Research Article

On Subclass of \(k \)-Uniformly Convex Functions of Complex Order Involving Multiplier Transformations

Waggas Galib Atshan and Ali Hamza Abada

Department of Mathematics, College of Computer Science and Mathematics, University of Al-Qadisiya, Diwaniya, Iraq

Correspondence should be addressed to Waggas Galib Atshan, waggashnd@yahoo.com

Received 30 December 2011; Revised 28 February 2012; Accepted 13 March 2012

Academic Editor: Ondřej Došlý

Copyright © 2012 W. G. Atshan and A. H. Abada. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We introduce a subclass of \(k \)-uniformly convex functions of order \(\alpha \) with negative coefficients by using the multiplier transformations in the open unit disk \(U = \{ z \in \mathbb{C} : |z| < 1 \} \).

1. Introduction

Let \(\mathcal{N} \) denote the class of functions of the form:

\[
 f(z) = z^\beta + \sum_{n=2}^{\infty} \beta a_n z^{\beta+n-1}, \quad \beta > 0,
\]

which are analytic and univalent in the open unit disk \(U = \{ z \in \mathbb{C} : |z| < 1 \} \) (see [1]). Also denote by \(\mathcal{M} \) the subclass of \(\mathcal{N} \) consisting of functions of the form:

\[
 f(z) = z^\beta - \sum_{n=2}^{\infty} \beta a_n z^{\beta+n-1}, \quad (a_n \geq 0, \ \beta > 0).
\]
For any integer m, we define the multiplier transformations $I_m^\ell f(z)$ (see [2, 3]) of functions $f \in \mathcal{N}(n)$ by

$$I_m^\ell f(z) = z^\beta + \sum_{n=2}^{\infty} \frac{\beta + \ell}{\beta + \ell + n - 1} a_n z^{\beta + n - 1} n \geq 0,$$

where $Q(n, \beta, \ell) = ((\beta + \ell)/(\beta + \ell + n - 1))^m$.

A function $f \in \mathcal{N}$ is said to be in the class USL(α, k) (k-uniformly starlike Functions of order α) if it satisfies the condition:

$$\text{Re}\left\{ \frac{zf'(z)^\beta}{f(z)^\beta} - \alpha \right\} > k \left| \frac{zf'(z)^\beta}{f(z)^\beta} - 1 \right|, \quad (0 \leq \alpha < 1, \ k \geq 0), \ z \in U$$

and is said to be in the class UCV(α, k) (k-uniformly convex Functions of order α) if it satisfies the condition:

$$\text{Re}\left\{ 1 + \frac{zf''(z)^\beta}{f'(z)^\beta} - \alpha \right\} > k \left| \frac{zf''(z)^\beta}{f'(z)^\beta} \right|, \quad (0 \leq \alpha < 1, \ k \geq 0), \ z \in U.$$

Indeed it follows from (1.4) and (1.5) that

$$f \in \text{UCV}(\alpha, k) \iff zf' \in \text{USL}(\alpha, k).$$

The interesting geometric properties of these function classes were extensively studied by Kanas et al., in [4, 5], motivated by Altintas et al. [6], Murugusundaramoorthy and Srivastava [7], and Murugusundaramoorthy and Magesh [8, 9], Atshan and Kulkarni [10] and Atshan and Buti [11].

Now, we define a new subclass of uniformly convex functions of complex order.

For $0 \leq \alpha < 1, \ k \geq 0, \ u \in \mathbb{C} \setminus \{0\}$, we let $\mathcal{M}_m^\ell(\alpha, \beta, k, u)$ be the class of functions f satisfying (1.2) with the analytic criterion:

$$\text{Re}\left\{ 1 + \frac{1}{u} \left(1 + \frac{z(I_m^\ell f(z)^\beta)^n}{(I_m^\ell f(z)^\beta)^n} - \alpha \right) \right\} > k \left| 1 + \frac{1}{u} \left(\frac{z(I_m^\ell f(z)^\beta)^n}{(I_m^\ell f(z)^\beta)^n} \right) \right|, \ z \in U,$$

where $I_m^\ell f(z)^\beta$ is given by (1.3).
2. Main Results

First, we obtain the necessary and sufficient condition for functions f in the class $\mathcal{N}_m^\ell(\alpha, \beta, k, \nu)$.

Theorem 2.1. The necessary and sufficient condition for f of the form of (1.2) to be in the class $\mathcal{N}_m^\ell(\alpha, \beta, k, \nu)$ is

$$
\sum_{n=2}^{\infty} (\beta + n - 1) [(\beta + n - 1 + |\nu|)(1 - k) + (k - \alpha)] Q(n, \beta, \ell) a_n \leq (k - \alpha) + (1 - k) (\beta + |\nu|),
$$

(2.1)

where $0 \leq \alpha < 1$, $k \geq 0$, $\nu \in \mathbb{C} \setminus \{0\}$.

Proof. Suppose that (2.1) is true for $z \in U$. Then

$$
\text{Re} \left\{ 1 + \frac{1}{|\nu|} \left(1 + \frac{z \left(I_m^\ell f(z)^\beta \right)^\nu}{(I_m^\ell f(z)^\beta)^\nu - \alpha} \right) \right\} - k \left| 1 + \frac{z \left(I_m^\ell f(z)^\beta \right)^\nu}{(I_m^\ell f(z)^\beta)^\nu - \alpha} \right| > 0,
$$

(2.2)

if

$$
1 + \frac{1}{|\nu|} \left(\frac{(\beta - \alpha) - \sum_{n=2}^{\infty} (\beta + n - 1) (\beta + n - \alpha - 1) Q(n, \beta, \ell) a_n |z|^{n-1}}{1 - \sum_{n=2}^{\infty} (\beta + n - 1) Q(n, \beta, \ell) a_n |z|^{n-1}} \right) - k \left[1 + \frac{1}{|\nu|} \left(\frac{(\beta - 1) - \sum_{n=2}^{\infty} (\beta + n - 1) (\beta + n - 2) Q(n, \beta, \ell) a_n |z|^{n-1}}{1 - \sum_{n=2}^{\infty} (\beta + n - 1) Q(n, \beta, \ell) a_n |z|^{n-1}} \right) \right] > 0,
$$

(2.3)

that is, if

$$
\sum_{n=2}^{\infty} (\beta + n - 1) [(\beta + n - 1 + |\nu|)(1 - k) + (k - \alpha)] Q(n, \beta, \ell) a_n \leq (k - \alpha) + (1 - k) (\beta + |\nu|).
$$

(2.4)
Conversely, assume that \(f \in \mathcal{M}_n^{\alpha}(\alpha, \beta, k, \nu) \), then

\[
\text{Re} \left\{ 1 + \frac{1}{\nu} \left(1 + \frac{z \left(t_m^\alpha f(z)^\beta \right)^\nu}{(t_m^\alpha f(z)^\beta)^\nu} - \alpha \right) \right\} > k \left| 1 + \frac{1}{\nu} \left(\frac{z \left(t_m^\alpha f(z)^\beta \right)^\nu}{(t_m^\alpha f(z)^\beta)^\nu} \right) \right|
\]

\[
\text{Re} \left\{ 1 + \frac{1}{\nu} \left(\frac{(\beta - \alpha) - \sum_{n=2}^{\infty} (\beta + n - 1) (\beta + n - \alpha - 1) Q(n, \beta, \ell) a_n z^{n-1}}{1 - \sum_{n=2}^{\infty} (\beta + n - 1) Q(n, \beta, \ell) a_n z^{n-1}} \right) \right\} > k \left| 1 + \frac{1}{\nu} \left(\frac{(\beta - 1) - \sum_{n=2}^{\infty} (\beta + n - 1) (\beta + n - 2) Q(n, \beta, \ell) a_n z^{n-1}}{1 - \sum_{n=2}^{\infty} (\beta + n - 1) Q(n, \beta, \ell) a_n z^{n-1}} \right) \right|
\]

(2.5)

Letting \(z \to 1^+ \) along the real axis, we have

\[
1 + \frac{1}{\nu} \left(\frac{(\beta - \alpha) - \sum_{n=2}^{\infty} (\beta + n - 1) (\beta + n - \alpha - 1) Q(n, \beta, \ell) a_n}{1 - \sum_{n=2}^{\infty} (\beta + n - 1) Q(n, \beta, \ell) a_n} \right)
\]

\[
> k \left[1 + \frac{1}{\nu} \left(\frac{(\beta - 1) - \sum_{n=2}^{\infty} (\beta + n - 1) (\beta + n - 2) Q(n, \beta, \ell) a_n}{1 - \sum_{n=2}^{\infty} (\beta + n - 1) Q(n, \beta, \ell) a_n} \right) \right].
\]

(2.6)

Hence, by maximum modulus theorem, the simple computation leads to the desired inequality

\[
\sum_{n=2}^{\infty} (\beta + n - 1) [(\beta + n - 1 + |\nu|) (1 - k) + (k - \alpha)] Q(n, \beta, \ell) a_n \leq (k - \alpha) + (1 - k) (\beta + |\nu|),
\]

(2.7)

which completes the proof.

\[\square\]

Corollary 2.2. Let the function \(f \) defined by (1.2) belong to \(\mathcal{M}_n^{\alpha}(\alpha, \beta, k, \nu) \). Then,

\[
a_n \leq \frac{(k - \alpha) + (1 - k) (\beta + |\nu|)}{(\beta + n - 1) [(\beta + n - 1 + |\nu|) (1 - k) + (k - \alpha)] Q(n, \beta, \ell)},
\]

(2.8)

where \(0 \leq \alpha < 1, \ k \geq 0, \ \nu \in \mathbb{C} \setminus \{0\} \), with equality for

\[
f(z)^\beta = z^\beta - \frac{(k - \alpha) + (1 - k) (\beta + |\nu|)}{(\beta + n - 1) [(\beta + n - 1 + |\nu|) (1 - k) + (k - \alpha)] Q(n, \beta, \ell)} z^{\beta + n - 1}.
\]

(2.9)
3. Radii of Convexity and Close-to-Convexity

We obtain the radii of convexity and close-to-convexity results for \(f \) functions in the class \(\mathcal{A}_m^\ell(\alpha, \beta, k, \upsilon) \) in the following theorems.

Theorem 3.1. Let \(f \in \mathcal{A}_m^\ell(\alpha, \beta, k, \upsilon) \). Then \(f \) is convex of order \(\delta (0 \leq \delta < 1) \) in the disk \(|z| < r = r_1(\alpha, \beta, k, \upsilon, n, \delta) \), where

\[
r_1 = \inf_{n \geq 2} \left[\frac{(2 - \delta - \beta)}{(3 - \delta - \beta - n)} \left(\frac{(\beta + n - 1 + |\upsilon|) (1 - k) + (k - \alpha)}{(k - \alpha) + (1 - k)(\beta + |\upsilon|)} \right) Q(n, \beta, \ell) \right]^{1/n - 1}.
\]

Proof. Let \(f \in \mathcal{A}_m^\ell(\alpha, \beta, k, \upsilon) \). Then by Theorem 2.1, we have

\[
\sum_{n=2}^{\infty} \left(\frac{(\beta + n - 1) [(\beta + n - 1 + |\upsilon|) (1 - k) + (k - \alpha)]}{(k - \alpha) + (1 - k)(\beta + |\upsilon|)} \right) Q(n, \beta, \ell) a_n \leq 1.
\]

(3.2)

For \(0 \leq \delta < 1 \), we need to show that

\[
\frac{|zf''(z)|}{f'(z)^{\beta}} \leq 1 - \delta,
\]

(3.3)

and we have to show that

\[
\frac{|zf''(z)|}{f'(z)^{\beta}} \leq \frac{(\beta - 1) - \sum_{n=2}^{\infty} (\beta + n - 1) (\beta + n - 2) a_n |z|^{n-1}}{1 - \sum_{n=2}^{\infty} (\beta + n - 1) a_n |z|^{n-1}} \leq 1 - \delta.
\]

(3.4)

Hence,

\[
\sum_{n=2}^{\infty} \left(\frac{(\beta + n - 1) (3 - \delta - \beta - n)}{(2 - \delta - \beta)} \right) a_n |z|^{n-1} \leq 1.
\]

(3.5)

This is enough to consider

\[
|z|^{n-1} \leq \frac{(2 - \delta - \beta) [(\beta + n - 1 + |\upsilon|) (1 - k) + (k - \alpha)] Q(n, \beta, \ell)}{(3 - \delta - \beta - n) [(k - \alpha) + (1 - k)(\beta + |\upsilon|)]}.
\]

(3.6)

Therefore,

\[
|z| \leq \left\{ \frac{(2 - \delta - \beta) [(\beta + n - 1 + |\upsilon|) (1 - k) + (k - \alpha)] Q(n, \beta, \ell)}{(3 - \delta - \beta - n) [(k - \alpha) + (1 - k)(\beta + |\upsilon|)]} \right\}^{1/n - 1}.
\]

(3.7)

Setting \(z = r_1(\alpha, \beta, k, \upsilon, n, \delta) \) in (3.7), we get the radius of convexity, which completes the proof of Theorem 3.1. \(\square \)
Theorem 3.2. Let \(f \in \mathcal{M}_m^\ell(\alpha, \beta, k, \nu) \). Then \(f \) is close-to-convex of order \(\delta (0 \leq \delta < 1) \) in the disk \(|z| < r = r_2(\alpha, \beta, k, \nu, n, \delta)\), where

\[
r_2 = \inf_{n \geq 2} \left[\frac{(\beta + n - 1) \left[(\beta + n - 1 + |\nu|)(1 - k) + (k - \alpha) \right] Q(n, \beta, \ell)}{(k - \alpha) + (1 - k)(\beta + |\nu|)} \right]^{1/n-1}.
\]

Proof. Let \(f \in \mathcal{M}_m^\ell(\alpha, \beta, k, \nu) \). Then by Theorem 2.1, we have

\[
\sum_{n=2}^{\infty} \frac{\beta \beta + n - 1 + |\nu|)(1 - k) + (k - \alpha) Q(n, \beta, \ell) a_n}{(k - \alpha) + (1 - k)(\beta + |\nu|)} \leq 1.
\]

For \(0 \leq \delta < 1 \), we need to show that

\[
\left| \frac{f'(z)^\beta}{z^{\beta-1}} - 1 \right| \leq 1 - \delta.
\]

and we have to show that

\[
\left| \frac{f'(z)^\beta}{z^{\beta-1}} - 1 \right| \leq (\beta - 1) + \sum_{n=2}^{\infty} \beta (\beta + n - 1) a_n |z|^{n-1} \leq 1 - \delta.
\]

Hence,

\[
\sum_{n=2}^{\infty} \frac{\beta (\beta + n - 1)}{(2 - \delta - \beta)} a_n |z|^{n-1} \leq 1.
\]

This is enough to consider

\[
|z|^{n-1} \leq \frac{(2 - \delta - \beta) \left[(\beta + n - 1 + |\nu|)(1 - k) + (k - \alpha) \right] Q(n, \beta, \ell)}{\beta \left[(k - \alpha) + (1 - k)(\beta + |\nu|) \right]}.
\]

Therefore,

\[
|z| \leq \left\{ \frac{(2 - \delta - \beta) \left[(\beta + n - 1 + |\nu|)(1 - k) + (k - \alpha) \right] Q(n, \beta, \ell)}{\beta \left[(k - \alpha) + (1 - k)(\beta + |\nu|) \right]} \right\}^{1/n-1}.
\]

Setting \(z = r_2(\alpha, \beta, k, \nu, n, \delta) \) in (3.4), we get the radius of close-to-convexity, which completes the proof of Theorem 3.2.

4. Extreme Points

The extreme points of the class \(\mathcal{M}_m^\ell(\alpha, \beta, k, \nu) \) are given by the following theorem.
Theorem 4.1. Let

\[f_1(z)^\beta = z^\beta, \]
\[f_n(z)^\beta = z^\beta - \beta \frac{(k - \alpha) + (1 - k)(\beta + |\nu|)}{(\beta + n - 1)[(\beta + n - 1 + |\nu|)(1 - k) + (k - \alpha)]Q(n, \beta, \ell)}z^{\beta+n-1}, \]

for \(n = 2, 3, 4, \ldots \)

Then, \(f \in \mathcal{M}_m^\ell(\alpha, \beta, k, \nu) \) if and only if it can be expressed in the form:

\[f(z)^\beta = \sum_{n=1}^{\infty} Y_n f_n(z)^\beta, \]

where \(Y_n \geq 0 \) and

\[\sum_{n=1}^{\infty} Y_n = 1. \]

Proof. Suppose that \(f \) can be expressed as in (4.2). Our goal is to show that \(f \in \mathcal{M}_m^\ell(\alpha, \beta, k, \nu) \). By (4.2), we have that

\[
\begin{align*}
f(z)^\beta &= \sum_{n=1}^{\infty} Y_n f_n(z)^\beta = Y_1 f_1(z)^\beta + \sum_{n=2}^{\infty} Y_n f_n(z)^\beta \\
&= Y_1 f_1(z)^\beta + \sum_{n=2}^{\infty} Y_n \left(z^\beta - \beta \frac{(k - \alpha) + (1 - k)(\beta + |\nu|)}{(\beta + n - 1)[(\beta + n - 1 + |\nu|)(1 - k) + (k - \alpha)]Q(n, \beta, \ell)}z^{\beta+n-1}\right) \\
&= \sum_{n=1}^{\infty} Y_n z^\beta - \sum_{n=2}^{\infty} \beta Y_n \left(\frac{(k - \alpha) + (1 - k)(\beta + |\nu|)}{(\beta + n - 1)[(\beta + n - 1 + |\nu|)(1 - k) + (k - \alpha)]Q(n, \beta, \ell)}z^{\beta+n-1}\right)
\end{align*}
\]

Now,

\[
\sum_{n=2}^{\infty} \frac{(\beta + n - 1)[(\beta + n - 1 + |\nu|)(1 - k) + (k - \alpha)]Q(n, \beta, \ell)}{(k - \alpha) + (1 - k)(\beta + |\nu|)} \times \frac{Y_n [(k - \alpha) + (1 - k)(\beta + |\nu|)]}{(\beta + n - 1)[(\beta + n - 1 + |\nu|)(1 - k) + (k - \alpha)]Q(n, \beta, \ell)}
\]

\[= \sum_{n=2}^{\infty} Y_n = 1 - Y_1 \leq 1. \]

Thus, \(f \in \mathcal{M}_m^\ell(\alpha, \beta, k, \nu) \).
Conversely, assume that \(f \in \mathcal{A}_m^\ell(\alpha, \beta, k, v) \). Since

\[
a_n \leq \frac{(k - \alpha) + (1 - k)(\beta + |v|)}{(\beta + n - 1) [(\beta + n - 1 + |v|)(1 - k) + (k - \alpha)]\mathcal{Q}(n, \beta, \ell)} a_n \quad (n \geq 2),
\]

we can set

\[
\mathcal{Y}_n = \frac{(\beta + n - 1) [(\beta + n - 1 + |v|)(1 - k) + (k - \alpha)]\mathcal{Q}(n, \beta, \ell)}{(k - \alpha) + (1 - k)(\beta + |v|)} a_n \quad (n \geq 2),
\]

\[
\mathcal{Y}_1 = 1 - \sum_{n=2}^{\infty} \mathcal{Y}_n.
\]

Then,

\[
f(z)^\beta = z^\beta - \sum_{n=2}^{\infty} \beta \mathcal{Y}_n (z^\beta - f_n(z)^\beta)
\]

\[
= z^\beta - \sum_{n=2}^{\infty} \beta \frac{\mathcal{Y}_n [(k - \alpha) + (1 - k)(\beta + |v|)]}{(\beta + n - 1) [(\beta + n - 1 + |v|)(1 - k) + (k - \alpha)]\mathcal{Q}(n, \beta, \ell)} z^{\beta+n-1}
\]

\[
= z^\beta - \sum_{n=2}^{\infty} \mathcal{Y}_n (z^\beta - f_n(z)^\beta)
\]

\[
= z^\beta \left(1 - \sum_{n=2}^{\infty} \mathcal{Y}_n \right) + \sum_{n=2}^{\infty} \mathcal{Y}_n f_n(z)^\beta
\]

\[
= \mathcal{Y}_1 f_1(z)^\beta + \sum_{n=2}^{\infty} \mathcal{Y}_n f_n(z)^\beta
\]

\[
= \sum_{n=1}^{\infty} \mathcal{Y}_n f_n(z)^\beta.
\]

This completes the proof of Theorem 4.1.

\[
\square
\]

5. Integral Means

In order to find the integral means inequality and to verify the Silverman Conjuncture [12] for \(f \in \mathcal{A}_m^\ell(\alpha, \beta, k, v) \), we need the following definition of subordination and subordination result according to Littlewood [13].

Definition 5.1 (see [13]). Let \(f \) and \(g \) be analytic in \(U \). Then, we say that the function \(f \) is subordinate to \(g \) if there exists a Schwarz function \(w \), analytic in \(U \) with \(w(0) = 0, |w(z)| < 1 \) such that \(f(z) = g(w(z)) \) (\(z \in U \)). We denote this subordination \(f \prec g \) or \(f(z) \prec g(z) \) (\(z \in U \)). In particular, if the function \(g \) is univalent in \(U \), the above subordination is equivalent to \(f(0) = g(0), f(U) \subset g(U) \).
Lemma 5.2 (see [13]). If the functions f and g are analytic in U with $g < f$, then

$$
\int_0^{2\pi} |g(re^{i\theta})|^\eta d\theta \leq \int_0^{2\pi} |f(re^{i\theta})|^\eta d\theta, \quad \eta > 0, \quad z = re^{i\theta}, \quad 0 < r < 1.
$$

(5.1)

Applying Theorem 2.1 with the extremal function and Lemma 5.2, we prove the following theorem.

Theorem 5.3. Let $\eta > 0$. If $f \in \mathcal{N}_m^\ell(\alpha, \beta, k, \nu)$ and \{\Phi(\alpha, \beta, k, \nu, n)\}$_{n=2}^\infty$ are nondecreasing sequences, then, for $z = re^{i\theta}$ and $0 < r < 1$, one has

$$
\int_0^{2\pi} |f(re^{i\theta})|^\eta d\theta \leq \int_0^{2\pi} |f_2(re^{i\theta})|^\eta d\theta,
$$

(5.2)

where

$$
f_2(z)^\beta = z^\beta \frac{(k - \alpha) + (1 - k)(\beta + |\nu|)}{\Phi(\alpha, \beta, k, \nu, 2)} z_{\beta+1},
$$

(5.3)

$$
\Phi(\alpha, \beta, k, \nu, n) = (\beta + n - 1) [(\beta + n - 1 + |\nu|)(1 - k) + (k - \alpha)] Q(n, \beta, \ell).
$$

Proof. Let f of the form of (1.2) and

$$
f_2(z)^\beta = z^\beta \frac{(k - \alpha) + (1 - k)(\beta + |\nu|)}{\Phi(\alpha, \beta, k, \nu, 2)} z_{\beta+1},
$$

(5.4)

then we must show that

$$
\int_0^{2\pi} \left| 1 - \sum_{n=2}^{\infty} \beta a_n z^{n-1} \right|^\eta d\theta \leq \int_0^{2\pi} \left| 1 - \beta \frac{(k - \alpha) + (1 - k)(\beta + |\nu|)}{\Phi(\alpha, \beta, k, \nu, 2)} z \right|^\eta d\theta.
$$

(5.5)

By Lemma 5.2, it suffices to show that

$$
1 - \sum_{n=2}^{\infty} \beta a_n z^{n-1} < 1 - \beta \frac{(k - \alpha) + (1 - k)(\beta + |\nu|)}{\Phi(\alpha, \beta, k, \nu, 2)} z.
$$

(5.6)

Setting

$$
1 - \sum_{n=2}^{\infty} \beta a_n z^{n-1} = 1 - \beta \frac{(k - \alpha) + (1 - k)(\beta + |\nu|)}{\Phi(\alpha, \beta, k, \nu, 2)} \omega(z),
$$

(5.7)
from (5.7) and (2.1) we obtain

\[|w(z)| = \left| \sum_{n=2}^{\infty} \frac{\Phi(\alpha, \beta, k, \nu, 2)}{(k-\alpha) + (1-k)(\beta + |\nu|)} a_n z^{n-1} \right| \leq |z| \sum_{n=2}^{\infty} \frac{\Phi(\alpha, \beta, k, \nu, n)}{(k-\alpha) + (1-k)(\beta + |\nu|)} a_n \]

(5.8)

\[\leq |z| < 1.\]

This completes the proof of Theorem 5.3.

References

Submit your manuscripts at
http://www.hindawi.com