next we consider the following boundary value problem:
	
 		
 			
				(
				2
				.
				2
				3
				)
			
 		
	

	
		
			

				𝑐
			

			

				𝐷
			

			
				𝛼
				0
				+
			

			
				
				𝑓
				
				[
				]
				𝑢
				(
				𝑡
				)
				+
				𝜆
				𝑡
				,
				𝑢
				(
				𝑡
				)
				−
				𝜆
				𝜔
				(
				𝑡
				)
			

			

				+
			

			
				
				
				+
				𝑟
				(
				𝑡
				)
				=
				0
				,
				0
				<
				𝑡
				<
				1
				,
				𝑢
				(
				0
				)
				=
				𝑢
			

			

				
			

			
				(
				1
				)
				=
				𝑢
			

			
				
				
			

			
				(
				0
				)
				=
				0
				,
			

		
	

					where 
	
		
			
				𝜆
				>
				0
			

		
	
, 
	
		
			
				𝜔
				(
				𝑡
				)
			

		
	
 is defined in Lemma 2.6, 
	
		
			
				[
				𝑢
				(
				𝑡
				)
				−
				𝜆
				𝜔
				(
				𝑡
				)
				]
			

			

				+
			

			
				=
				m
				a
				x
				{
				𝑢
				(
				𝑡
				)
				−
				𝜆
				𝜔
				(
				𝑡
				)
				,
				0
				}
			

		
	
.
Let
	
 		
 			
				(
				2
				.
				2
				4
				)
			
 		
	

	
		
			
				
				𝑇
				𝑢
				(
				𝑡
				)
				=
				𝜆
			

			
				1
				0
			

			
				
				𝑓
				
				[
				]
				𝐺
				(
				𝑡
				,
				𝑠
				)
				𝑠
				,
				𝑢
				(
				𝑠
				)
				−
				𝜆
				𝜔
				(
				𝑠
				)
			

			

				+
			

			
				
				
				+
				𝑟
				(
				𝑠
				)
				𝑑
				𝑠
				.
			

		
	

					It is easy to check that 
	
		
			

				𝑢
			

		
	
 is a solution of (2.23) if and only if 
	
		
			

				𝑢
			

		
	
 is a fixed point of  
	
		
			

				𝑇
			

		
	
.
Lemma 2.7.  
	
		
			
				𝑇
				∶
				𝑃
				→
				𝑃
			

		
	
 is a completely continuous operator.
Proof. For any 
	
		
			
				𝑢
				∈
				𝑃
			

		
	
, Lemma 2.4 implies that
							
	
 		
 			
				(
				2
				.
				2
				5
				)
			
 		
	

	
		
			
				𝑇
				𝑢
				(
				𝑡
				)
				≥
				𝜆
				𝑡
			

			
				
			
			
				
				Γ
				(
				𝛼
				)
			

			
				1
				0
			

			
				(
				𝛼
				−
				2
				+
				𝑠
				)
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				
				𝑓
				
				[
				]
				𝑠
				,
				𝑢
				(
				𝑠
				)
				−
				𝜆
				𝜔
				(
				𝑠
				)
			

			

				+
			

			
				
				
				+
				𝑟
				(
				𝑠
				)
				𝑑
				𝑠
				.
			

		
	

						On the other hand
							
	
 		
 			
				(
				2
				.
				2
				6
				)
			
 		
	

	
		
			
				𝜆
				𝑇
				𝑢
				(
				𝑡
				)
				≤
			

			
				
			
			
				
				Γ
				(
				𝛼
				−
				1
				)
			

			
				1
				0
			

			
				(
				𝛼
				−
				2
				+
				𝑠
				)
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				
				𝑓
				
				[
				]
				𝑠
				,
				𝑢
				(
				𝑠
				)
				−
				𝜆
				𝜔
				(
				𝑠
				)
			

			

				+
			

			
				
				
				+
				𝑟
				(
				𝑠
				)
				𝑑
				𝑠
				.
			

		
	

						Then 
	
		
			
				𝑇
				𝑢
				(
				𝑡
				)
				≥
				(
				𝑡
				/
				(
				𝛼
				−
				1
				)
				)
				‖
				𝑇
				𝑢
				(
				𝑡
				)
				‖
			

		
	
, which implies 
	
		
			
				𝑇
				∶
				𝑃
				→
				𝑃
			

		
	
.According to the Ascoli-Arzela theorem, we can easily get that 
	
		
			
				𝑇
				∶
				𝑃
				→
				𝑃
			

		
	
 is a completely continuous operator. The proof is completed.
Lemma 2.8 (see [18]).   Let 
	
		
			

				𝐸
			

		
	
 be a real Banach space, and let   
	
		
			
				𝑃
				⊂
				𝐸
			

		
	
  be a cone. Assume that  
	
		
			

				Ω
			

			

				1
			

		
	
 and 
	
		
			

				Ω
			

			

				2
			

		
	
 are two bounded open subsets of 
	
		
			

				𝐸
			

		
	
  with  
	
		
			
				𝜃
				∈
				Ω
			

			

				1
			

			

				,
			

			
				
			
			

				Ω
			

			

				1
			

			
				⊂
				Ω
			

			

				2
			

		
	
,   and 
	
		
			
				𝑇
				∶
			

		
	
 
	
		
			
				𝑃
				∩
				(
			

			
				
			
			

				Ω
			

			

				2
			

			
				⧵
				Ω
			

			

				1
			

			
				)
				→
				𝑃
			

		
	
 is a  completely continuous operator such that either (1)
	
		
			
				‖
				𝑇
				𝑢
				‖
				≤
				‖
				𝑢
				‖
				,
				𝑢
				∈
				𝑃
				∩
				𝜕
				Ω
			

			

				1
			

		
	
 and 
	
		
			
				‖
				𝑇
				𝑢
				‖
				≥
				‖
				𝑢
				‖
				,
				𝑢
				∈
				𝑃
				∩
				𝜕
				Ω
			

			

				2
			

		
	
, or(2)
	
		
			
				‖
				𝑇
				𝑢
				‖
				≥
				‖
				𝑢
				‖
				,
				𝑢
				∈
				𝑃
				∩
				𝜕
				Ω
			

			

				1
			

		
	
 and 
	
		
			
				‖
				𝑇
				𝑢
				‖
				≤
				‖
				𝑢
				‖
				,
				𝑢
				∈
				𝑃
				∩
				𝜕
				Ω
			

			

				2
			

		
	
.Then T has a fixed point in 
	
		
			
				𝑃
				∩
				(
			

			
				
			
			

				Ω
			

			

				2
			

			
				⧵
				Ω
			

			

				1
			

			

				)
			

		
	
.
3.  Existence of Positive Solutions
Theorem 3.1.  Suppose that 
	
		
			
				(
				𝐻
			

			

				1
			

			

				)
			

		
	
–
	
		
			
				(
				𝐻
			

			

				3
			

			

				)
			

		
	
 hold. Then there exists 
	
		
			

				𝜆
			

			

				∗
			

			
				>
				0
			

		
	
 such that the boundary value problem (1.1) has at least one positive solution for any 
	
		
			
				𝜆
				∈
				(
				0
				,
				𝜆
			

			

				∗
			

			

				)
			

		
	
.
Proof. Choose 
	
		
			

				𝑟
			

			

				1
			

			
				∫
				>
				(
				(
				𝛼
				−
				1
				)
				/
				Γ
				(
				𝛼
				−
				1
				)
				)
			

			
				1
				0
			

			
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				𝑟
				(
				𝑠
				)
				𝑑
				𝑠
			

		
	
. Let
							
	
 		
 			
				(
				3
				.
				1
				)
			
 		
	

	
		
			

				𝜆
			

			

				∗
			

			
				
				𝑟
				=
				m
				i
				n
				1
				,
			

			

				1
			

			
				Γ
				(
				𝛼
				−
				1
				)
			

			
				
			
			
				
				𝑔
			

			

				∗
			

			
				
				𝑟
			

			

				1
			

			
				
				
				∫
				+
				1
			

			
				1
				0
			

			
				(
				𝛼
				−
				2
				+
				𝑠
				)
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				
				,
				(
				𝑧
				(
				𝑠
				)
				+
				𝑟
				(
				𝑠
				)
				)
				𝑑
				𝑠
			

		
	

						where
							
	
 		
 			
				(
				3
				.
				2
				)
			
 		
	

	
		
			

				𝑔
			

			

				∗
			

			
				(
				𝑟
				)
				=
				m
				a
				x
			

			
				[
				]
				𝑥
				∈
				0
				,
				𝑟
			

			
				𝑔
				(
				𝑥
				)
				.
			

		
	

						In the rest of the proof, we suppose 
	
		
			
				𝜆
				∈
				(
				0
				,
				𝜆
			

			

				∗
			

			

				)
			

		
	
.For any 
	
		
			
				𝑢
				∈
				𝜕
				𝑃
			

			

				𝑟
			

			

				1
			

		
	
, noting that
							
	
 		
 			
				(
				3
				.
				3
				)
			
 		
	

	
		
			
				𝑢
				𝑡
				(
				𝑡
				)
				≥
			

			
				
			
			
				𝑟
				𝛼
				−
				1
			

			

				1
			

			
				[
				]
				,
				𝑡
				∈
				0
				,
				1
			

		
	

						and using (2.20), we have
							
	
 		
 			
				(
				3
				.
				4
				)
			
 		
	

	
		
			
				
				𝑟
				0
				≤
				𝑡
			

			

				1
			

			
				
			
			
				−
				
				𝛼
				−
				1
			

			
				1
				0
			

			

				1
			

			
				
			
			
				Γ
				(
				𝛼
				−
				1
				)
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				
				𝑟
				(
				𝑠
				)
				𝑑
				𝑠
				≤
				𝑢
				(
				𝑡
				)
				−
				𝜆
				𝜔
				(
				𝑡
				)
				≤
				𝑟
			

			

				1
			

			

				.
			

		
	

						Therefore,
							
	
 		
 			
				(
				3
				.
				5
				)
			
 		
	

	
		
			
				
				𝑇
				𝑢
				(
				𝑡
				)
				=
				𝜆
			

			
				1
				0
			

			
				
				𝑓
				
				[
				]
				𝐺
				(
				𝑡
				,
				𝑠
				)
				𝑠
				,
				𝑢
				(
				𝑠
				)
				−
				𝜆
				𝜔
				(
				𝑠
				)
			

			

				+
			

			
				
				
				≤
				𝜆
				+
				𝑟
				(
				𝑠
				)
				𝑑
				𝑠
			

			
				
			
			
				Γ
				
				(
				𝛼
				−
				1
				)
			

			
				1
				0
			

			
				(
				𝛼
				−
				2
				+
				𝑠
				)
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				
				
				[
				]
				𝑧
				(
				𝑠
				)
				𝑔
				𝑢
				(
				𝑠
				)
				−
				𝜆
				𝜔
				(
				𝑠
				)
			

			

				+
			

			
				
				
				≤
				𝜆
				+
				𝑟
				(
				𝑠
				)
				𝑑
				𝑠
			

			
				
			
			
				
				𝑔
				Γ
				(
				𝛼
				−
				1
				)
			

			

				∗
			

			
				
				𝑟
			

			

				1
			

			
				
				
				
				+
				1
			

			
				1
				0
			

			
				(
				𝛼
				−
				2
				+
				𝑠
				)
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				[
				]
				<
				𝜆
				𝑧
				(
				𝑠
				)
				+
				𝑟
				(
				𝑠
				)
				𝑑
				𝑠
			

			

				∗
			

			
				
			
			
				
				𝑔
				Γ
				(
				𝛼
				−
				1
				)
			

			

				∗
			

			
				
				𝑟
			

			

				1
			

			
				
				
				
				+
				1
			

			
				1
				0
			

			
				(
				𝛼
				−
				2
				+
				𝑠
				)
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				[
				]
				𝑧
				(
				𝑠
				)
				+
				𝑟
				(
				𝑠
				)
				𝑑
				𝑠
				≤
				𝑟
			

			

				1
			

			

				.
			

		
	

						Thus,
							
	
 		
 			
				(
				3
				.
				6
				)
			
 		
	

	
		
			
				‖
				𝑇
				𝑢
				‖
				≤
				‖
				𝑢
				‖
				,
				∀
				𝑢
				∈
				𝜕
				𝑃
			

			

				𝑟
			

			

				1
			

			

				.
			

		
	
Now choose a real number
							
	
 		
 			
				(
				3
				.
				7
				)
			
 		
	

	
		
			
				𝐿
				>
				4
				Γ
				(
				𝛼
				)
			

			
				
			
			
				∫
				𝜆
				𝑎
			

			
				𝑏
				𝑎
			

			
				(
				𝛼
				−
				2
				+
				𝑠
				)
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				.
				𝑑
				𝑠
			

		
	

						By 
	
		
			
				(
				𝐻
			

			

				3
			

			

				)
			

		
	
, there exists a constant 
	
		
			
				𝑁
				>
				0
			

		
	
 such that for any 
	
		
			
				𝑡
				∈
				[
				𝑎
				,
				𝑏
				]
			

		
	
, 
	
		
			
				𝑥
				≥
				𝑁
			

		
	
, we have
							
	
 		
 			
				(
				3
				.
				8
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑡
				,
				𝑥
				)
				>
				𝐿
				𝑥
				.
			

		
	

						Select
							
	
 		
 			
				(
				3
				.
				9
				)
			
 		
	

	
		
			

				𝑟
			

			

				2
			

			
				
				𝑟
				>
				m
				a
				x
			

			

				1
			

			
				,
				2
				(
				𝛼
				−
				1
				)
			

			
				
			
			
				
				Γ
				(
				𝛼
				−
				1
				)
			

			
				1
				0
			

			
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				𝑟
				(
				𝑠
				)
				𝑑
				𝑠
				,
				4
				𝑁
			

			
				
			
			
				𝑎
				
				.
			

		
	

						Then for any 
	
		
			
				𝑢
				∈
				𝜕
				𝑃
			

			

				𝑟
			

			

				2
			

		
	
, we have 
	
		
			
				𝑢
				(
				𝑡
				)
				−
				𝜆
				𝜔
				(
				𝑡
				)
				≥
				0
				,
				𝑡
				∈
				[
				0
				,
				1
				]
			

		
	
. Moreover, by the selection of 
	
		
			

				𝑟
			

			

				2
			

		
	
 we have
							
	
 		
 			
				(
				3
				.
				1
				0
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				
				Γ
				(
				𝛼
				−
				1
				)
			

			
				1
				0
			

			
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				𝑟
				𝑟
				(
				𝑠
				)
				𝑑
				𝑠
				<
			

			

				2
			

			
				
			
			
				.
				2
				(
				𝛼
				−
				1
				)
			

		
	

						Thus for any 
	
		
			
				𝑡
				∈
				[
				𝑎
				,
				𝑏
				]
			

		
	
, as 
	
		
			
				1
				<
				𝛼
				−
				1
				≤
				2
			

		
	
, we get
							
	
 		
 			
				(
				3
				.
				1
				1
				)
			
 		
	

	
		
			
				
				𝑟
				𝑢
				(
				𝑡
				)
				−
				𝜆
				𝜔
				(
				𝑡
				)
				≥
				𝑡
			

			

				2
			

			
				
			
			
				−
				1
				𝛼
				−
				1
			

			
				
			
			
				
				Γ
				(
				𝛼
				−
				1
				)
			

			
				1
				0
			

			
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				
				>
				𝑟
				(
				𝑠
				)
				𝑑
				𝑠
				𝑎
				𝑟
			

			

				2
			

			
				
			
			
				≥
				2
				(
				𝛼
				−
				1
				)
				𝑎
				𝑟
			

			

				2
			

			
				
			
			
				4
				.
			

		
	

						Noting that 
	
		
			

				𝑟
			

			

				2
			

			
				>
				4
				𝑁
				/
				𝑎
			

		
	
, we have
							
	
 		
 			
				(
				3
				.
				1
				2
				)
			
 		
	

	
		
			
				𝑢
				(
				𝑡
				)
				−
				𝜆
				𝜔
				(
				𝑡
				)
				>
				𝑎
				𝑟
			

			

				2
			

			
				
			
			
				4
				[
				]
				.
				>
				𝑁
				,
				𝑡
				∈
				𝑎
				,
				𝑏
			

		
	

						Hence we get
							
	
 		
 			
				(
				3
				.
				1
				3
				)
			
 		
	

	
		
			
				𝜆
				𝑇
				𝑢
				(
				1
				)
				=
			

			
				
			
			
				
				Γ
				(
				𝛼
				)
			

			
				1
				0
			

			
				(
				𝛼
				−
				2
				+
				𝑠
				)
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				
				𝑓
				
				[
				]
				𝑠
				,
				𝑢
				(
				𝑠
				)
				−
				𝜆
				𝜔
				(
				𝑠
				)
			

			

				+
			

			
				
				
				≥
				𝜆
				+
				𝑟
				(
				𝑠
				)
				𝑑
				𝑠
			

			
				
			
			
				
				Γ
				(
				𝛼
				)
			

			
				𝑏
				𝑎
			

			
				(
				𝛼
				−
				2
				+
				𝑠
				)
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				𝑓
				
				[
				]
				𝑠
				,
				𝑢
				(
				𝑠
				)
				−
				𝜆
				𝜔
				(
				𝑠
				)
			

			

				+
			

			
				
				≥
				𝑑
				𝑠
				𝜆
				𝐿
			

			
				
			
			
				
				Γ
				(
				𝛼
				)
			

			
				𝑏
				𝑎
			

			
				(
				𝛼
				−
				2
				+
				𝑠
				)
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				[
				]
				≥
				𝑢
				(
				𝑠
				)
				−
				𝜆
				𝜔
				(
				𝑠
				)
				𝑑
				𝑠
				𝜆
				𝐿
				𝑎
				𝑟
			

			

				2
			

			
				
			
			
				
				4
				Γ
				(
				𝛼
				)
			

			
				𝑏
				𝑎
			

			
				(
				𝛼
				−
				2
				+
				𝑠
				)
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				𝑑
				𝑠
				>
				𝑟
			

			

				2
			

			

				.
			

		
	

						Thus,
							
	
 		
 			
				(
				3
				.
				1
				4
				)
			
 		
	

	
		
			
				‖
				𝑇
				𝑢
				‖
				≥
				‖
				𝑢
				‖
				,
				∀
				𝑢
				∈
				𝜕
				𝑃
			

			

				𝑟
			

			

				2
			

			

				.
			

		
	

						By Lemma 2.8, 
	
		
			

				𝑇
			

		
	
 has a fixed point 
	
		
			

				𝑢
			

		
	
 such that 
	
		
			

				𝑟
			

			

				1
			

			
				≤
				‖
				𝑢
				‖
				≤
				𝑟
			

			

				2
			

		
	
. Since 
	
		
			
				‖
				𝑢
				‖
				≥
				𝑟
			

			

				1
			

		
	
, by (3.4) we have 
	
		
			
				𝑢
				(
				𝑡
				)
				−
				𝜆
				𝜔
				(
				𝑡
				)
				>
				0
				,
				𝑡
				∈
				(
				0
				,
				1
				]
			

		
	
. Let 
	
		
			
				
			
			
				𝑢
				(
				𝑡
				)
				=
				𝑢
				(
				𝑡
				)
				−
				𝜆
				𝜔
				(
				𝑡
				)
			

		
	
. As 
	
		
			
				𝜔
				(
				𝑡
				)
			

		
	
 is the solution of (2.19) and 
	
		
			
				𝑢
				(
				𝑡
				)
			

		
	
 is the solution of (2.23), 
	
		
			
				
			
			
				𝑢
				(
				𝑡
				)
			

		
	
 is a positive solution of the singular semipositone boundary value problem (1.1). The proof is completed.
Theorem 3.2.  Suppose that 
	
		
			
				(
				𝐻
			

			

				1
			

			

				)
			

		
	
,  
	
		
			
				(
				𝐻
			

			

				2
			

			

				)
			

		
	
, and 
	
		
			
				(
				𝐻
			

			

				4
			

			

				)
			

		
	
 hold. Then there exists 
	
		
			

				𝜆
			

			

				∗
			

			
				>
				0
			

		
	
 such that the boundary value problem (1.1) has at least one positive solution for any 
	
		
			
				𝜆
				∈
				(
				𝜆
			

			

				∗
			

			
				,
				+
				∞
				)
			

		
	
.
Proof. By the first limit of 
	
		
			
				(
				𝐻
			

			

				4
			

			

				)
			

		
	
, we have that there exists 
	
		
			
				𝑁
				>
				0
			

		
	
 such that, for any 
	
		
			
				𝑡
				∈
				[
				𝑐
				,
				𝑑
				]
			

		
	
 and 
	
		
			
				𝑢
				≥
				𝑁
			

		
	
, we have
							
	
 		
 			
				(
				3
				.
				1
				5
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑡
				,
				𝑢
				)
				≥
				2
				(
				𝛼
				−
				1
				)
			

			

				2
			

			

				∫
			

			
				1
				0
			

			
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				𝑟
				(
				𝑠
				)
				𝑑
				𝑠
			

			
				
			
			

				∫
			

			
				𝑑
				𝑐
			

			
				(
				𝛼
				−
				2
				+
				𝑠
				)
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				.
				𝑑
				𝑠
			

		
	

						Select
							
	
 		
 			
				(
				3
				.
				1
				6
				)
			
 		
	

	
		
			

				𝜆
			

			

				∗
			

			
				=
				𝑁
				Γ
				(
				𝛼
				−
				1
				)
			

			
				
			
			
				𝑐
				∫
			

			
				1
				0
			

			
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				.
				𝑟
				(
				𝑠
				)
				𝑑
				𝑠
			

		
	

						In the rest of the proof, we suppose 
	
		
			
				𝜆
				>
				𝜆
			

			

				∗
			

		
	
.Let
							
	
 		
 			
				(
				3
				.
				1
				7
				)
			
 		
	

	
		
			

				𝑅
			

			

				1
			

			
				=
				∫
				2
				𝜆
				(
				𝛼
				−
				1
				)
			

			
				1
				0
			

			
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				𝑟
				(
				𝑠
				)
				𝑑
				𝑠
			

			
				
			
			
				.
				Γ
				(
				𝛼
				−
				1
				)
			

		
	

						Then, for any 
	
		
			
				𝑢
				∈
				𝜕
				𝑃
			

			

				𝑅
			

			

				1
			

		
	
, we have
							
	
 		
 			
				(
				3
				.
				1
				8
				)
			
 		
	

	
		
			
				
				𝑅
				𝑢
				(
				𝑡
				)
				−
				𝜆
				𝜔
				(
				𝑡
				)
				≥
				𝑡
			

			

				1
			

			
				
			
			
				
				𝛼
				−
				1
				−
				𝜆
			

			
				1
				0
			

			

				1
			

			
				
			
			
				Γ
				(
				𝛼
				−
				1
				)
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				
				=
				𝑟
				(
				𝑠
				)
				𝑑
				𝑠
				𝜆
				𝑡
			

			
				
			
			
				
				Γ
				(
				𝛼
				−
				1
				)
			

			
				1
				0
			

			
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				≥
				𝜆
				𝑟
				(
				𝑠
				)
				𝑑
				𝑠
			

			

				∗
			

			

				𝑡
			

			
				
			
			
				
				Γ
				(
				𝛼
				−
				1
				)
			

			
				1
				0
			

			
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				𝑟
				(
				𝑠
				)
				𝑑
				𝑠
				=
				𝑁
				𝑡
			

			
				
			
			
				𝑐
				,
			

		
	

						and therefore 
	
		
			
				𝑢
				(
				𝑡
				)
				−
				𝜆
				𝜔
				(
				𝑡
				)
				≥
				𝑁
			

		
	
 on 
	
		
			
				𝑡
				∈
				[
				𝑐
				,
				𝑑
				]
			

		
	
, 
	
		
			
				𝑢
				∈
				𝜕
				𝑃
			

			

				𝑅
			

			

				1
			

		
	
. Then,
							
	
 		
 			
				(
				3
				.
				1
				9
				)
			
 		
	

	
		
			
				
				𝑇
				𝑢
				(
				𝑡
				)
				=
				𝜆
			

			
				1
				0
			

			
				
				𝑓
				
				[
				]
				𝐺
				(
				𝑡
				,
				𝑠
				)
				𝑠
				,
				𝑢
				(
				𝑠
				)
				−
				𝜆
				𝜔
				(
				𝑠
				)
			

			

				+
			

			
				
				
				
				+
				𝑟
				(
				𝑠
				)
				𝑑
				𝑠
				≥
				𝜆
			

			
				𝑑
				𝑐
			

			
				
				[
				]
				𝐺
				(
				𝑡
				,
				𝑠
				)
				𝑓
				𝑠
				,
				𝑢
				(
				𝑠
				)
				−
				𝜆
				𝜔
				(
				𝑠
				)
			

			

				+
			

			
				
				≥
				𝑑
				𝑠
				2
				𝜆
				(
				𝛼
				−
				1
				)
			

			

				2
			

			

				∫
			

			
				1
				0
			

			
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				𝑟
				(
				𝑠
				)
				𝑑
				𝑠
			

			
				
			
			

				∫
			

			
				𝑑
				𝑐
			

			
				(
				𝛼
				−
				2
				+
				𝑠
				)
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				
				𝑑
				𝑠
			

			
				𝑑
				𝑐
			

			
				≥
				𝐺
				(
				𝑡
				,
				𝑠
				)
				𝑑
				𝑠
				2
				𝑡
				𝜆
				(
				𝛼
				−
				1
				)
			

			

				2
			

			

				∫
			

			
				1
				0
			

			
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				𝑟
				(
				𝑠
				)
				𝑑
				𝑠
			

			
				
			
			

				∫
			

			
				𝑑
				𝑐
			

			
				(
				𝛼
				−
				2
				+
				𝑠
				)
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				
				𝑑
				𝑠
			

			
				𝑑
				𝑐
			

			
				(
				𝛼
				−
				2
				+
				𝑠
				)
			

			
				
			
			
				Γ
				(
				𝛼
				)
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				=
				𝑑
				𝑠
				2
				𝜆
				𝑡
				(
				𝛼
				−
				1
				)
			

			
				
			
			
				
				Γ
				(
				𝛼
				−
				1
				)
			

			
				1
				0
			

			
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				𝑟
				(
				𝑠
				)
				𝑑
				𝑠
				=
				𝑡
				𝑅
			

			

				1
			

			

				,
			

		
	

						which implies
							
	
 		
 			
				(
				3
				.
				2
				0
				)
			
 		
	

	
		
			
				‖
				𝑇
				𝑢
				‖
				≥
				‖
				𝑢
				‖
				,
				∀
				𝑢
				∈
				𝜕
				𝑃
			

			

				𝑅
			

			

				1
			

			

				.
			

		
	
On the other hand, as 
	
		
			
				𝑔
				(
				𝑡
				)
			

		
	
 is continuous on 
	
		
			
				[
				0
				,
				+
				∞
				)
			

		
	
, from the second limit of 
	
		
			
				(
				𝐻
			

			

				4
			

			

				)
			

		
	
, we have
							
	
 		
 			
				(
				3
				.
				2
				1
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑢
				→
				+
				∞
			

			

				𝑔
			

			

				∗
			

			
				(
				𝑢
				)
			

			
				
			
			
				𝑢
				=
				0
				,
			

		
	

						where 
	
		
			

				𝑔
			

			

				∗
			

			
				(
				𝑢
				)
			

		
	
 is defined by (3.2). In fact, by 
	
		
			
				l
				i
				m
			

			
				𝑢
				→
				+
				∞
			

			
				𝑔
				(
				𝑢
				)
				/
				𝑢
				=
				0
				,
			

		
	
 for any 
	
		
			
				𝜖
				>
				0
			

		
	
, there exists 
	
		
			

				𝑁
			

			

				1
			

			
				>
				0
			

		
	
 such that for any 
	
		
			
				𝑢
				>
				𝑁
			

			

				1
			

		
	
 we have 
	
		
			
				0
				≤
				𝑔
				(
				𝑢
				)
				<
				𝜖
				𝑢
			

		
	
. Let 
	
		
			
				𝑁
				=
				m
				a
				x
				{
				𝑁
			

			

				1
			

			
				,
				𝑔
			

			

				∗
			

			
				(
				𝑁
			

			

				1
			

			
				)
				/
				𝜖
				}
			

		
	
, for any 
	
		
			
				𝑢
				>
				𝑁
			

		
	
 we have 
	
		
			
				0
				≤
				𝑔
			

			

				∗
			

			
				(
				𝑢
				)
				<
				𝜖
				𝑢
				+
				𝑔
			

			

				∗
			

			
				(
				𝑁
			

			

				1
			

			
				)
				<
				2
				𝜖
				𝑢
			

		
	
. Therefore, 
	
		
			
				l
				i
				m
			

			
				𝑢
				→
				+
				∞
			

			

				𝑔
			

			

				∗
			

			
				(
				𝑢
				)
				/
				𝑢
				=
				0
				.
			

		
	
 For
							
	
 		
 			
				(
				3
				.
				2
				2
				)
			
 		
	

	
		
			
				
				
				𝜖
				=
				Γ
				(
				𝛼
				−
				1
				)
				2
				𝜆
			

			
				1
				0
			

			
				(
				𝛼
				−
				2
				+
				𝑠
				)
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				
				𝑧
				(
				𝑠
				)
				𝑑
				𝑠
			

			
				−
				1
			

			

				,
			

		
	

						there exists 
	
		
			

				𝑋
			

			

				0
			

			
				>
				0
			

		
	
 such that when 
	
		
			
				𝑥
				≥
				𝑋
			

			

				0
			

		
	
, for any 
	
		
			
				0
				≤
				𝑢
				≤
				𝑥
			

		
	
, we have
							
	
 		
 			
				(
				3
				.
				2
				3
				)
			
 		
	

	
		
			
				𝑔
				(
				𝑢
				)
				≤
				𝑔
			

			

				∗
			

			
				(
				𝑥
				)
				≤
				𝜀
				𝑥
				.
			

		
	
Select
							
	
 		
 			
				(
				3
				.
				2
				4
				)
			
 		
	

	
		
			

				𝑅
			

			

				2
			

			
				
				𝑋
				≥
				m
				a
				x
			

			

				0
			

			
				,
				𝑅
			

			

				1
			

			
				,
				2
				𝜆
			

			
				
			
			
				
				Γ
				(
				𝛼
				−
				1
				)
			

			
				1
				0
			

			
				(
				𝛼
				−
				2
				+
				𝑠
				)
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				
				.
				𝑟
				(
				𝑠
				)
				𝑑
				𝑠
			

		
	

						Then, for any 
	
		
			
				𝑢
				∈
				𝜕
				𝑃
			

			

				𝑅
			

			

				2
			

		
	
, we get
							
	
 		
 			
				(
				3
				.
				2
				5
				)
			
 		
	

	
		
			
				𝜆
				‖
				𝑇
				𝑢
				‖
				≤
			

			
				
			
			
				
				Γ
				(
				𝛼
				−
				1
				)
			

			
				1
				0
			

			
				(
				𝛼
				−
				2
				+
				𝑠
				)
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				
				
				[
				]
				𝑧
				(
				𝑠
				)
				𝑔
				𝑢
				(
				𝑠
				)
				−
				𝜆
				𝜔
				(
				𝑠
				)
			

			

				+
			

			
				
				
				≤
				+
				𝑟
				(
				𝑠
				)
				𝑑
				𝑠
				𝜆
				𝜀
				𝑅
			

			

				2
			

			
				
			
			
				Γ
				
				(
				𝛼
				−
				1
				)
			

			
				1
				0
			

			
				(
				𝛼
				−
				2
				+
				𝑠
				)
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				+
				𝜆
				𝑧
				(
				𝑠
				)
				𝑑
				𝑠
			

			
				
			
			
				
				Γ
				(
				𝛼
				−
				1
				)
			

			
				1
				0
			

			
				(
				𝛼
				−
				2
				+
				𝑠
				)
				(
				1
				−
				𝑠
				)
			

			
				𝛼
				−
				2
			

			
				𝑅
				𝑟
				(
				𝑠
				)
				𝑑
				𝑠
				≤
			

			

				2
			

			
				
			
			
				2
				+
				𝑅
			

			

				2
			

			
				
			
			
				2
				=
				𝑅
			

			

				2
			

			

				.
			

		
	

						Thus,
							
	
 		
 			
				(
				3
				.
				2
				6
				)
			
 		
	

	
		
			
				‖
				𝑇
				𝑢
				‖
				≤
				‖
				𝑢
				‖
				,
				∀
				𝑢
				∈
				𝜕
				𝑃
			

			

				𝑅
			

			

				2
			

			

				.
			

		
	

						By Lemma 2.8, 
	
		
			

				𝑇
			

		
	
 has a fixed point 
	
		
			

				𝑢
			

		
	
 such that 
	
		
			

				𝑅
			

			

				1
			

			
				≤
				‖
				𝑢
				‖
				≤
				𝑅
			

			

				2
			

		
	
. Since 
	
		
			

				𝑅
			

			

				1
			

			
				≤
				‖
				𝑢
				‖
			

		
	
, by (3.18), we have  
	
		
			
				𝑢
				(
				𝑡
				)
				−
				𝜆
				𝜔
				(
				𝑡
				)
				>
				0
				,
				𝑡
				∈
				(
				0
				,
				1
				]
			

		
	
. Let  
	
		
			
				
			
			
				𝑢
				(
				𝑡
				)
				=
				𝑢
				(
				𝑡
				)
				−
				𝜆
				𝜔
				(
				𝑡
				)
			

		
	
. As 
	
		
			
				𝜔
				(
				𝑡
				)
			

		
	
 is a solution of (2.19) and 
	
		
			
				𝑢
				(
				𝑡
				)
			

		
	
 is a solution of (2.23), 
	
		
			
				
			
			
				𝑢
				(
				𝑡
				)
			

		
	
 is a positive solution of the singular semipositone boundary value problem (1.1). The proof is completed.
Corollary 3.3.   The conclusion of Theorem 3.2 is valid if   
	
		
			
				(
				𝐻
			

			

				4
			

			

				)
			

		
	
  is replaced by  
	
		
			
				(
				𝐻
			

			
				∗
				4
			

			

				)
			

			

				:
			

		
	
  there exists 
	
		
			
				[
				𝑐
				,
				𝑑
				]
				⊂
				(
				0
				,
				1
				)
			

		
	
  such that
							
	
 		
 			
				(
				3
				.
				2
				7
				)
			
 		
	

	
		
			
				l
				i
				m
				i
				n
				f
			

			
				𝑢
				→
				+
				∞
			

			
				m
				i
				n
			

			
				[
				]
				𝑡
				∈
				𝑐
				,
				𝑑
			

			
				𝑓
				(
				𝑡
				,
				𝑢
				)
				=
				+
				∞
				;
				l
				i
				m
			

			
				𝑢
				→
				+
				∞
			

			
				𝑔
				(
				𝑢
				)
			

			
				
			
			
				𝑢
				=
				0
				.
			

		
	

4.  Examples
Example 4.1.  Consider the following problem
							
	
 		
 			
				(
				4
				.
				1
				)
			
 		
	

	
		
			

				𝑐
			

			

				𝐷
			

			
				5
				/
				2
				0
				+
			

			
				𝑢
				(
				𝑡
				)
				+
				𝜆
				𝑓
				(
				𝑡
				,
				𝑢
				)
				=
				0
				,
				0
				<
				𝑡
				<
				1
				,
				𝑢
				(
				0
				)
				=
				𝑢
			

			

				
			

			
				(
				1
				)
				=
				𝑢
			

			
				
				
			

			
				(
				0
				)
				=
				0
				,
			

		
	

						where 
	
		
			
				𝑓
				(
				𝑡
				,
				𝑢
				)
				=
				𝑢
			

			

				2
			

			
				/
				√
			

			
				
			
			
				𝑡
				(
				1
				−
				𝑡
				)
				+
				l
				n
				𝑡
			

		
	
. Let  
	
		
			
				√
				𝑧
				(
				𝑡
				)
				=
				1
				/
			

			
				
			
			
				𝑡
				(
				1
				−
				𝑡
				)
				,
				𝑟
				(
				𝑡
				)
				=
				−
				l
				n
				𝑡
			

		
	
, 
	
		
			
				𝑔
				(
				𝑢
				)
				=
				𝑢
			

			

				2
			

		
	
. By direct calculation, we have 
	
		
			

				∫
			

			
				1
				0
			

			
				∫
				𝑟
				(
				𝑡
				)
				𝑑
				𝑡
				=
				1
				,
			

			
				1
				0
			

			
				𝑧
				(
				𝑡
				)
				𝑑
				𝑡
				=
				𝜋
			

		
	
, and
							
	
 		
 			
				(
				4
				.
				2
				)
			
 		
	

	
		
			
				l
				i
				m
				i
				n
				f
			

			
				𝑢
				→
				+
				∞
			

			
				m
				i
				n
			

			
				𝑡
				∈
				[
				1
				/
				4
				,
				3
				/
				4
				]
			

			
				𝑓
				(
				𝑡
				,
				𝑢
				)
			

			
				
			
			
				𝑢
				=
				+
				∞
				.
			

		
	

						So all conditions of Theorem 3.1 are satisfied. By Theorem 3.1, BVP (4.1) has at least one positive solution provided 
	
		
			

				𝜆
			

		
	
 is sufficiently small.
Example 4.2.  Consider the following problem
							
	
 		
 			
				(
				4
				.
				3
				)
			
 		
	

	
		
			

				𝑐
			

			

				𝐷
			

			
				9
				/
				4
				0
				+
			

			
				𝑢
				(
				𝑡
				)
				+
				𝜆
				𝑓
				(
				𝑡
				,
				𝑢
				)
				=
				0
				,
				0
				<
				𝑡
				<
				1
				,
				𝑢
				(
				0
				)
				=
				𝑢
			

			

				
			

			
				(
				1
				)
				=
				𝑢
			

			
				
				
			

			
				(
				0
				)
				=
				0
				,
			

		
	

						where   
	
		
			
				√
				𝑓
				(
				𝑡
				,
				𝑢
				)
				=
				l
				n
				(
				1
				+
				𝑢
				)
				/
			

			
				
			
			
				𝑡
				(
				1
				−
				𝑡
				)
				+
				l
				n
				𝑡
			

		
	
. Let 
	
		
			
				√
				𝑧
				(
				𝑡
				)
				=
				1
				/
			

			
				
			
			
				𝑡
				(
				1
				−
				𝑡
				)
				,
				𝑟
				(
				𝑡
				)
				=
				−
				l
				n
				𝑡
				,
				𝑔
				(
				𝑢
				)
				=
				l
				n
				(
				1
				+
				𝑢
				)
			

		
	
. By direct calculation, we have 
	
		
			

				∫
			

			
				1
				0
			

			
				𝑟
				(
				𝑡
				)
				𝑑
				𝑡
				=
				1
			

		
	
, 
	
		
			

				∫
			

			
				1
				0
			

			
				𝑧
				(
				𝑡
				)
				𝑑
				𝑡
				=
				𝜋
			

		
	
, and
							
	
 		
 			
				(
				4
				.
				4
				)
			
 		
	

	
		
			
				l
				i
				m
				i
				n
				f
			

			
				𝑢
				→
				+
				∞
			

			
				m
				i
				n
			

			
				𝑡
				∈
				[
				1
				/
				4
				,
				3
				/
				4
				]
			

			
				𝑓
				(
				𝑡
				,
				𝑢
				)
				=
				+
				∞
				;
				l
				i
				m
			

			
				𝑢
				→
				+
				∞
			

			
				𝑔
				(
				𝑢
				)
			

			
				
			
			
				𝑢
				=
				0
				.
			

		
	

						So all conditions of Theorem 3.2 are satisfied. By Theorem 3.2, BVP (4.3) has at least one positive solution provided 
	
		
			

				𝜆
			

		
	
 is sufficiently large.
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