Research Article

The Equivalence of Convergence Results between Mann and Multistep Iterations with Errors for Uniformly Continuous Generalized Weak Φ-Pseudocontractive Mappings in Banach Spaces

Guiwen Lv1 and Haiyun Zhou2

1 Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
2 Department of Mathematics, Shijiazhuang Mechanical Engineering College, Shijiazhuang 050003, China

Correspondence should be addressed to Guiwen Lv, lvguiwenyy@126.com

Received 24 November 2012; Accepted 7 December 2012

Academic Editor: Jen-Chih Yao

Copyright © 2012 G. Lv and H. Zhou. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We prove the equivalence of the convergence of the Mann and multistep iterations with errors for uniformly continuous generalized weak Φ-pseudocontractive mappings in Banach spaces. We also obtain the convergence results of Mann and multistep iterations with errors. Our results extend and improve the corresponding results.

1. Introduction

Let E be a real Banach space, E^* be its dual space, and $J : E \rightarrow 2^{E^*}$ be the normalized duality mapping defined by

$$J(x) = \left\{ f \in E^* : \langle x, f \rangle = \|x\| \cdot \|f\| = \|f\|^2 \right\},$$

where $\langle \cdot, \cdot \rangle$ denotes the generalized duality pairing. The single-valued normalized duality mapping is denoted by j.

Definition 1.1. A mapping $T : E \rightarrow E$ is said to be

(1) strongly accretive if for all $x, y \in E$, there exist a constant $k \in (0, 1)$ and $j(x - y) \in J(x - y)$ such that

$$\langle Tx - Ty, j(x - y) \rangle \geq k\|x - y\|^2;$$

$$\langle Tx - Ty, j(x - y) \rangle \geq k\|x - y\|^2;$$

(1.2)
2 Abstract and Applied Analysis

(2) \(\Phi \)-strongly accretive if there exist \(j(x-y) \in J(x-y) \) and a strictly increasing function \(\Phi : [0,+\infty) \rightarrow [0,+\infty) \) with \(\Phi(0) = 0 \) such that

\[
\langle Tx - Ty, j(x-y) \rangle \geq \Phi(\|x-y\|) \|x-y\|, \quad \forall x,y \in E;
\]

(3) generalized \(\Phi \)-accretive if, for any \(x,y \in E \), there exist \(j(x-y) \in J(x-y) \) and a strictly increasing function \(\Phi : [0,+\infty) \rightarrow [0,+\infty) \) with \(\Phi(0) = 0 \) such that

\[
\langle Tx - Ty, j(x-y) \rangle \geq \Phi(\|x-y\|).
\]

Remark 1.2. Let \(N(T) = \{ x \in E : Tx = 0 \} \neq \emptyset \). If \(x,y \in E \) in the formulas of Definition 1.1 is replaced by \(x \in E, q \in N(T) \), then \(T \) is called strongly quasi-accretive, \(\Phi \)-strongly quasi-accretive, generalized \(\Phi \)-quasi-accretive mapping, respectively.

Closely related to the class of accretive-type mappings are those of pseudocontractive type mappings.

Definition 1.3. A mapping \(T \) with domain \(D(T) \) and range \(R(T) \) is said to be

(1) strongly pseudocontractive if there exist a constant \(k \in (0,1) \) and \(j(x-y) \in J(x-y) \) such that for each \(x,y \in D(T) \),

\[
\langle Tx - Ty, j(x-y) \rangle \leq k \|x-y\|^2;
\]

(2) \(\Phi \)-strongly pseudocontractive if there exist \(j(x-y) \in J(x-y) \) and a strictly increasing function \(\Phi : [0,+\infty) \rightarrow [0,+\infty) \) with \(\Phi(0) = 0 \) such that

\[
\langle Tx - Ty, j(x-y) \rangle \leq \|x-y\|^2 - \Phi(\|x-y\|) \|x-y\|, \quad \forall x,y \in D(T);
\]

(3) generalized \(\Phi \)-pseudocontractive if, for any \(x,y \in D(T) \), there exist \(j(x-y) \in J(x-y) \) and a strictly increasing function \(\Phi : [0,+\infty) \rightarrow [0,+\infty) \) with \(\Phi(0) = 0 \) such that

\[
\langle Tx - Ty, j(x-y) \rangle \leq \|x-y\|^2 - \Phi(\|x-y\|).
\]

Definition 1.4. Let \(F(T) = \{ x \in E : Tx = x \} \neq \emptyset \). The mapping \(T \) is called \(\Phi \)-strongly pseudocontractive, generalized \(\Phi \)-pseudocontractive, if, for all \(x \in D(T), q \in F(T) \), the formula (2), (3) in the above Definition 1.3 hold.

Definition 1.5. A mapping \(T \) is said to be

(1) generalized weak \(\Phi \)-accretive if, for all \(x,y \in E \), there exist \(j(x-y) \in J(x-y) \) and a strictly increasing function \(\Phi : [0,+\infty) \rightarrow [0,+\infty) \) with \(\Phi(0) = 0 \) such that

\[
\langle Tx - Ty, j(x-y) \rangle \geq \frac{\Phi(\|x-y\|)}{1 + \|x-y\|^2 + \Phi(\|x-y\|)};
\]

\[1.2\ \Phi \text{-strongly accretive if there exist } j(x-y) \in J(x-y) \text{ and a strictly increasing function } \Phi : [0,+\infty) \rightarrow [0,+\infty) \text{ with } \Phi(0) = 0 \text{ such that} \]

\[
\langle Tx - Ty, j(x-y) \rangle \geq \Phi(\|x-y\|) \|x-y\|, \quad \forall x,y \in E; \]

\(1.3\) \(\Phi \)-accretive if, for any \(x,y \in E \), there exist \(j(x-y) \in J(x-y) \) and a strictly increasing function \(\Phi : [0,+\infty) \rightarrow [0,+\infty) \) with \(\Phi(0) = 0 \) such that

\[
\langle Tx - Ty, j(x-y) \rangle \geq \Phi(\|x-y\|). \]

\(1.4\) Let \(N(T) = \{ x \in E : Tx = 0 \} \neq \emptyset \). If \(x,y \in E \) in the formulas of Definition 1.1 is replaced by \(x \in E, q \in N(T) \), then \(T \) is called strongly quasi-accretive, \(\Phi \)-strongly quasi-accretive, generalized \(\Phi \)-quasi-accretive mapping, respectively.

Closely related to the class of accretive-type mappings are those of pseudocontractive type mappings.

Definition 1.3. A mapping \(T \) with domain \(D(T) \) and range \(R(T) \) is said to be

(1) strongly pseudocontractive if there exist a constant \(k \in (0,1) \) and \(j(x-y) \in J(x-y) \) such that for each \(x,y \in D(T) \),

\[
\langle Tx - Ty, j(x-y) \rangle \leq k \|x-y\|^2; \]

(2) \(\Phi \)-strongly pseudocontractive if there exist \(j(x-y) \in J(x-y) \) and a strictly increasing function \(\Phi : [0,+\infty) \rightarrow [0,+\infty) \) with \(\Phi(0) = 0 \) such that

\[
\langle Tx - Ty, j(x-y) \rangle \leq \|x-y\|^2 - \Phi(\|x-y\|) \|x-y\|, \quad \forall x,y \in D(T);
\]

(3) generalized \(\Phi \)-pseudocontractive if, for any \(x,y \in D(T) \), there exist \(j(x-y) \in J(x-y) \) and a strictly increasing function \(\Phi : [0,+\infty) \rightarrow [0,+\infty) \) with \(\Phi(0) = 0 \) such that

\[
\langle Tx - Ty, j(x-y) \rangle \leq \|x-y\|^2 - \Phi(\|x-y\|).
\]

Definition 1.4. Let \(F(T) = \{ x \in E : Tx = x \} \neq \emptyset \). The mapping \(T \) is called \(\Phi \)-strongly pseudocontractive, generalized \(\Phi \)-pseudocontractive, if, for all \(x \in D(T), q \in F(T) \), the formula (2), (3) in the above Definition 1.3 hold.

Definition 1.5. A mapping \(T \) is said to be

(1) generalized weak \(\Phi \)-accretive if, for all \(x,y \in E \), there exist \(j(x-y) \in J(x-y) \) and a strictly increasing function \(\Phi : [0,+\infty) \rightarrow [0,+\infty) \) with \(\Phi(0) = 0 \) such that

\[
\langle Tx - Ty, j(x-y) \rangle \geq \frac{\Phi(\|x-y\|)}{1 + \|x-y\|^2 + \Phi(\|x-y\|)}; \]

\[1.6\]
Abstract and Applied Analysis

(2) generalized weak Φ-quasi-accretive if, for all $x \in E, q \in N(T)$, there exist $j(x - q) \in J(x - q)$ and a strictly increasing function $\Phi : [0, +\infty) \to [0, +\infty)$ with $\Phi(0) = 0$ such that

$$
\langle Tx - q, j(x - q) \rangle \geq \frac{\Phi(\|x - q\|)}{1 + \|x - q\|^2 + \Phi(\|x - q\|)};
$$

(1.9)

(3) generalized weak Φ-pseudocontractive if, for any $x, y \in D(T)$, there exist $j(x - y) \in J(x - y)$ and a strictly increasing function $\Phi : [0, +\infty) \to [0, +\infty)$ with $\Phi(0) = 0$ such that

$$
\langle Tx - Ty, j(x - y) \rangle \leq \|x - y\|^2 - \frac{\Phi(\|x - y\|)}{1 + \|x - y\|^2 + \Phi(\|x - y\|)};
$$

(1.10)

(4) generalized weak Φ-hemicontractive if, for any $x \in K, q \in F(T)$, there exist $j(x - q) \in J(x - q)$ and a strictly increasing function $\Phi : [0, +\infty) \to [0, +\infty)$ with $\Phi(0) = 0$ such that

$$
\langle Tx - q, j(x - q) \rangle \leq \|x - q\|^2 - \frac{\Phi(\|x - q\|)}{1 + \|x - q\|^2 + \Phi(\|x - q\|)}.
$$

(1.11)

It is very well known that a mapping T is strongly pseudocontractive (hemicontractive), ϕ-strongly pseudocontractive (ϕ-strongly hemicontractive), generalized Φ-pseudocontractive (generalized Φ-hemicontractive), generalized weak Φ-pseudocontractive (generalized weak Φ-hemicontractive) if and only if $(I - T)$ are strongly accretive (quasi-accretive), ϕ-strongly accretive (ϕ-strongly quasi-accretive), $(I - T)$ is generalized Φ-accretive (generalized Φ-quasi-accretive), generalized weak Φ-accretive (weak Φ-quasi-accretive), respectively.

It is shown in [1] that the class of strongly pseudocontractive mappings is a proper subclass of ϕ-strongly pseudocontractive mappings. Furthermore, an example in [2] shows that the class of ϕ-strongly hemicontractive mappings with the nonempty fixed point set is a proper subclass of generalized Φ-hemicontractive mappings. Obviously, generalized Φ-hemicontractive mapping must be generalized weak Φ-hemicontractive, but, on the contrary, it is not true. We have the following example.

Example 1.6. Let $E = (-\infty, +\infty)$ be real number space with usual norm and $K = [0, +\infty)$. $T : K \to E$ defined by

$$
Tx = \frac{x + x^3 + x^2\sqrt{x} - \sqrt{x}}{1 + x\sqrt{x} + x^2}, \quad \forall x \in K.
$$

(1.12)
Then T has a fixed point $0 \in F(T)$. $\Phi : [0, +\infty) \to [0, +\infty)$ defined by $\Phi(t) = t^{3/2}$ is a strictly increasing function with $\Phi(0) = 0$. For all $x \in K$ and $0 \in F(T)$, we have

$$
\langle Tx - T0, j(x - 0) \rangle = \left(\frac{x^3 + x^2 \sqrt{x} - \sqrt{x}}{1 + x \sqrt{x} + x^2} - 0, x - 0 \right) = \frac{x^2 + x^4 + x^3 \sqrt{x} - x \sqrt{x}}{1 + x \sqrt{x} + x^2} = x^2 - \frac{x^{3/2}}{1 + x^{3/2} + x^2}
$$

$$
= |x - 0|^2 - \frac{\Phi(x)}{1 + \Phi(x) + x^2} = |x - 0|^2 - \sigma(x)
$$

$$
\geq |x - 0|^2 - \Phi(x).
$$

(1.13)

Then T is a generalized weak Φ-hemicontractive map, but it is not a generalized Φ-hemicontractive map; that is, the class of generalized weak Φ-hemicontractive maps properly contains the class of generalized Φ-hemicontractive maps. Hence the class of generalized weak Φ-hemicontractive mappings is the most general among those defined above.

Definition 1.7. The mapping $T : E \to E$ is called Lipschitz, if there exists a constant $L > 0$ such that

$$
\|Tx - Ty\| \leq L \|x - y\|, \quad \forall x, y \in E.
$$

(1.14)

It is clear that if T is Lipschitz, then it must be uniformly continuous. Otherwise, it is not true. For example, the function $f(x) = \sqrt{x}, x \in [0, +\infty)$ is uniformly continuous but it is not Lipschitz.

Now let us consider the multi-step iteration with errors. Let K be a nonempty convex subset of E, and let $\{T_i\}_{i=1}^M$ be a finite family of self-maps of K. For $x_0 \in K$, the sequence $\{x_n\}$ is generated as follows:

$$
x_{n+1} = (1 - \alpha_n - \delta_n)x_n + \alpha_n T_n y_n + \delta_n v_n,
$$

$$
y_i^j = (1 - \beta_n^{ij} - \eta_n^{ij}) x_n + \beta_n^{ij} T_n y_n^{j+1} + \eta_n^{ij} w_n^{ij}, \quad i = 1, \ldots, p - 2,
$$

$$
y_n^{p-1} = (1 - \beta_n^{p-1} - \eta_n^{p-1}) x_n + \beta_n^{p-1} T_n x_n + \eta_n^{p-1} w_n^{p-1}, \quad p \geq 2,
$$

(1.15)

where $\{v_n\}, \{w_n^{ij}\}$ are any bounded sequences in K and $\{\alpha_n\}, \{\delta_n\}, \{\beta_n^{ij}\}, \{\eta_n^{ij}\}, (i = 1, 2, \ldots, p - 1)$ are sequences in $[0, 1]$ satisfying certain conditions.

If $p = 2$, (1.15) becomes the Ishikawa iteration sequence with errors $\{x_n\}_{n=0}^\infty$ defined iteratively by

$$
x_{n+1} = (1 - \alpha_n - \delta_n)x_n + \alpha_n T_n y_n + \delta_n v_n,
$$

$$
y_1 = (1 - \beta_n - \eta_n)x_n + \beta_n T_n x_n + \eta_n w_n, \quad \forall n \geq 0.
$$

(1.16)
Abstract and Applied Analysis

If \(\beta_n = \gamma_n = 0 \), for all \(n \geq 0 \), then from (1.16), we get the Mann iteration sequence with errors \(\{u_n\}_{n=0}^{\infty} \) defined by

\[
u_{n+1} = (1 - \alpha_n - \delta_n)u_n + \alpha_nT_nu_n + \delta_n\mu_n, \quad \forall n \geq 0, \tag{1.17}
\]

where \(\{\mu_n\} \subset K \) is bounded.

Recently, many authors have researched the iteration approximation of fixed points by Lipschitz pseudocontractive (accretive) type nonlinear mappings and have obtained some excellent results [3–12]. In this paper we prove the equivalence between the Mann and multi-step iterations with errors for uniformly continuous generalized weak \(\Phi \)-pseudocontractive mappings in Banach spaces. Our results extend and improve the corresponding results [3–12].

Lemma 1.8 (see [13]). Let \(E \) be a real normed space. Then, for all \(x, y \in E \), the following inequality holds:

\[
\|x + y\|^2 \leq \|x\|^2 + 2\langle y, J(x + y) \rangle, \quad \forall j(x + y) \in J(x + y). \tag{1.18}
\]

Lemma 1.9 (see [14]). Let \(\{\rho_n\} \) be a nonnegative sequence which satisfies the following inequality:

\[
\rho_{n+1} \leq (1 - \lambda_n)\rho_n + \sigma_n, \quad n \geq N, \tag{1.19}
\]

where \(\lambda_n \in (0, 1), \lim_{n \to \infty} \lambda_n = 0 \) and \(\sum_{n=0}^{\infty} \lambda_n = \infty, \sigma_n = o(\lambda_n) \). Then \(\rho_n \to 0 \) as \(n \to \infty \).

Lemma 1.10. Let \(\{\theta_n\}, \{c_n\}, \{e_n\} \) and \(\{t_n\} \) be four nonnegative real sequences satisfying the following conditions: (i) \(\lim_{n \to \infty} t_n = 0 \); (ii) \(\sum_{n=0}^{\infty} t_n = \infty \); (iii) \(c_n = o(t_n), e_n = o(t_n) \). Let \(\Phi : [0, +\infty) \to [0, +\infty) \) be a strictly increasing and continuous function with \(\Phi(0) = 0 \) such that

\[
\theta_{n+1}^2 \leq (1 + c_n)\theta_n^2 - t_n\frac{\Phi(\theta_{n+1})}{1 + \Phi(\theta_{n+1})} + \theta_{n+1}^2 + e_n, \quad n \geq 0. \tag{1.20}
\]

If \(\{\theta_n\} \) is bounded, then \(\theta_n \to 0 \) as \(n \to \infty \).

Proof. Since \(\lim_{n \to \infty} t_n = 0 \), \(\{\theta_n\} \) is bounded, we set \(R = \max\{\sup_{n \geq 0} t_n, \sup_{n \geq 0} \theta_n\} \),
\(y = \lim \inf_{n \to \infty} (\Phi(\theta_{n+1}) / (1 + \theta_{n+1}^2)(1 + \Phi(R) + R^2)) \), then \(y = 0 \). Otherwise, we assume that \(y > 0 \), then there exists a constant \(\delta > 0 \) with \(\delta = \min\{1, y\} \) and a natural number \(N_1 \) such that

\[
\Phi(\theta_{n+1}) > \left(\delta + \delta \theta_{n+1}^2 \right) \left[1 + \Phi(R) + R^2 \right] > \delta \theta_{n+1}^2 \left[1 + \Phi(R) + R^2 \right], \tag{1.21}
\]

for \(n > N_1 \).

Then, from (1.20), we get

\[
\theta_{n+1}^2 \leq \frac{1 + c_n}{1 + \delta t_n} \theta_n^2 + e_n. \tag{1.22}
\]
Since $c_n = o(t_n)$, there exists a nature number $N_2 > N_1$, such that $c_n < (\delta/2)t_n$, $n > N_2$. Hence $(1 + c_n)/(1 + \delta t_n) < 1 - (\delta/2)t_n$ and (1.22) becomes

\[
\theta_{n+1}^2 \leq \left(1 - \frac{\delta}{2}t_n \right) \theta_n^2 + e_n. \tag{1.23}
\]

By Lemma 1.9, we obtain that $\theta_n \to 0$ as $n \to \infty$. Since Φ is strictly increasing and continuous with $\Phi(0) = 0$. Hence $\gamma = 0$, which is contradicting with the assumption $\gamma > 0$. Then $\gamma = 0$, there exists a subsequence $\{\theta_{n_j}\}$ of $\{\theta_n\}$ such that $\theta_{n_j} \to 0$ as $j \to \infty$. Let $0 < \varepsilon < 1$ be any given. Since $c_n = o(t_n)$, $e_n = o(t_n)$, then there exists a natural number $N_3 > N_2$, such that

\[
\theta_{n_j} < \varepsilon, \quad c_{n_j} < \frac{\Phi(\varepsilon)}{2M^2(1 + R^2 + \Phi(R))} t_{n_j}, \quad e_{n_j} < \frac{\Phi(\varepsilon)}{2(1 + R^2 + \Phi(R))} t_{n_j} \tag{1.24}
\]

for all $j > N_3$. Next, we will show that $\theta_{n_j + m} < \varepsilon$ for all $m = 1, 2, 3, \ldots$. First, we want to prove that $\theta_{n+1} \to \varepsilon$. Suppose that it is not the case, then $\theta_{n+1} \geq \varepsilon$. Since Φ is strictly increasing,

\[
\Phi(\theta_{n+1}) \geq \Phi(\varepsilon). \tag{1.25}
\]

From (1.24) and (1.25), we obtain that

\[
\theta_{n+1}^2 \leq \left(1 + c_{n_j} \right) \theta_{n_j}^2 - 2t_{n_j} \frac{\Phi(\varepsilon)}{1 + R^2 + \Phi(R)} + e_{n_j} \leq \theta_{n_j}^2 - \frac{\Phi(\varepsilon)}{(1 + R^2 + \Phi(R))} t_{n_j} < \theta_{n_j}^2 < \varepsilon^2. \tag{1.26}
\]

That is $\theta_{n+1} < \varepsilon$, which is a contradiction. Hence $\theta_{n+1} < \varepsilon$. Now we assume that $\theta_{n+1} < \varepsilon$ holds. Using the similar way, it follows that $\theta_{n+m+1} < \varepsilon$. Therefore, this shows that $\theta_n \to 0$ as $n \to \infty$. \hfill \Box

2. Main Results

Theorem 2.1. Let K be a nonempty closed convex subset of a Banach space E. Suppose that $T_n = T_{n(\text{mod } M)}$, and $T_i : K \to K$, $i \in I = \{1, 2, \ldots, M\}$ are M uniformly continuous generalized weak Φ-hemicontractive mappings with $F = \bigcap_{i=1}^M F(T_i) \neq \emptyset$. Let $\{u_n\}$ be a sequence in K defined iteratively from some $u_0 \in K$ by (1.17), where $\{\alpha_n\}$ is an arbitrary bounded sequence in K and $\{\alpha_n\}$, $\{\delta_n\}$ are two sequences in $[0, 1]$ satisfying the following conditions: (i) $\alpha_n + \delta_n \leq 1$, (ii) $\sum_{n=1}^\infty \alpha_n = \infty$, (iii) $\lim_{n \to \infty} \alpha_n = 0$, (iv) $\delta_n = o(\alpha_n)$. Then the iteration sequence $\{u_n\}$ converges strongly to the unique fixed point of T.
Proof. Since $F = \bigcap_{i=1}^{m} F(T_i) \neq \emptyset$, set $q \in F$. Since the mapping T_n are generalized weak Φ-hemicontractive mappings, there exist strictly increasing functions $\Phi_i : [0, +\infty) \to [0, +\infty)$ with $\Phi(0) = 0$ and $f(x - y) \in f(x - y)$ such that

$$
\langle T_i x - T_i y, (x - y) \rangle \leq \|x - y\|^2 - \frac{\Phi_i(\|x - y\|)}{1 + \|x - y\|^2 + \Phi_i(\|x - y\|)}, \quad \forall x, y \in K, \ i \in I. \quad (2.1)
$$

Firstly, we claim that there exists $u_0 \in K$ with $u_0 \neq Tu_0$ such that $t_0 = \|u_0 - Tu_0\| \cdot \|u_0 - q\| \cdot [1 + \|u_0 - q\|^2 + \Phi_i(\|u_0 - q\|)] \in R(\Phi_1)$. In fact, if $u_0 = Tu_0$, then we have done. Otherwise, there exists the smallest positive integer $n_0 \in N$ such that $u_{n_0} \neq Tu_{n_0}$. We denote $u_{n_0} = u_0$, then we will obtain that $t_0 \in R(\Phi_1)$. Indeed, if $R(\Phi_1) = [0, +\infty)$, then $t_0 \in R(\Phi)$. If $R(\Phi_1) = [0, A]$ with $0 < A < +\infty$, then for $q \in K$, there exists a sequence $\{w_n\} \subseteq K$ such that $w_n \to q$ as $n \to \infty$ with $w_n \neq q$, and we also obtain that the sequence $\{w_n - Tw_n\}$ is bounded. So there exists $n_0 \in N$ such that $\|w_n - Tw_n\| \cdot \|w_n - q\| \cdot [1 + \|w_n - q\|^2 + \Phi_i(\|w_n - q\|)] \in R(\Phi_1)$ for $n \geq n_0$, then we redefine $u_0 = w_{n_0}$, let $\omega_0 = \Phi^{-1}_i(t_0) > 0$.

Next we shall prove $\|u_n - q\| \leq \omega_0$ for $n \geq 0$. Clearly, $\|u_0 - q\| \leq \omega_0$ holds. Suppose that $\|u_n - q\| \leq \omega_0$, for some n, then we want to prove $\|u_{n+1} - q\| \leq \omega_0$. If it is not the case, then $\|u_{n+1} - q\| > \omega_0$. Since T is a uniformly continuous mapping, setting $\varepsilon_0 = \Phi_i(\omega_0)/12\omega_0 [1 + \Phi_i((3/2)\omega_0) + ((3/2)\omega_0)^2]$, there exists $\delta_0 > 0$ such that $\|T_n x - T_n y\| < \varepsilon_0$, whenever $\|x - y\| < \delta$; and T_n are bounded operators, set $M = \sup \{\|T_n x\| : \|x - q\| \leq \omega_0\} + \sup_n \|w_n\|$. Since $\lim_{n \to \infty} \alpha_n = 0$, $\delta_n = o(\alpha_n)$, without loss of generality, let

$$
\frac{\alpha_n}{\delta_n} < \min \left\{ \frac{1}{4}, \frac{\omega_0}{4\delta \Phi_i(\omega_0)}, \frac{\Phi_i(\omega_0)}{4\delta \Phi_i((3/2)\omega_0) + ((3/2)\omega_0)^2} \right\}, \quad n \geq 0. \quad (2.2)
$$

From (1.17), we have

$$
\|u_{n+1} - q\| = \|(1 - \alpha_n - \delta_n)(u_n - q) + \alpha_n (T_n u_n - q) + \delta_n (\omega_n - q)\|
$$

$$
\leq \|u_n - q\| + \alpha_n \|T_n u_n - q\| + \delta \|\omega_n - q\|
$$

$$
\leq \omega_0 + \alpha_n \|T_n u_n - q\| + \delta_n \|\omega_n - q\|
$$

$$
\leq \omega_0 + M(\alpha_n + \delta_n) \leq \omega_0 + 2M \alpha_n \leq \frac{3}{2} \omega_0,
$$

$$
\|u_{n+1} - u_n\| = \|\alpha_n T_n u_n + \delta_n \omega_n - (\alpha_n + \delta_n) u_n\|
$$

$$
\leq \alpha_n \|T_n u_n - q\| + \delta_n \|\omega_n - q\| + (\alpha_n + \delta_n) \|u_n - q\|
$$

$$
\leq (\alpha_n + \delta_n) (M + \omega_0) < \delta.
$$

Since T_n are uniformly continuous mappings, so $\|T_n u_{n+1} - T_n u_n\| < \varepsilon_0.$
Applying Lemma 1.8, the recursion (1.17), and the above inequalities, we obtain

\[
\| u_{n+1} - q \|^2 = \| (1 - \alpha_n - \delta_n)(u_n - q) + \alpha_n (T_n u_n - q) + \delta_n (\omega_n - q) \|^2 \\
\leq (1 - \alpha_n - \delta_n)^2 \| u_n - q \|^2 + 2\alpha_n \langle T_n u_n - q, j(u_{n+1} - q) \rangle \\
+ 2\delta_n \| \omega_n - q \| \cdot \| u_{n+1} - q \| \\
\leq (1 - \alpha_n)^2 \| u_n - q \|^2 + 2\alpha_n \| T_n u_n - T_n u_{n+1} \| \cdot \| u_{n+1} - q \| + 2\alpha_n \| \omega_n - q \| \cdot \| u_{n+1} - q \| \\
\leq (1 - \alpha_n)^2 \| u_n - q \|^2 + 2\alpha_n \left[\| u_{n+1} - q \|^2 - \frac{\Phi_1(\| u_{n+1} - q \|)}{1 + \Phi_1(\| u_{n+1} - q \|)} + \| u_{n+1} - q \|^2 \right] \\
+ 2\alpha_n \| T_n u_n - T_n u_{n+1} \| \cdot \| u_{n+1} - q \| + 2\alpha_n \| \omega_n - q \| \cdot \| u_{n+1} - q \|.
\]

(2.5)

Inequality (2.5) implies

\[
\| u_{n+1} - q \|^2 \leq \| u_n - q \|^2 - 2\alpha_n \frac{\Phi_1(\| u_{n+1} - q \|)}{1 + \Phi_1(\| u_{n+1} - q \|)} + \| u_{n+1} - q \|^2 + \frac{\alpha_n^2}{1 - 2\alpha_n} \| u_n - q \|^2 \\
+ \frac{2\alpha_n}{1 - 2\alpha_n} \| T_n u_n - T_n u_{n+1} \| \cdot \| u_{n+1} - q \| + \frac{2\alpha_n}{1 - 2\alpha_n} \| \omega_n - q \| \cdot \| u_{n+1} - q \| \\
\leq \omega_0^2 - 2\alpha_n \frac{\Phi_1(\omega_0)}{1 + \Phi_1((3/2)\omega_0) + ((3/2)\omega_0)^2} \\
+ \frac{2\alpha_n}{4} \frac{\Phi_1(\omega_0)}{1 + \Phi_1((3/2)\omega_0) + ((3/2)\omega_0)^2} \omega_0^2 \\
+ \frac{4\alpha_n}{12} \frac{\Phi_1(\omega_0)}{1 + \Phi_1((3/2)\omega_0) + ((3/2)\omega_0)^2} \cdot \frac{3\omega_0}{2} \\
+ \frac{4\alpha_n}{12} \frac{\Phi_1(\omega_0)}{1 + \Phi_1((3/2)\omega_0) + ((3/2)\omega_0)^2} \cdot \frac{3M\omega_0}{2} < \omega_0^2,
\]

(2.6)

which is a contradiction with the assumption \(\| u_{n+1} - q \| > \omega_0 \). Then \(\| u_{n+1} - q \| \leq \omega_0 \); that is, the sequence \(\{ u_n \} \) is bounded. Let \(N = \sup_n \| u_n - q \| \). From (2.4), we have

\[
\| u_{n+1} - u_n \| \leq (\alpha_n + \delta_n)(M + \omega_0) \to 0, \quad n \to \infty,
\]

(2.7)

that is, \(\lim_{n \to \infty} \| u_{n+1} - u_n \| = 0 \). Since \(T \) is on uniformly continuous, so

\[
\lim_{n \to \infty} \| T_n u_{n+1} - T_n u_n \| = 0.
\]

(2.8)
Let E be a Banach space and K be a nonempty closed convex subset of E, T_n are as in Theorem 2.1. For $x_0, u_0 \in K$, the sequence iterations $\{x_n\}, \{u_n\}$ are defined by (1.15) and (1.17), respectively. $\{\alpha_n\}, \{\delta_n\}, \{\beta^i_n\}, \{\eta^i_n\}, i = 1, 2, \ldots, p - 1$ are sequences in $[0, 1]$ satisfying the following conditions:

(i) $0 \leq \alpha_n + \delta_n \leq 1, 0 \leq \beta^i_n + \eta^i_n \leq 1, 1 \leq i \leq p - 1$;
(ii) $\sum_{n=0}^{\infty} \alpha_n = \infty$;
(iii) $\lim_{n \to \infty} \alpha_n = 0$;
(iv) $\lim_{n \to \infty} \beta^i_n = \lim_{n \to \infty} \eta^i_n = 0, i = 1, \ldots, p - 1$;
(v) $\delta_n = o(\alpha_n)$.

Then the following two assertions are equivalent:

(I) the iteration sequence $\{x_n\}$ strongly converges to the common point of $F(T_i), i \in I$;

(II) the sequence iteration $\{u_n\}$ strongly converges to the common point of $F(T_i), i \in I$.

Proof. Since $F = \bigcap_{i=1}^{M} F(T_i) \neq \emptyset$, set $q \in F$. If the iteration sequence $\{x_n\}$ strongly converges to q, then setting $p = 2, \beta_n = \delta_n = 0$, we obtain the convergence of the iteration sequence $\{u_n\}$. Conversely, we only prove that (II)\Rightarrow(I). The proof is divided into two parts.

Step I. We show that $\{x_n - u_n\}$ is bounded.

By the proof method of Theorem 2.1, there exists $x_0 \in K$ with $x_0 \neq T_1 x_0$ such that $r_0 = \|x_0 - T_1 x_0\| \cdot \|x_0 - q\| \cdot [1 + \|x_0 - q\|^2 + \Phi_1(\|x_0 - q\|)] \in R(\Phi)$. Setting $a_0 = \Phi_1^{-1}(r_0)$, we have $\|x_0 - q\| \leq a_0$. Set $B_1 = \{\|x - q\| \leq a_0 : x \in K\}, B_2 = \{\|x - q\| \leq 2a_0 : x \in K\}$. Since T_i are bounded mappings and $\{\omega^i_n\} (i = 1, \ldots, p - 1), \{\nu_n\}$ are some bounded sequences in K, we can set $M = \max \{\sup_{x \in B_1} \|T_n x - q\|; \sup_{n \in N} \|\omega^i_n - q\|; \sup_{n \in N} \|\nu_n - q\|\}$. Since T_i are uniformly continuous mappings, given $e_0 = \Phi_1(a_0)/4a_0[1 + (5a_0/4)^2 + \Phi_1(5a_0/4)], \exists \delta > 0$, such that $\|T x - T y\| < e_0$ whenever $\|x - y\| < \delta$, for all $x, y \in B_2$. Now, we define $\tau_0 = \min\{1/2, a_0/8M, a_0/8(M + a_0), \delta/8(M + a_0), \Phi_1(a_0)/5a_0^2[1 + (5a_0/4)^2 + \Phi_1(5a_0/4)], \Phi_1(a_0)/5a_0M[1 + (5a_0/4)^2 + \Phi_1(5a_0/4)]\}$. Since the control conditions (iii)-(iv), without loss of generality, we let $0 < \alpha_n, \delta_n/\alpha_n, \beta^i_n, \eta^i_n < \tau_0$, $n \geq 0$.

Now we claim that if $x_n \in B_1$, then $y^i_n \in B_2, 1 \leq i \leq p - 1$.

\begin{equation}
\|u_{n+1} - q\|^2 \leq \|u_n - q\|^2 - 2\alpha_n \frac{\Phi_1(\|u_{n+1} - q\|)}{1 + \Phi_1(\|u_{n+1} - q\|) + \|u_{n+1} - q\|^2} + A_n,
\end{equation}

where

\[A_n = \alpha^2_n N^2 + 2\alpha_n N\|T_n u_n - T_n u_{n+1}\| + 2\delta_n M N. \]

By (2.8), the conditions (iii) and (iv), we get $A_n = o(\alpha_n)$. So applying Lemma 1.10 on (2.9), we obtain $\lim_{n \to \infty} \|u_n - q\| = 0$. □
From (1.15), we obtain that
\[
\left\| y_n^{p-1} - q \right\| \leq \left(1 - \beta_n^{p-1} - \eta_n^{p-1}\right) \left\| x_n - q \right\| + \beta_n^{p-1} \left\| T_n x_n - q \right\| + \eta_n^{p-1} \left\| \omega_n^{p-1} - q \right\|
\]
\[
\leq \left\| x_n - q \right\| + \left(\beta_n^{p-1} + \eta_n^{p-1}\right) M
\]
\[
\leq \left\| x_n - q \right\| + 2\tau_0 M \leq 2a_0,
\]
\[
\left\| y_n^{p-2} - q \right\| \leq \left(1 - \beta_n^{p-2} - \eta_n^{p-2}\right) \left\| x_n - q \right\| + \beta_n^{p-2} \left\| T_n y_n^{p-1} - q \right\| + \eta_n^{p-2} \left\| \omega_n^{p-2} - q \right\|
\]
\[
\leq \left\| x_n - q \right\| + \left(\beta_n^{p-2} + \eta_n^{p-2}\right) M
\]
\[
\leq \left\| x_n - q \right\| + 2\tau_0 M \leq 2a_0,
\]
(2.11)
we also obtain that
\[
\left\| y_n^1 - q \right\| \leq 2a_0.
\]
(2.12)

Now we suppose that \(\left\| x_n - q \right\| \leq a_0 \) holds. We will prove that \(\left\| x_{n+1} - q \right\| \leq a_0 \). If it is not the case, we assume that \(\left\| x_{n+1} - q \right\| > a_0 \). From (1.15), we obtain that
\[
\left\| x_{n+1} - q \right\| = \left\| \left(1 - \alpha_n - \delta_n\right) (x_n - q) + \alpha_n \left(T_n y_n^1 - q \right) + \delta_n (v_n - q) \right\|
\]
\[
\leq \left\| x_n - q \right\| + \alpha_n \left\| T_n y_n^1 - q \right\| + \delta_n \left\| v_n - q \right\|
\]
\[
\leq \left\| x_n - q \right\| + \left(\alpha_n + \delta_n\right) M
\]
\[
\leq \left\| x_n - q \right\| + 2\tau_0 M \leq \left\| x_n - q \right\| + \frac{1}{4}a_0 \leq \frac{5}{4}a_0.
\]
(2.13)

Consequently, by (2.11) and (2.12), we obtain
\[
\left\| x_{n+1} - y_n^1 \right\| = \left\| \left(\beta_n^1 - \alpha_n\right) \left(x_n - q \right) + \alpha_n \left(T_n y_n^1 - q \right) - \beta_n^1 \left(T_n^a y_n^2 - q \right) + \delta_n (v_n - q) - \eta_n^1 \left(\omega_n^1 - q \right) \right\|
\]
\[
\leq \left(\beta_n^1 + \alpha_n + \eta_n^1 + \delta_n\right) \left\| x_n - q \right\| + \alpha_n \left\| T_n y_n^1 - q \right\| + \beta_n^1 \left\| T_n y_n^2 - q \right\| + \delta_n \left\| v_n - q \right\| + \eta_n^1 \left\| \omega_n^1 - q \right\|
\]
\[
\leq 4\tau_0 (\mu_0 + M) \leq \delta.
\]
(2.14)

Since \(T_n \) are uniformly continuous mappings, we get
\[
\left\| T_n x_{n+1} - T_n y_n^1 \right\| \leq \epsilon_0.
\]
(2.15)
Using (2.1), Lemma 1.8, and the recursion formula (1.15), we have

\[
\|x_{n+1} - q\|^2 = \left\| (1 - \alpha_n - \delta_n) (x_n - q) + \alpha_n (T_n y_n^1 - q) + \delta_n (v_n - q) \right\|^2 \\
\leq \left(1 - \alpha_n\right)^2 \|x_n - q\|^2 + 2\alpha_n \left(T_n y_n^1 - q, j(x_{n+1} - q) \right) + 2\delta_n \|v_n - q\| \cdot \|x_{n+1} - q\| \\
\leq \left(1 - \alpha_n\right)^2 \|x_n - q\|^2 + 2\alpha_n \left(T_n x_n, j(x_{n+1} - q) \right) + 2\delta_n \|v_n - q\| \cdot \|x_{n+1} - q\| \\
+ 2\alpha_n \left(T_n y_n^1 - T_n x_n, j(x_{n+1} - q) \right) + 2\delta_n \|v_n - q\| \cdot \|x_{n+1} - q\| \\
\leq \left(1 - \alpha_n\right)^2 \|x_n - q\|^2 + 2\alpha_n \left[\|x_{n+1} - q\|^2 - \frac{\Phi_1(\|x_{n+1} - q\|)}{1 + \Phi_1(\|x_{n+1} - q\|) + \|x_{n+1} - q\|^2} \right] \\
+ 2\alpha_n \left\| T_n y_n^1 - T_n x_n \right\| : \|x_{n+1} - q\| + 2\delta_n M : \|x_{n+1} - q\|.
\]

(2.16)

Which implies

\[
\|x_{n+1} - q\|^2 \leq \|x_n - q\|^2 - \frac{2\alpha_n}{1 - 2\alpha_n} \frac{\Phi_1(a_0)}{1 + \Phi_1(\|x_{n+1} - q\|) + \|x_{n+1} - q\|^2} + \frac{\alpha_n^2}{1 - 2\alpha_n} \|x_n - q\|^2 \\
+ \frac{2\alpha_n}{1 - 2\alpha_n} \left\| T_n y_n^1 - T_n x_n \right\| : \|x_{n+1} - q\| + \frac{2\delta_n}{1 - 2\alpha_n} M : \|x_{n+1} - q\| \\
\leq a_0^2 \frac{2\alpha_n}{1 - 2\alpha_n} \frac{\Phi_1(a_0)}{1 + (5a_0/4)^2 + \Phi_1(5a_0/4)} \\
+ \frac{2\alpha_n}{1 - 2\alpha_n} \frac{\Phi_1(a_0)}{1 + (5a_0/4)^2 + \Phi_1(5a_0/4)} \cdot \frac{5a_0}{4} \\
+ \frac{2\alpha_n}{1 - 2\alpha_n} \frac{\Phi_1(a_0)}{1 + (5a_0/4)^2 + \Phi_1(5a_0/4)} \cdot \frac{5a_0 M}{4} < a_0^2
\]

(2.17)

which is a contradiction with the assumption \(\|x_{n+1} - q\| > \mu_0, \) then \(\|x_{n+1} - q\| \leq \mu_0; \) that is, the sequence \(\{x_n - q\} \) is bounded. Since \(u_n \rightarrow q; \) as \(n \rightarrow \infty, \) so the sequence \(\{x_n - u_n\} \) is bounded.

Step 2. We prove \(\lim_{n \rightarrow \infty} \|x_n - q\| = 0.\)

Since \(\{x_n - u_n\} \) is bounded, again applying (2.11) and (2.12), we get the boundedness of \(\{y_n^i - u_n\}, i = 1, 2, \ldots, p - 1. \) Since \(T_n = T_n(\mod M) \) are bounded mappings, set \(L = \)
\[
\begin{align*}
\max \{ & \sup_{n \geq 0} \| x_n - u_n \|, \sup_{n \geq 0} \| T_n x_n - u_n \|, \sup_{n \geq 0} \| T_n y_n^1 - u_n \|, \sup_{n \geq 0} \| \mu_n - u_n \|, \sup_{n \geq 0} \| \nu_n - u_n \|, \sup_{n \geq 0} \| \omega_n^1 - u_n \| \}, \quad (i = 1, 2, \ldots, p - 1). \end{align*}
\]

From (1.15) and (1.17), we obtain

\[
\begin{align*}
\| x_{n+1} - u_{n+1} \|^2 &= \left\| (1 - \alpha_n - \delta_n) (x_n - u_n) + \alpha_n \left(T_n y_n^1 - T_n u_n \right) + \delta_n (\nu_n - \mu_n) \right\|^2 \\
&\leq (1 - \alpha_n)^2 \| x_n - u_n \|^2 + 2 \alpha_n \left(T_n y_n^1 - T_n u_n, j (x_{n+1} - u_{n+1}) \right) \\
&\quad + 2 \delta_n \| \nu_n - \mu_n \| \cdot \| x_{n+1} - u_{n+1} \| \\
&\leq (1 - \alpha_n)^2 \| x_n - u_n \|^2 + 2 \alpha_n \left(T_n x_{n+1} - T_n u_{n+1}, j (x_{n+1} - u_{n+1}) \right) \\
&\quad + 2 \alpha_n \left(T_n y_n^1 - T_n x_{n+1} + T_n u_{n+1} - T_n u_n, j (x_{n+1} - u_{n+1}) \right) \\
&\quad + 2 \delta_n \| \nu_n - \mu_n \| \cdot \| x_{n+1} - u_{n+1} \| \\
&\leq \left(1 + \alpha_n^2 \right) \| x_n - q \|^2 - 2 \alpha_n \frac{\Phi(t(\| x_{n+1} - u_{n+1} \|))}{1 + \Phi(t(\| x_{n+1} - u_{n+1} \|) + \| x_{n+1} - u_{n+1} \|^2)} \\
&\quad + 2 \alpha_n \left| T_n y_n^1 - T_n x_{n+1} \right| \cdot \| x_{n+1} - u_{n+1} \| + 2 \alpha_n \left| T_n u_{n+1} - T_n u_n \right| \cdot \| x_{n+1} - u_{n+1} \| \\
&\quad + 2 \delta_n M \cdot \| x_{n+1} - u_{n+1} \| \\
&\quad (2.18)
\end{align*}
\]

\[
\begin{align*}
\| x_{n+1} - y_n^1 \| &\leq \left(\beta_n^1 + \alpha_n + \eta_n^1 + \delta_n \right) \| x_n - u_n \| + \alpha_n \left| T_n y_n^1 - u_n \right| \\
&\quad + \beta_n^1 \left| T_n y_n^2 - u_n \right| + \delta_n \| \nu_n - u_n \| + \eta_n^1 \left| \omega_n^1 - u_n \right| \\
&\leq 2 \left(\beta_n^1 + \alpha_n + \eta_n^1 + \delta_n \right) L \cdot \| x_{n+1} - u_{n+1} \| \quad (2.19)
\end{align*}
\]

By the conditions (iii)-(v), we have

\[
\lim_{n \to \infty} \| x_{n+1} - y_n^1 \| = 0. \quad (2.20)
\]

Since \(\lim_{n \to \infty} \| u_n - q \| = 0 \), so

\[
\| u_{n+1} - u_n \| \leq \| u_n - q \| + \| u_n - q \|. \quad (2.21)
\]

That is:

\[
\lim_{n \to \infty} \| u_{n+1} - u_n \| = 0. \quad (2.22)
\]
By the uniform continuity of T, we obtain

$$
\lim_{n \to \infty} \|T_n x_{n+1} - T_n y_n^1\| = 0, \quad \lim_{n \to \infty} \|T_n u_{n+1} - T_n u_n\| = 0. \tag{2.23}
$$

From (2.23) and the conditions (iii) and (v), (2.18) becomes

$$
\|x_{n+1} - u_{n+1}\|^2 \leq \left(1 + \alpha_n^2\right)\|x_n - u_n\|^2 - 2\alpha_n \frac{\Phi_i(\|x_n - u_{n+1}\|)}{1 + \Phi_i(\|x_{n+1} - u_{n+1}\|) + \|x_{n+1} - u_{n+1}\|^2} + o(\alpha_n).
$$

By Lemma 1.10, we get $\lim_{n \to \infty} \|x_n - u_n\| = 0$. Since $\lim_{n \to \infty} \|u_n - q\| = 0$, and the inequality $0 \leq \|x_n - q\| \leq \|x_n - u_n\| + \|u_n - q\|$, so $\lim_{n \to \infty} \|x_n - q\| = 0$. \hfill \Box

From Theorems 2.1 and 2.2, we can obtain the following corollary.

Corollary 2.3. Let E be a Banach space and K be a nonempty closed convex subset of E, T_n are as in Theorem 2.1. For $x_0 \in K$, the sequence iterations $\{x_n\}$ is defined by (1.15), $\{\alpha_n\}$, $\{\delta_n\}$, $\{\beta_n^i\}$, $\{\eta_n^i\}$, $(i = 1, 2, \ldots, p-1)$ are sequences in $[0, 1]$ satisfying the following conditions:

(i) $0 \leq \alpha_n + \delta_n \leq 1$, $0 \leq \beta_n^i + \eta_n^i \leq 1$, $1 \leq i \leq p - 1$;
(ii) $\sum_{n=0}^{\infty} \alpha_n = \infty$;
(iii) $\lim_{n \to \infty} \alpha_n = 0$;
(iv) $\lim_{n \to \infty} \beta_n^i = \lim_{n \to \infty} \eta_n^i = 0$, $i = 1, \ldots, p - 1$;
(v) $\delta_n = o(\alpha_n)$.

Then the iteration sequence $\{x_n\}$ strongly converges to the common point of $F(T_i)$, $i \in I$.

Corollary 2.4. Let $T_n = S_n (\mathrm{mod} \ M)$, $T_l : E \to E$, $l \in I = \{1, 2, \ldots, M\}$ are M uniformly continuous generalized weak Φ-quasi-accretive mappings. Suppose $N(F) = \cap_{i=1}^{M} N(T_i) \neq \emptyset$, that is, there exists $x^* \in N(F)$. Let $\{\alpha_n\}$, $\{\delta_n\}$, $\{\beta_n^i\}$, $\{\eta_n^i\}$, $(i = 1, 2, \ldots, p - 1)$ be sequences in $[0, 1]$ satisfying the following conditions:

(i) $0 \leq \alpha_n + \delta_n \leq 1$, $0 \leq \beta_n^i + \eta_n^i \leq 1$, $1 \leq i \leq p - 1$;
(ii) $\sum_{n=0}^{\infty} \alpha_n = \infty$;
(iii) $\lim_{n \to \infty} \alpha_n = 0$;
(iv) $\lim_{n \to \infty} \beta_n^i = \lim_{n \to \infty} \eta_n^i = 0$, $i = 1, \ldots, p - 1$;
(v) $\delta_n = o(\alpha_n)$.

Let the sequence $\{x_n\}$ in E be generated iteratively from some $x_0 \in E$ by

$$
x_{n+1} = (1 - \alpha_n - \delta_n)x_n + \alpha_n y_n^1 + \delta_n y_n,
$$

$$
y_n^i = \left(1 - \beta_n^i - \eta_n^i\right)x_n + \beta_n^i S_n y_n^{i+1} + \eta_n^i \omega_n^i, \quad i = 1, \ldots, p - 2,
$$

$$
y_n^{p-1} = \left(1 - \beta_n^{p-1} - \eta_n^{p-1}\right)x_n + \beta_n^{p-1} S_n x_n + \eta_n^{p-1} \omega_n^{p-1}, \quad p \geq 2,
$$

where $S_l x := x - T_l x$ for all $x \in E$ and $\{\nu_n\}$, $\{\omega_n^i\}$ are any bounded sequences in K.

Then \(\{x_n\} \) defined by (2.25) converges strongly to \(x^* \).

Proof. We simply observe that \(S_l := I - T_l \), \(l \in I \) are \(M \)-uniformly continuous generalized weak \(\Phi \)-hemicontractive mappings. The result follows from Corollary 2.3. \(\square \)

Acknowledgments

This project was supported by Hebei Province Natural Science Foundation (A2011210033); Shijiazhuang Tiedao University Foundation (Q64).

References

