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Abstract. 
We obtain some new estimates for the error of Simpson integration rule, which develop available results in the literature. Indeed, we introduce three main estimates for the residue of Simpson integration rule in 
	
		
			

				𝐿
			

			

				1
			

			
				[
				𝑎
				,
				𝑏
				]
			

		
	
 and 
	
		
			

				𝐿
			

			

				∞
			

			
				[
				𝑎
				,
				𝑏
				]
			

		
	
 spaces where the compactness of the interval 
	
		
			
				[
				𝑎
				,
				𝑏
				]
			

		
	
 plays a crucial role.


1. Introduction 
A general (
	
		
			
				𝑛
				+
				1
			

		
	
)-point-weighted quadrature formula is denoted by 
						
	
 		
 			
				(
				1
				.
				1
				)
			
 		
	

	
		
			

				
			

			
				𝑏
				𝑎
			

			
				𝑤
				(
				𝑥
				)
				𝑓
				(
				𝑥
				)
				𝑑
				𝑥
				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝑤
			

			

				𝑘
			

			
				𝑓
				
				𝑥
			

			

				𝑘
			

			
				
				+
				𝑅
			

			
				𝑛
				+
				1
			

			
				[
				𝑓
				]
				,
			

		
	

					where 
	
		
			
				𝑤
				(
				𝑥
				)
			

		
	
 is a positive weight function on 
	
		
			
				[
				𝑎
				,
				𝑏
				]
			

		
	
, 
	
		
			
				{
				𝑥
			

			

				𝑘
			

			

				}
			

			
				𝑛
				𝑘
				=
				0
			

		
	
  and 
	
		
			
				{
				𝑤
			

			

				𝑘
			

			

				}
			

			
				𝑛
				𝑘
				=
				0
			

		
	
 are, respectively, nodes and weight coefficients, and  
	
		
			

				𝑅
			

			
				𝑛
				+
				1
			

			
				[
				𝑓
				]
			

		
	
  is the corresponding error [1]. 
Let 
	
		
			

				𝚷
			

			

				𝑑
			

		
	
 be the set of algebraic polynomials of degree at most 
	
		
			

				𝑑
			

		
	
. The quadrature formula (1.1) has degree of exactness 
	
		
			

				𝑑
			

		
	
 if for every 
	
		
			
				𝑝
				∈
				𝚷
			

			

				𝑑
			

		
	
 we have 
	
		
			

				𝑅
			

			
				𝑛
				+
				1
			

			
				[
				𝑝
				]
				=
				0
			

		
	
. In addition, if  
	
		
			

				𝑅
			

			
				𝑛
				+
				1
			

			
				[
				𝑝
				]
				≠
				0
			

		
	
 for some   
	
		
			

				𝚷
			

			
				𝑑
				+
				1
			

		
	
, formula (1.1) has precise degree of exactness 
	
		
			

				𝑑
			

		
	
. 
The convergence order of quadrature rule (1.1) depends on the smoothness of the function 
	
		
			

				𝑓
			

		
	
 as well as on its degree of exactness. It is well known that for given  
	
		
			
				𝑛
				+
				1
			

		
	
 mutually different nodes  
	
		
			
				{
				𝑥
			

			

				𝑘
			

			

				}
			

			
				𝑛
				𝑘
				=
				0
			

		
	
  we can always achieve a degree of exactness  
	
		
			
				𝑑
				=
				𝑛
			

		
	
  by interpolating at these nodes and integrating the interpolated polynomial instead of 
	
		
			

				𝑓
			

		
	
. Namely, taking the node polynomia
						
	
 		
 			
				(
				1
				.
				2
				)
			
 		
	

	
		
			

				Ψ
			

			
				𝑛
				+
				1
			

			
				(
				𝑥
				)
				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			
				
				𝑥
				−
				𝑥
			

			

				𝑘
			

			
				
				,
			

		
	

					by integrating the Lagrange interpolation formula                                             
						
	
 		
 			
				(
				1
				.
				3
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑥
				)
				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			
				𝑓
				
				𝑥
			

			

				𝑘
			

			
				
				𝐿
				
				𝑥
				;
				𝑥
			

			

				𝑘
			

			
				
				+
				𝑟
			

			
				𝑛
				+
				1
			

			
				(
				𝑓
				;
				𝑥
				)
				,
			

		
	

					where                                 
						
	
 		
 			
				(
				1
				.
				4
				)
			
 		
	

	
		
			
				𝐿
				
				𝑥
				;
				𝑥
			

			

				𝑘
			

			
				
				=
				Ψ
			

			
				𝑛
				+
				1
			

			
				(
				𝑥
				)
			

			
				
			
			

				Ψ
			

			
				
				𝑛
				+
				1
			

			
				
				𝑥
			

			

				𝑘
			

			
				
				
				𝑥
				−
				𝑥
			

			

				𝑘
			

			
				
				(
				𝑘
				=
				0
				,
				1
				,
				…
				,
				𝑛
				)
				,
			

		
	

					we  obtain (1.1), with
						
	
 		
 			
				(
				1
				.
				5
				)
			
 		
	

	
		
			

				𝑤
			

			

				𝑘
			

			
				=
				1
			

			
				
			
			

				Ψ
			

			
				
				𝑛
				+
				1
			

			
				
				𝑥
			

			

				𝑘
			

			
				
				
			

			
				𝑏
				𝑎
			

			

				Ψ
			

			
				𝑛
				+
				1
			

			
				(
				𝑥
				)
				𝑤
				(
				𝑥
				)
			

			
				
			
			
				𝑥
				−
				𝑥
			

			

				𝑘
			

			
				𝑅
				𝑑
				𝑥
				(
				𝑘
				=
				0
				,
				1
				,
				…
				,
				𝑛
				)
				,
			

			
				𝑛
				+
				1
			

			
				[
				𝑓
				]
				=
				
			

			
				𝑏
				𝑎
			

			

				𝑟
			

			
				𝑛
				+
				1
			

			
				(
				𝑓
				;
				𝑥
				)
				𝑤
				(
				𝑥
				)
				𝑑
				𝑥
				.
			

		
	

					Note that for each  
	
		
			
				𝑓
				∈
				𝚷
			

			

				𝑛
			

		
	
 we have  
	
		
			

				𝑟
			

			
				𝑛
				+
				1
			

			
				(
				𝑓
				;
				𝑥
				)
				=
				0
			

		
	
,  and therefore   
	
		
			

				𝑅
			

			
				𝑛
				+
				1
			

			
				[
				𝑓
				]
				=
				0
			

		
	
.
Quadrature formulae obtained in this way are known as interpolatory. Usually the simplest interpolatory quadrature formula of type (1.1) with predetermined nodes 
	
		
			
				{
				𝑥
			

			

				𝑘
			

			

				}
			

			
				𝑛
				𝑘
				=
				0
			

			
				∈
				[
				𝑎
				,
				𝑏
				]
			

		
	
 is called a weighted Newton-Cotes formula. For 
	
		
			
				𝑤
				(
				𝑥
				)
				=
				1
			

		
	
 and the equidistant nodes 
	
		
			
				{
				𝑥
			

			

				𝑘
			

			

				}
			

			
				𝑛
				𝑘
				=
				0
			

			
				=
				{
				𝑎
				+
				𝑘
				ℎ
				}
			

			
				𝑛
				𝑘
				=
				0
			

		
	
 with 
	
		
			
				ℎ
				=
				(
				𝑏
				−
				𝑎
				)
				/
				𝑛
			

		
	
, the classical Newton-Cotes formulas are derived. One of the important cases of the classical Newton-Cotes formulas is the well-known Simpson’s rule:
						
	
 		
 			
				(
				1
				.
				6
				)
			
 		
	

	
		
			

				
			

			
				𝑏
				𝑎
			

			
				𝑓
				(
				𝑡
				)
				𝑑
				𝑡
				=
				𝑏
				−
				𝑎
			

			
				
			
			
				6
				
				
				𝑓
				(
				𝑎
				)
				+
				4
				𝑓
				𝑎
				+
				𝑏
			

			
				
			
			
				2
				
				
				+
				𝑓
				(
				𝑏
				)
				+
				𝐸
				(
				𝑓
				)
				.
			

		
	

					In this direction, Simpson inequality [2–7] gives an error bound for the above quadrature rule. There are few known ways to estimate the residue value in (1.6). The main aim of this paper is to give three new estimations for 
	
		
			
				𝐸
				(
				𝑓
				)
			

		
	
 in 
	
		
			

				𝐿
			

			

				1
			

			
				[
				𝑎
				,
				𝑏
				]
			

		
	
 and 
	
		
			

				𝐿
			

			

				∞
			

			
				[
				𝑎
				,
				𝑏
				]
			

		
	
 spaces. 
Let 
	
		
			

				𝐿
			

			

				𝑝
			

			
				[
				𝑎
				,
				𝑏
				]
			

		
	
  (
	
		
			
				1
				≤
				𝑝
				<
				∞
			

		
	
) denote the space of 
	
		
			

				𝑝
			

		
	
-power integrable functions on the interval  
	
		
			
				[
				𝑎
				,
				𝑏
				]
			

		
	
 with the standard norm                                                           
						
	
 		
 			
				(
				1
				.
				7
				)
			
 		
	

	
		
			
				‖
				𝑓
				‖
			

			

				𝑝
			

			
				=
				
				
			

			
				𝑏
				𝑎
			

			
				|
				|
				|
				|
				𝑓
				(
				𝑡
				)
			

			

				𝑝
			

			
				
				𝑑
				𝑡
			

			
				1
				/
				𝑝
			

			

				,
			

		
	

					and 
	
		
			

				𝐿
			

			

				∞
			

			
				[
				𝑎
				,
				𝑏
				]
			

		
	
 the space of all essentially bounded functions on  
	
		
			
				[
				𝑎
				,
				𝑏
				]
			

		
	
  with the norm  
						
	
 		
 			
				(
				1
				.
				8
				)
			
 		
	

	
		
			
				‖
				𝑓
				‖
			

			

				∞
			

			
				=
				e
				s
				s
				s
				u
				p
			

			
				𝑥
				∈
				[
				𝑎
				,
				𝑏
				]
			

			
				|
				|
				|
				|
				.
				𝑓
				(
				𝑥
				)
			

		
	

					If 
	
		
			
				𝑓
				∈
				𝐿
			

			

				1
			

			
				[
				𝑎
				,
				𝑏
				]
			

		
	
 and 
	
		
			
				𝑔
				∈
				𝐿
			

			

				∞
			

			
				[
				𝑎
				,
				𝑏
				]
			

		
	
, then the following inequality is well known:
						
	
 		
 			
				(
				1
				.
				9
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				
			

			
				𝑏
				𝑎
			

			
				|
				|
				|
				|
				𝑓
				(
				𝑥
				)
				𝑔
				(
				𝑥
				)
				𝑑
				𝑥
				≤
				‖
				𝑓
				‖
			

			

				1
			

			
				‖
				𝑔
				‖
			

			

				∞
			

			

				.
			

		
	

					Recently in [8], a main inequality has been introduced, which can estimate the error of Simpson quadrature rule too.  
Theorem A.   Let 
	
		
			
				𝑓
				∶
				𝐈
				→
				𝐑
			

		
	
, where 
	
		
			

				𝐈
			

		
	
 is an interval, be a differentiable function in the interior  
	
		
			

				𝐈
			

			

				0
			

		
	
of  
	
		
			

				𝐈
			

		
	
, and let 
	
		
			
				[
				𝑎
				,
				𝑏
				]
				⊂
				𝐈
			

			

				0
			

		
	
. If 
	
		
			

				𝛼
			

			

				0
			

		
	
, 
	
		
			

				𝛽
			

			

				0
			

		
	
 are two real constants such that   
	
		
			

				𝛼
			

			

				0
			

			
				≤
				𝑓
			

			

				
			

			
				(
				𝑡
				)
				≤
				𝛽
			

			

				0
			

		
	
 for all  
	
		
			
				𝑡
				∈
				[
				𝑎
				,
				𝑏
				]
			

		
	
, then for any 
	
		
			
				𝜆
				∈
				[
				1
				/
				2
				,
				1
				]
			

		
	
 and all  
	
		
			
				𝑥
				∈
				[
				(
				𝑎
				+
				(
				2
				𝜆
				−
				1
				)
				𝑏
				)
				/
				2
				𝜆
				,
				(
				𝑏
				+
				(
				2
				𝜆
				−
				1
				)
				𝑎
				)
				/
				2
				𝜆
				]
				⊆
				[
				𝑎
				,
				𝑏
				]
			

		
	
  we have
							
	
 		
 			
				(
				1
				.
				1
				0
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				1
				𝑓
				(
				𝑥
				)
				−
			

			
				
			
			
				
				𝜆
				(
				𝑏
				−
				𝑎
				)
			

			
				𝑏
				𝑎
			

			
				𝑓
				(
				𝑡
				)
				𝑑
				𝑡
				−
				𝑓
				(
				𝑏
				)
				−
				𝑓
				(
				𝑎
				)
			

			
				
			
			
				𝑏
				−
				𝑎
				𝑥
				+
				(
				2
				𝜆
				−
				1
				)
				𝑎
				+
				𝑏
			

			
				
			
			
				2
				𝜆
				(
				𝑏
				−
				𝑎
				)
				𝑓
				(
				𝑏
				)
				−
				𝑎
				+
				(
				2
				𝜆
				−
				1
				)
				𝑏
			

			
				
			
			
				|
				|
				|
				|
				≤
				𝛽
				2
				𝜆
				(
				𝑏
				−
				𝑎
				)
				𝑓
				(
				𝑎
				)
			

			

				0
			

			
				−
				𝛼
			

			

				0
			

			
				
			
			
				𝜆
				4
				(
				𝑏
				−
				𝑎
				)
			

			

				2
			

			
				+
				(
				1
				−
				𝜆
				)
			

			

				2
			

			
				
			
			
				𝜆
				
				(
				𝑥
				−
				𝑎
				)
			

			

				2
			

			
				+
				(
				𝑏
				−
				𝑥
				)
			

			

				2
			

			
				
				.
			

		
	


				As is observed, replacing  
	
		
			
				𝑥
				=
				(
				𝑎
				+
				𝑏
				)
				/
				2
			

		
	
 and 
	
		
			
				𝜆
				=
				2
				/
				3
			

		
	
 in (1.10) gives an error bound for the Simpson rule as                      
						
	
 		
 			
				(
				1
				.
				1
				1
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				
			

			
				𝑏
				𝑎
			

			
				𝑓
				(
				𝑡
				)
				𝑑
				𝑡
				−
				𝑏
				−
				𝑎
			

			
				
			
			
				6
				
				
				𝑓
				(
				𝑎
				)
				+
				4
				𝑓
				𝑎
				+
				𝑏
			

			
				
			
			
				2
				
				
				|
				|
				|
				|
				≤
				5
				+
				𝑓
				(
				𝑏
				)
			

			
				
			
			
				(
				7
				2
				𝑏
				−
				𝑎
				)
			

			

				2
			

			
				
				𝛽
			

			

				0
			

			
				−
				𝛼
			

			

				0
			

			
				
				.
			

		
	


				To introduce three new error bounds for the Simpson quadrature rule in  
	
		
			

				𝐿
			

			

				1
			

			
				[
				𝑎
				,
				𝑏
				]
			

		
	
 and 
	
		
			

				𝐿
			

			

				∞
			

			
				[
				𝑎
				,
				𝑏
				]
			

		
	
  spaces we first consider the following kernel on 
	
		
			
				[
				𝑎
				,
				𝑏
				]
			

		
	
:
						
	
 		
 			
				(
				1
				.
				1
				2
				)
			
 		
	

	
		
			
				⎧
				⎪
				⎨
				⎪
				⎩
				𝐾
				(
				𝑡
				)
				=
				𝑡
				−
				5
				𝑎
				+
				𝑏
			

			
				
			
			
				6
				
				,
				𝑡
				∈
				𝑎
				,
				𝑎
				+
				𝑏
			

			
				
			
			
				2
				
				,
				𝑡
				−
				𝑎
				+
				5
				𝑏
			

			
				
			
			
				6
				
				,
				𝑡
				∈
				𝑎
				+
				𝑏
			

			
				
			
			
				2
				
				.
				,
				𝑏
			

		
	


				After some calculations, it can be directly concluded that 
						
	
 		
 			
				(
				1
				.
				1
				3
				)
			
 			
				(
				1
				.
				1
				4
				)
			
 		
	

	
		
			

				
			

			
				𝑏
				𝑎
			

			

				𝑓
			

			

				
			

			
				(
				𝑡
				)
				𝐾
				(
				𝑡
				)
				𝑑
				𝑡
				=
				𝑏
				−
				𝑎
			

			
				
			
			
				6
				
				
				𝑓
				(
				𝑎
				)
				+
				4
				𝑓
				𝑎
				+
				𝑏
			

			
				
			
			
				2
				
				
				−
				
				+
				𝑓
				(
				𝑏
				)
			

			
				𝑏
				𝑎
			

			
				𝑓
				(
				𝑡
				)
				𝑑
				𝑡
				,
				m
				a
				x
			

			
				[
				]
				𝑡
				∈
				𝑎
				,
				𝑏
			

			
				|
				|
				|
				|
				=
				1
				𝐾
				(
				𝑡
				)
			

			
				
			
			
				3
				(
				𝑏
				−
				𝑎
				)
				.
			

		
	

2. Main Results
Theorem 2.1.  Let  
	
		
			
				𝑓
				∶
				𝐈
				→
				𝐑
			

		
	
, where 
	
		
			

				𝐈
			

		
	
 is an interval, be a function differentiable in the interior  
	
		
			

				𝐈
			

			

				0
			

		
	
of  
	
		
			

				𝐈
			

		
	
, and let 
	
		
			
				[
				𝑎
				,
				𝑏
				]
				⊂
				𝐈
			

			

				0
			

		
	
. If 
	
		
			
				𝛼
				(
				𝑥
				)
				≤
				𝑓
			

			

				
			

			
				(
				𝑥
				)
				≤
				𝛽
				(
				𝑥
				)
			

		
	
 for any  
	
		
			
				𝛼
				,
				𝛽
				∈
				𝐶
				[
				𝑎
				,
				𝑏
				]
			

		
	
  and 
	
		
			
				𝑥
				∈
				[
				𝑎
				,
				𝑏
				]
			

		
	
, then the following inequality holds:
							
	
 		
 			
				(
				2
				.
				1
				)
			
 		
	

	
		
			

				𝑚
			

			

				1
			

			
				=
				
			

			
				𝑎
				(
				5
				𝑎
				+
				𝑏
				)
				/
				6
			

			
				
				𝑡
				−
				5
				𝑎
				+
				𝑏
			

			
				
			
			
				6
				
				
				𝛽
				(
				𝑡
				)
				𝑑
				𝑡
				+
			

			
				(
				𝑎
				+
				𝑏
				)
				/
				2
				(
				5
				𝑎
				+
				𝑏
				)
				/
				6
			

			
				
				𝑡
				−
				5
				𝑎
				+
				𝑏
			

			
				
			
			
				6
				
				+
				
				𝛼
				(
				𝑡
				)
				𝑑
				𝑡
			

			
				(
				𝑎
				+
				5
				𝑏
				)
				/
				6
				(
				𝑎
				+
				𝑏
				)
				/
				2
			

			
				
				𝑡
				−
				𝑎
				+
				5
				𝑏
			

			
				
			
			
				6
				
				
				𝛽
				(
				𝑡
				)
				𝑑
				𝑡
				+
			

			
				𝑏
				(
				𝑎
				+
				5
				𝑏
				)
				/
				6
			

			
				
				𝑡
				−
				𝑎
				+
				5
				𝑏
			

			
				
			
			
				6
				
				≤
				𝛼
				(
				𝑡
				)
				𝑑
				𝑡
				𝑏
				−
				𝑎
			

			
				
			
			
				6
				
				
				𝑓
				(
				𝑎
				)
				+
				4
				𝑓
				𝑎
				+
				𝑏
			

			
				
			
			
				2
				
				
				−
				
				+
				𝑓
				(
				𝑏
				)
			

			
				𝑏
				𝑎
			

			
				𝑀
				𝑓
				(
				𝑡
				)
				𝑑
				𝑡
				≤
			

			

				1
			

			
				=
				
			

			
				𝑎
				(
				5
				𝑎
				+
				𝑏
				)
				/
				6
			

			
				
				𝑡
				−
				5
				𝑎
				+
				𝑏
			

			
				
			
			
				6
				
				
				𝛼
				(
				𝑡
				)
				𝑑
				𝑡
				+
			

			
				(
				𝑎
				+
				𝑏
				)
				/
				2
				(
				5
				𝑎
				+
				𝑏
				)
				/
				6
			

			
				
				𝑡
				−
				5
				𝑎
				+
				𝑏
			

			
				
			
			
				6
				
				+
				
				𝛽
				(
				𝑡
				)
				𝑑
				𝑡
			

			
				(
				𝑎
				+
				5
				𝑏
				)
				/
				6
				(
				𝑎
				+
				𝑏
				)
				/
				2
			

			
				
				𝑡
				−
				𝑎
				+
				5
				𝑏
			

			
				
			
			
				6
				
				
				𝛼
				(
				𝑡
				)
				𝑑
				𝑡
				+
			

			
				𝑏
				(
				𝑎
				+
				5
				𝑏
				)
				/
				6
			

			
				
				𝑡
				−
				𝑎
				+
				5
				𝑏
			

			
				
			
			
				6
				
				𝛽
				(
				𝑡
				)
				𝑑
				𝑡
				.
			

		
	

Proof. By referring to the kernel (1.12) and identity (1.13) we first have
							
	
 		
 			
				(
				2
				.
				2
				)
			
 		
	

	
		
			

				
			

			
				𝑏
				𝑎
			

			
				
				𝑓
				𝐾
				(
				𝑡
				)
			

			

				
			

			
				(
				𝑡
				)
				−
				𝛼
				(
				𝑡
				)
				+
				𝛽
				(
				𝑡
				)
			

			
				
			
			
				2
				
				=
				𝑑
				𝑡
				𝑏
				−
				𝑎
			

			
				
			
			
				6
				
				
				𝑓
				(
				𝑎
				)
				+
				4
				𝑓
				𝑎
				+
				𝑏
			

			
				
			
			
				2
				
				
				−
				
				+
				𝑓
				(
				𝑏
				)
			

			
				𝑏
				𝑎
			

			
				1
				𝑓
				(
				𝑡
				)
				𝑑
				𝑡
				−
			

			
				
			
			
				2
				
				
			

			
				𝑏
				𝑎
			

			
				
				=
				𝐾
				(
				𝑡
				)
				(
				𝛼
				(
				𝑡
				)
				+
				𝛽
				(
				𝑡
				)
				)
				𝑑
				𝑡
				𝑏
				−
				𝑎
			

			
				
			
			
				6
				
				
				𝑓
				(
				𝑎
				)
				+
				4
				𝑓
				𝑎
				+
				𝑏
			

			
				
			
			
				2
				
				
				−
				
				+
				𝑓
				(
				𝑏
				)
			

			
				𝑏
				𝑎
			

			
				−
				1
				𝑓
				(
				𝑡
				)
				𝑑
				𝑡
			

			
				
			
			
				2
				
				
			

			
				𝑎
				(
				𝑎
				+
				𝑏
				)
				/
				2
			

			
				
				𝑡
				−
				5
				𝑎
				+
				𝑏
			

			
				
			
			
				6
				
				
				(
				𝛼
				(
				𝑡
				)
				+
				𝛽
				(
				𝑡
				)
				)
				𝑑
				𝑡
				+
			

			
				𝑏
				(
				𝑎
				+
				𝑏
				)
				/
				2
			

			
				
				𝑡
				−
				𝑎
				+
				5
				𝑏
			

			
				
			
			
				6
				
				
				.
				(
				𝛼
				(
				𝑡
				)
				+
				𝛽
				(
				𝑡
				)
				)
				𝑑
				𝑡
			

		
	

						On the other hand, the given assumption  
	
		
			
				𝛼
				(
				𝑡
				)
				≤
				𝑓
			

			

				
			

			
				(
				𝑡
				)
				≤
				𝛽
				(
				𝑡
				)
			

		
	
  results in
							
	
 		
 			
				(
				2
				.
				3
				)
			
 		
	

	
		
			
				|
				|
				|
				𝑓
			

			

				
			

			
				(
				𝑡
				)
				−
				𝛼
				(
				𝑡
				)
				+
				𝛽
				(
				𝑡
				)
			

			
				
			
			
				2
				|
				|
				|
				≤
				𝛽
				(
				𝑡
				)
				−
				𝛼
				(
				𝑡
				)
			

			
				
			
			
				2
				.
			

		
	

						Therefore, one can conclude from (2.2) and (2.3) that
							
	
 		
 			
				(
				2
				.
				4
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				𝑏
				−
				𝑎
			

			
				
			
			
				6
				
				
				𝑓
				(
				𝑎
				)
				+
				4
				𝑓
				𝑎
				+
				𝑏
			

			
				
			
			
				2
				
				
				−
				
				+
				𝑓
				(
				𝑏
				)
			

			
				𝑏
				𝑎
			

			
				−
				1
				𝑓
				(
				𝑡
				)
				𝑑
				𝑡
			

			
				
			
			
				2
				
				
			

			
				𝑎
				(
				𝑎
				+
				𝑏
				)
				/
				2
			

			
				
				𝑡
				−
				5
				𝑎
				+
				𝑏
			

			
				
			
			
				6
				
				
				(
				𝛼
				(
				𝑡
				)
				+
				𝛽
				(
				𝑡
				)
				)
				𝑑
				𝑡
				+
			

			
				𝑏
				(
				𝑎
				+
				𝑏
				)
				/
				2
			

			
				
				𝑡
				−
				𝑎
				+
				5
				𝑏
			

			
				
			
			
				6
				
				
				|
				|
				|
				|
				=
				|
				|
				|
				|
				
				(
				𝛼
				(
				𝑡
				)
				+
				𝛽
				(
				𝑡
				)
				)
				𝑑
				𝑡
			

			
				𝑏
				𝑎
			

			
				
				𝑓
				𝐾
				(
				𝑡
				)
			

			

				
			

			
				(
				𝑡
				)
				−
				𝛼
				(
				𝑡
				)
				+
				𝛽
				(
				𝑡
				)
			

			
				
			
			
				2
				
				|
				|
				|
				|
				≤
				
				𝑑
				𝑡
			

			
				𝑏
				𝑎
			

			
				|
				|
				|
				|
				𝐾
				(
				𝑡
				)
				𝛽
				(
				𝑡
				)
				−
				𝛼
				(
				𝑡
				)
			

			
				
			
			
				2
				=
				1
				𝑑
				𝑡
			

			
				
			
			
				2
				
				
			

			
				𝑎
				(
				𝑎
				+
				𝑏
				)
				/
				2
			

			
				|
				|
				|
				𝑡
				−
				5
				𝑎
				+
				𝑏
			

			
				
			
			
				6
				|
				|
				|
				
				(
				𝛽
				(
				𝑡
				)
				−
				𝛼
				(
				𝑡
				)
				)
				𝑑
				𝑡
				+
			

			
				𝑏
				(
				𝑎
				+
				𝑏
				)
				/
				2
			

			
				|
				|
				|
				𝑡
				−
				𝑎
				+
				5
				𝑏
			

			
				
			
			
				6
				|
				|
				|
				
				.
				(
				𝛽
				(
				𝑡
				)
				−
				𝛼
				(
				𝑡
				)
				)
				𝑑
				𝑡
			

		
	

						After rearranging (2.4) we obtain 
							
	
 		
 			
				(
				2
				.
				5
				)
			
 		
	

	
		
			

				𝑚
			

			

				1
			

			
				=
				
			

			
				𝑎
				(
				𝑎
				+
				𝑏
				)
				/
				2
			

			
				
				
				𝑡
				−
				5
				𝑎
				+
				𝑏
			

			
				
			
			
				6
				−
				|
				|
				|
				𝑡
				−
				5
				𝑎
				+
				𝑏
			

			
				
			
			
				6
				|
				|
				|
				
				𝛽
				(
				𝑡
				)
			

			
				
			
			
				2
				+
				
				𝑡
				−
				5
				𝑎
				+
				𝑏
			

			
				
			
			
				6
				+
				|
				|
				|
				𝑡
				−
				5
				𝑎
				+
				𝑏
			

			
				
			
			
				6
				|
				|
				|
				
				𝛼
				(
				𝑡
				)
			

			
				
			
			
				2
				
				+
				
				𝑑
				𝑡
			

			
				𝑏
				(
				𝑎
				+
				𝑏
				)
				/
				2
			

			
				
				
				𝑡
				−
				𝑎
				+
				5
				𝑏
			

			
				
			
			
				6
				−
				|
				|
				|
				𝑡
				−
				𝑎
				+
				5
				𝑏
			

			
				
			
			
				6
				|
				|
				|
				
				𝛽
				(
				𝑡
				)
			

			
				
			
			
				2
				+
				
				𝑡
				−
				𝑎
				+
				5
				𝑏
			

			
				
			
			
				6
				+
				|
				|
				|
				𝑡
				−
				𝑎
				+
				5
				𝑏
			

			
				
			
			
				6
				|
				|
				|
				
				𝛼
				(
				𝑡
				)
			

			
				
			
			
				2
				
				=
				
				𝑑
				𝑡
			

			
				𝑎
				(
				5
				𝑎
				+
				𝑏
				)
				/
				6
			

			
				
				𝑥
				−
				5
				𝑎
				+
				𝑏
			

			
				
			
			
				6
				
				
				𝛽
				(
				𝑥
				)
				𝑑
				𝑥
				+
			

			
				(
				𝑎
				+
				𝑏
				)
				/
				2
				(
				5
				𝑎
				+
				𝑏
				)
				/
				6
			

			
				
				𝑥
				−
				5
				𝑎
				+
				𝑏
			

			
				
			
			
				6
				
				+
				
				𝛼
				(
				𝑥
				)
				𝑑
				𝑥
			

			
				(
				𝑎
				+
				5
				𝑏
				)
				/
				6
				(
				𝑎
				+
				𝑏
				)
				/
				2
			

			
				
				𝑥
				−
				𝑎
				+
				5
				𝑏
			

			
				
			
			
				6
				
				
				𝛽
				(
				𝑥
				)
				𝑑
				𝑥
				+
			

			
				𝑏
				(
				𝑎
				+
				5
				𝑏
				)
				/
				6
			

			
				
				𝑥
				−
				𝑎
				+
				5
				𝑏
			

			
				
			
			
				6
				
				𝑀
				𝛼
				(
				𝑥
				)
				𝑑
				𝑥
				,
			

			

				1
			

			
				=
				
			

			
				𝑎
				(
				𝑎
				+
				𝑏
				)
				/
				2
			

			
				
				
				𝑡
				−
				5
				𝑎
				+
				𝑏
			

			
				
			
			
				6
				−
				|
				|
				|
				𝑡
				−
				5
				𝑎
				+
				𝑏
			

			
				
			
			
				6
				|
				|
				|
				
				𝛼
				(
				𝑡
				)
			

			
				
			
			
				2
				+
				
				𝑡
				−
				5
				𝑎
				+
				𝑏
			

			
				
			
			
				6
				+
				|
				|
				|
				𝑡
				−
				5
				𝑎
				+
				𝑏
			

			
				
			
			
				6
				|
				|
				|
				
				𝛽
				(
				𝑡
				)
			

			
				
			
			
				2
				
				+
				
				𝑑
				𝑡
			

			
				𝑏
				(
				𝑎
				+
				𝑏
				)
				/
				2
			

			
				
				
				𝑡
				−
				𝑎
				+
				5
				𝑏
			

			
				
			
			
				6
				−
				|
				|
				|
				𝑡
				−
				𝑎
				+
				5
				𝑏
			

			
				
			
			
				6
				|
				|
				|
				
				𝛼
				(
				𝑡
				)
			

			
				
			
			
				2
				+
				
				𝑡
				−
				𝑎
				+
				5
				𝑏
			

			
				
			
			
				6
				+
				|
				|
				|
				𝑡
				−
				𝑎
				+
				5
				𝑏
			

			
				
			
			
				6
				|
				|
				|
				
				𝛽
				(
				𝑡
				)
			

			
				
			
			
				2
				
				=
				
				𝑑
				𝑡
			

			
				𝑎
				(
				5
				𝑎
				+
				𝑏
				)
				/
				6
			

			
				
				𝑥
				−
				5
				𝑎
				+
				𝑏
			

			
				
			
			
				6
				
				
				𝛼
				(
				𝑥
				)
				𝑑
				𝑥
				+
			

			
				(
				𝑎
				+
				𝑏
				)
				/
				2
				(
				5
				𝑎
				+
				𝑏
				)
				/
				6
			

			
				
				𝑥
				−
				5
				𝑎
				+
				𝑏
			

			
				
			
			
				6
				
				+
				
				𝛽
				(
				𝑥
				)
				𝑑
				𝑥
			

			
				(
				𝑎
				+
				5
				𝑏
				)
				/
				6
				(
				𝑎
				+
				𝑏
				)
				/
				2
			

			
				
				𝑥
				−
				𝑎
				+
				5
				𝑏
			

			
				
			
			
				6
				
				
				𝛼
				(
				𝑥
				)
				𝑑
				𝑥
				+
			

			
				𝑏
				(
				𝑎
				+
				5
				𝑏
				)
				/
				6
			

			
				
				𝑥
				−
				𝑎
				+
				5
				𝑏
			

			
				
			
			
				6
				
				𝛽
				(
				𝑥
				)
				𝑑
				𝑥
				.
			

		
	

The advantage of Theorem 2.1 is that necessary computations in bounds 
	
		
			

				𝑚
			

			

				1
			

		
	
 and 
	
		
			

				𝑀
			

			

				1
			

		
	
 are just in terms of the preassigned functions  
	
		
			
				𝛼
				(
				𝑡
				)
			

		
	
, 
	
		
			
				𝛽
				(
				𝑡
				)
			

		
	
  (not 
	
		
			

				𝑓
			

			

				
			

		
	
). 
Special Case 1 Substituting  
	
		
			
				𝛼
				(
				𝑥
				)
				=
				𝛼
			

			

				1
			

			
				𝑥
				+
				𝛼
			

			

				0
			

			
				≠
				0
			

		
	
  and  
	
		
			
				𝛽
				(
				𝑥
				)
				=
				𝛽
			

			

				1
			

			
				𝑥
				+
				𝛽
			

			

				0
			

			
				≠
				0
			

		
	
 in (2.1) gives
							
	
 		
 			
				(
				2
				.
				6
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				
			

			
				𝑏
				𝑎
			

			
				𝑓
				(
				𝑡
				)
				𝑑
				𝑡
				−
				𝑏
				−
				𝑎
			

			
				
			
			
				6
				
				
				𝑓
				(
				𝑎
				)
				+
				4
				𝑓
				𝑎
				+
				𝑏
			

			
				
			
			
				2
				
				
				|
				|
				|
				|
				≤
				+
				𝑓
				(
				𝑏
				)
				5
				(
				𝑏
				−
				𝑎
				)
			

			

				2
			

			
				
			
			
				𝛽
				1
				4
				4
				
				
			

			

				1
			

			
				−
				𝛼
			

			

				1
			

			
				
				(
				
				𝛽
				𝑎
				+
				𝑏
				)
				+
				2
			

			

				0
			

			
				−
				𝛼
			

			

				0
			

			
				.
				
				
			

		
	

					In particular, replacing  
	
		
			

				𝛼
			

			

				1
			

			
				=
				𝛽
			

			

				1
			

			
				=
				0
			

		
	
  in above inequality leads to one of the results of [9] as 
							
	
 		
 			
				(
				2
				.
				7
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				
			

			
				𝑏
				𝑎
			

			
				𝑓
				(
				𝑡
				)
				𝑑
				𝑡
				−
				𝑏
				−
				𝑎
			

			
				
			
			
				6
				
				
				𝑓
				(
				𝑎
				)
				+
				4
				𝑓
				𝑎
				+
				𝑏
			

			
				
			
			
				2
				
				
				|
				|
				|
				|
				≤
				5
				+
				𝑓
				(
				𝑏
				)
			

			
				
			
			
				(
				7
				2
				𝑏
				−
				𝑎
				)
			

			

				2
			

			
				
				𝛽
			

			

				0
			

			
				−
				𝛼
			

			

				0
			

			
				
				.
			

		
	

Remark 2.2. Although 
	
		
			
				𝛼
				(
				𝑥
				)
				≤
				𝑓
			

			

				
			

			
				(
				𝑥
				)
				≤
				𝛽
				(
				𝑥
				)
			

		
	
 is a straightforward condition in Theorem 2.1, however, sometimes one might not be able to easily obtain both bounds of  
	
		
			
				𝛼
				(
				𝑥
				)
			

		
	
 and  
	
		
			
				𝛽
				(
				𝑥
				)
			

		
	
 for  
	
		
			

				𝑓
			

			

				
			

		
	
. In this case, we can make use of two analogue theorems. The first one would be helpful when  
	
		
			

				𝑓
			

			

				
			

		
	
 is unbounded from above and the second one would be helpful when  
	
		
			

				𝑓
			

			

				
			

		
	
  is unbounded from below. 
Theorem 2.3.   Let   
	
		
			
				𝑓
				∶
				𝐈
				→
				𝐑
			

		
	
,  where  
	
		
			

				𝐈
			

		
	
  is an interval, be a function differentiable in the interior  
	
		
			

				𝐈
			

			

				0
			

		
	
  of   
	
		
			

				𝐈
			

		
	
, and let 
	
		
			
				[
				𝑎
				,
				𝑏
				]
				⊂
				𝐈
			

			

				0
			

		
	
. If  
	
		
			
				𝛼
				(
				𝑥
				)
				≤
				𝑓
			

			

				
			

			
				(
				𝑥
				)
			

		
	
  for any  
	
		
			
				𝛼
				∈
				𝐶
				[
				𝑎
				,
				𝑏
				]
			

		
	
 and  
	
		
			
				𝑥
				∈
				[
				𝑎
				,
				𝑏
				]
			

		
	
 then
							
	
 		
 			
				(
				2
				.
				8
				)
			
 		
	

	
		
			

				
			

			
				𝑎
				(
				𝑎
				+
				𝑏
				)
				/
				2
			

			
				
				𝑡
				−
				5
				𝑎
				+
				𝑏
			

			
				
			
			
				6
				
				
				𝛼
				(
				𝑡
				)
				𝑑
				𝑡
				+
			

			
				𝑏
				(
				𝑎
				+
				𝑏
				)
				/
				2
			

			
				
				𝑡
				−
				𝑎
				+
				5
				𝑏
			

			
				
			
			
				6
				
				𝛼
				(
				𝑡
				)
				𝑑
				𝑡
				−
				𝑏
				−
				𝑎
			

			
				
			
			
				3
				
				
				𝑓
				(
				𝑏
				)
				−
				𝑓
				(
				𝑎
				)
				−
			

			
				𝑏
				𝑎
			

			
				
				≤
				𝛼
				(
				𝑡
				)
				𝑑
				𝑡
				𝑏
				−
				𝑎
			

			
				
			
			
				6
				
				
				𝑓
				(
				𝑎
				)
				+
				4
				𝑓
				𝑎
				+
				𝑏
			

			
				
			
			
				2
				
				
				−
				
				+
				𝑓
				(
				𝑏
				)
			

			
				𝑏
				𝑎
			

			
				≤
				
				𝑓
				(
				𝑡
				)
				𝑑
				𝑡
			

			
				𝑎
				(
				𝑎
				+
				𝑏
				)
				/
				2
			

			
				
				𝑡
				−
				5
				𝑎
				+
				𝑏
			

			
				
			
			
				6
				
				
				𝛼
				(
				𝑡
				)
				𝑑
				𝑡
				+
			

			
				𝑏
				(
				𝑎
				+
				𝑏
				)
				/
				2
			

			
				
				𝑡
				−
				𝑎
				+
				5
				𝑏
			

			
				
			
			
				6
				
				+
				𝛼
				(
				𝑡
				)
				𝑑
				𝑡
				𝑏
				−
				𝑎
			

			
				
			
			
				3
				
				
				𝑓
				(
				𝑏
				)
				−
				𝑓
				(
				𝑎
				)
				−
			

			
				𝑏
				𝑎
			

			
				
				.
				𝛼
				(
				𝑡
				)
				𝑑
				𝑡
			

		
	

Proof.  Since 
							
	
 		
 			
				(
				2
				.
				9
				)
			
 		
	

	
		
			

				
			

			
				𝑏
				𝑎
			

			
				
				𝑓
				𝐾
				(
				𝑡
				)
			

			

				
			

			
				
				(
				𝑡
				)
				−
				𝛼
				(
				𝑡
				)
				𝑑
				𝑡
				=
				𝑏
				−
				𝑎
			

			
				
			
			
				6
				
				
				𝑓
				(
				𝑎
				)
				+
				4
				𝑓
				𝑎
				+
				𝑏
			

			
				
			
			
				2
				
				
				−
				
				+
				𝑓
				(
				𝑏
				)
			

			
				𝑏
				𝑎
			

			
				
				
				𝑓
				(
				𝑡
				)
				𝑑
				𝑡
				−
			

			
				𝑏
				𝑎
			

			
				
				=
				𝐾
				(
				𝑡
				)
				𝛼
				(
				𝑡
				)
				𝑑
				𝑡
				𝑏
				−
				𝑎
			

			
				
			
			
				6
				
				
				𝑓
				(
				𝑎
				)
				+
				4
				𝑓
				𝑎
				+
				𝑏
			

			
				
			
			
				2
				
				
				−
				
				+
				𝑓
				(
				𝑏
				)
			

			
				𝑏
				𝑎
			

			
				−
				
				
				𝑓
				(
				𝑡
				)
				𝑑
				𝑡
			

			
				𝑎
				(
				𝑎
				+
				𝑏
				)
				/
				2
			

			
				
				𝑡
				−
				5
				𝑎
				+
				𝑏
			

			
				
			
			
				6
				
				
				𝛼
				(
				𝑡
				)
				𝑑
				𝑡
				+
			

			
				𝑏
				(
				𝑎
				+
				𝑏
				)
				/
				2
			

			
				
				𝑡
				−
				𝑎
				+
				5
				𝑏
			

			
				
			
			
				6
				
				
				,
				𝛼
				(
				𝑡
				)
				𝑑
				𝑡
			

		
	

						so we have
							
	
 		
 			
				(
				2
				.
				1
				0
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				𝑏
				−
				𝑎
			

			
				
			
			
				6
				
				
				𝑓
				(
				𝑎
				)
				+
				4
				𝑓
				𝑎
				+
				𝑏
			

			
				
			
			
				2
				
				
				−
				
				+
				𝑓
				(
				𝑏
				)
			

			
				𝑏
				𝑎
			

			
				−
				
				
				𝑓
				(
				𝑡
				)
				𝑑
				𝑡
			

			
				𝑎
				(
				𝑎
				+
				𝑏
				)
				/
				2
			

			
				
				𝑡
				−
				5
				𝑎
				+
				𝑏
			

			
				
			
			
				6
				
				
				𝛼
				(
				𝑡
				)
				𝑑
				𝑡
				+
			

			
				𝑏
				(
				𝑎
				+
				𝑏
				)
				/
				2
			

			
				
				𝑡
				−
				𝑎
				+
				5
				𝑏
			

			
				
			
			
				6
				
				
				|
				|
				|
				|
				=
				|
				|
				|
				|
				
				𝛼
				(
				𝑡
				)
				𝑑
				𝑡
			

			
				𝑏
				𝑎
			

			
				
				𝑓
				𝐾
				(
				𝑡
				)
			

			

				
			

			
				
				|
				|
				|
				|
				≤
				
				(
				𝑡
				)
				−
				𝛼
				(
				𝑡
				)
				𝑑
				𝑡
			

			
				𝑏
				𝑎
			

			
				|
				|
				|
				|
				
				𝑓
				𝐾
				(
				𝑡
				)
			

			

				
			

			
				
				(
				𝑡
				)
				−
				𝛼
				(
				𝑡
				)
				𝑑
				𝑡
				≤
				m
				a
				x
			

			
				[
				]
				𝑡
				∈
				𝑎
				,
				𝑏
			

			
				|
				|
				𝐾
				|
				|
				
				(
				𝑡
				)
			

			
				𝑏
				𝑎
			

			
				
				𝑓
			

			

				
			

			
				
				(
				𝑡
				)
				−
				𝛼
				(
				𝑡
				)
				𝑑
				𝑡
				=
				𝑏
				−
				𝑎
			

			
				
			
			
				3
				
				𝑓
				
				(
				𝑏
				)
				−
				𝑓
				(
				𝑎
				)
				−
			

			
				𝑏
				𝑎
			

			
				𝛼
				
				.
				(
				𝑡
				)
				𝑑
				𝑡
			

		
	

						After rearranging (2.10), the main inequality (2.8) will be derived. 
Special Case 2 If   
	
		
			
				𝛼
				(
				𝑥
				)
				=
				𝛼
			

			

				1
			

			
				𝑥
				+
				𝛼
			

			

				0
			

			
				≠
				0
			

		
	
,  then (2.8) becomes  
							
	
 		
 			
				(
				2
				.
				1
				1
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				
			

			
				𝑏
				𝑎
			

			
				𝑓
				(
				𝑡
				)
				𝑑
				𝑡
				−
				𝑏
				−
				𝑎
			

			
				
			
			
				6
				
				
				𝑓
				(
				𝑎
				)
				+
				4
				𝑓
				𝑎
				+
				𝑏
			

			
				
			
			
				2
				
				
				|
				|
				|
				|
				≤
				+
				𝑓
				(
				𝑏
				)
				(
				𝑏
				−
				𝑎
				)
			

			

				2
			

			
				
			
			
				3
				
				𝑓
				(
				𝑏
				)
				−
				𝑓
				(
				𝑎
				)
			

			
				
			
			
				−
				
				𝛼
				𝑏
				−
				𝑎
			

			

				0
			

			
				+
				𝑎
				+
				𝑏
			

			
				
			
			
				2
				𝛼
			

			

				1
			

			
				
				
			

		
	

						if and only if  
	
		
			

				𝛼
			

			

				1
			

			
				𝑥
				+
				𝛼
			

			

				0
			

			
				≤
				𝑓
			

			

				
			

			
				(
				𝑥
				)
			

		
	
 for all 
	
		
			
				𝑥
				∈
				[
				𝑎
				,
				𝑏
				]
			

		
	
. In particular, replacing  
	
		
			

				𝛼
			

			

				1
			

			
				=
				0
			

		
	
 in above inequality leads to [10, Theorem 1, relation (4)] as follows:
							
	
 		
 			
				(
				2
				.
				1
				2
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				
			

			
				𝑏
				𝑎
			

			
				𝑓
				(
				𝑡
				)
				𝑑
				𝑡
				−
				𝑏
				−
				𝑎
			

			
				
			
			
				6
				
				
				𝑓
				(
				𝑎
				)
				+
				4
				𝑓
				𝑎
				+
				𝑏
			

			
				
			
			
				2
				
				
				|
				|
				|
				|
				≤
				+
				𝑓
				(
				𝑏
				)
				(
				𝑏
				−
				𝑎
				)
			

			

				2
			

			
				
			
			
				3
				
				𝑓
				(
				𝑏
				)
				−
				𝑓
				(
				𝑎
				)
			

			
				
			
			
				𝑏
				−
				𝑎
				−
				𝛼
			

			

				0
			

			
				
				.
			

		
	

Theorem 2.4.  Let  
	
		
			
				𝑓
				∶
				𝐈
				→
				𝐑
			

		
	
, where 
	
		
			

				𝐈
			

		
	
 is an interval, be a function differentiable in the interior  
	
		
			

				𝐈
			

			

				0
			

		
	
  of   
	
		
			

				𝐈
			

		
	
, and let 
	
		
			
				[
				𝑎
				,
				𝑏
				]
				⊂
				𝐈
			

			

				0
			

		
	
.  If 
	
		
			

				𝑓
			

			

				
			

			
				(
				𝑥
				)
				≤
				𝛽
				(
				𝑥
				)
			

		
	
 for any  
	
		
			
				𝛽
				∈
				𝐶
				[
				𝑎
				,
				𝑏
				]
			

		
	
  and  
	
		
			
				𝑥
				∈
				[
				𝑎
				,
				𝑏
				]
			

		
	
 then 
							
	
 		
 			
				(
				2
				.
				1
				3
				)
			
 		
	

	
		
			

				
			

			
				𝑎
				(
				𝑎
				+
				𝑏
				)
				/
				2
			

			
				
				𝑡
				−
				5
				𝑎
				+
				𝑏
			

			
				
			
			
				6
				
				
				𝛽
				(
				𝑡
				)
				𝑑
				𝑡
				+
			

			
				𝑏
				(
				𝑎
				+
				𝑏
				)
				/
				2
			

			
				
				𝑡
				−
				𝑎
				+
				5
				𝑏
			

			
				
			
			
				6
				
				𝛽
				(
				𝑡
				)
				𝑑
				𝑡
				−
				𝑏
				−
				𝑎
			

			
				
			
			
				3
				
				
			

			
				𝑏
				𝑎
			

			
				
				≤
				𝛽
				(
				𝑡
				)
				𝑑
				𝑡
				−
				𝑓
				(
				𝑏
				)
				+
				𝑓
				(
				𝑎
				)
				𝑏
				−
				𝑎
			

			
				
			
			
				6
				
				
				𝑓
				(
				𝑎
				)
				+
				4
				𝑓
				𝑎
				+
				𝑏
			

			
				
			
			
				2
				
				
				−
				
				+
				𝑓
				(
				𝑏
				)
			

			
				𝑏
				𝑎
			

			
				≤
				
				𝑓
				(
				𝑡
				)
				𝑑
				𝑡
			

			
				𝑎
				(
				𝑎
				+
				𝑏
				)
				/
				2
			

			
				
				𝑡
				−
				5
				𝑎
				+
				𝑏
			

			
				
			
			
				6
				
				
				𝛽
				(
				𝑡
				)
				𝑑
				𝑡
				+
			

			
				𝑏
				(
				𝑎
				+
				𝑏
				)
				/
				2
			

			
				
				𝑡
				−
				𝑎
				+
				5
				𝑏
			

			
				
			
			
				6
				
				𝛽
				(
				𝑡
				)
				𝑑
				𝑡
				+
				𝑏
				−
				𝑎
			

			
				
			
			
				3
				
				
			

			
				𝑏
				𝑎
			

			
				
				.
				𝛽
				(
				𝑡
				)
				𝑑
				𝑡
				−
				𝑓
				(
				𝑏
				)
				+
				𝑓
				(
				𝑎
				)
			

		
	

Proof.  Since 
							
	
 		
 			
				(
				2
				.
				1
				4
				)
			
 		
	

	
		
			

				
			

			
				𝑏
				𝑎
			

			
				
				𝑓
				𝐾
				(
				𝑡
				)
			

			

				
			

			
				
				=
				(
				𝑡
				)
				−
				𝛽
				(
				𝑡
				)
				𝑑
				𝑡
				𝑏
				−
				𝑎
			

			
				
			
			
				6
				
				
				𝑓
				(
				𝑎
				)
				+
				4
				𝑓
				𝑎
				+
				𝑏
			

			
				
			
			
				2
				
				
				−
				
				+
				𝑓
				(
				𝑏
				)
			

			
				𝑏
				𝑎
			

			
				
				
				𝑓
				(
				𝑡
				)
				𝑑
				𝑡
				−
			

			
				𝑏
				𝑎
			

			
				
				=
				𝐾
				(
				𝑡
				)
				𝛽
				(
				𝑡
				)
				𝑑
				𝑡
				𝑏
				−
				𝑎
			

			
				
			
			
				6
				
				
				𝑓
				(
				𝑎
				)
				+
				4
				𝑓
				𝑎
				+
				𝑏
			

			
				
			
			
				2
				
				
				−
				
				+
				𝑓
				(
				𝑏
				)
			

			
				𝑏
				𝑎
			

			
				−
				
				
				𝑓
				(
				𝑡
				)
				𝑑
				𝑡
			

			
				𝑎
				(
				𝑎
				+
				𝑏
				)
				/
				2
			

			
				
				𝑡
				−
				5
				𝑎
				+
				𝑏
			

			
				
			
			
				6
				
				
				𝛽
				(
				𝑡
				)
				𝑑
				𝑡
				+
			

			
				𝑏
				(
				𝑎
				+
				𝑏
				)
				/
				2
			

			
				
				𝑡
				−
				𝑎
				+
				5
				𝑏
			

			
				
			
			
				6
				
				
				,
				𝛽
				(
				𝑡
				)
				𝑑
				𝑡
			

		
	

						so we have
							
	
 		
 			
				(
				2
				.
				1
				5
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				𝑏
				−
				𝑎
			

			
				
			
			
				6
				
				
				𝑓
				(
				𝑎
				)
				+
				4
				𝑓
				𝑎
				+
				𝑏
			

			
				
			
			
				2
				
				
				−
				
				+
				𝑓
				(
				𝑏
				)
			

			
				𝑏
				𝑎
			

			
				−
				
				
				𝑓
				(
				𝑡
				)
				𝑑
				𝑡
			

			
				𝑎
				(
				𝑎
				+
				𝑏
				)
				/
				2
			

			

				
			

			

				𝑎
			

			
				
				𝑡
				−
				5
				𝑎
				+
				𝑏
			

			
				
			
			
				6
				
				
				𝛽
				(
				𝑡
				)
				𝑑
				𝑡
				+
			

			
				𝑏
				(
				𝑎
				+
				𝑏
				)
				/
				2
			

			
				
				𝑡
				−
				𝑎
				+
				5
				𝑏
			

			
				
			
			
				6
				
				
				|
				|
				|
				|
				=
				|
				|
				|
				|
				
				𝛽
				(
				𝑡
				)
				𝑑
				𝑡
			

			
				𝑏
				𝑎
			

			
				
				𝑓
				𝐾
				(
				𝑡
				)
			

			

				
			

			
				
				|
				|
				|
				|
				≤
				
				(
				𝑡
				)
				−
				𝛽
				(
				𝑡
				)
				𝑑
				𝑡
			

			
				𝑏
				𝑎
			

			
				|
				|
				|
				|
				
				𝐾
				(
				𝑡
				)
				𝛽
				(
				𝑡
				)
				−
				𝑓
			

			

				
			

			
				
				(
				𝑡
				)
				𝑑
				𝑡
				≤
				m
				a
				x
			

			
				𝑡
				∈
				[
				𝑎
				,
				𝑏
				]
			

			
				|
				|
				𝐾
				|
				|
				
				(
				𝑡
				)
			

			
				𝑏
				𝑎
			

			
				
				𝛽
				(
				𝑡
				)
				−
				𝑓
			

			

				
			

			
				
				(
				𝑡
				)
				𝑑
				𝑡
				=
				𝑏
				−
				𝑎
			

			
				
			
			
				3
				
				
			

			
				𝑏
				𝑎
			

			
				𝛽
				
				.
				(
				𝑡
				)
				𝑑
				𝑡
				−
				𝑓
				(
				𝑏
				)
				+
				𝑓
				(
				𝑎
				)
			

		
	

						After rearranging (2.15), the main inequality (2.13) will be derived.
Special Case 3If  
	
		
			
				𝛽
				(
				𝑥
				)
				=
				𝛽
			

			

				1
			

			
				𝑥
				+
				𝛽
			

			

				0
			

			
				≠
				0
			

		
	
 in (2.13), then  
							
	
 		
 			
				(
				2
				.
				1
				6
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				
			

			
				𝑏
				𝑎
			

			
				𝑓
				(
				𝑡
				)
				𝑑
				𝑡
				−
				𝑏
				−
				𝑎
			

			
				
			
			
				6
				
				
				𝑓
				(
				𝑎
				)
				+
				4
				𝑓
				𝑎
				+
				𝑏
			

			
				
			
			
				2
				
				
				|
				|
				|
				|
				≤
				+
				𝑓
				(
				𝑏
				)
				(
				𝑏
				−
				𝑎
				)
			

			

				2
			

			
				
			
			
				3
				
				𝛽
			

			

				0
			

			
				+
				𝑎
				+
				𝑏
			

			
				
			
			
				2
				𝛽
			

			

				1
			

			
				−
				𝑓
				(
				𝑏
				)
				−
				𝑓
				(
				𝑎
				)
			

			
				
			
			
				
				𝑏
				−
				𝑎
			

		
	

						if and only if  
	
		
			

				𝑓
			

			

				
			

			
				(
				𝑥
				)
				≤
				𝛽
			

			

				1
			

			
				𝑥
				+
				𝛽
			

			

				0
			

		
	
, for all 
	
		
			
				𝑥
				∈
				[
				𝑎
				,
				𝑏
				]
			

		
	
. In particular, replacing  
	
		
			

				𝛽
			

			

				1
			

			
				=
				0
			

		
	
 in above inequality leads to [10, Theorem 1, relation (5)] as follows: 
							
	
 		
 			
				(
				2
				.
				1
				7
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				
			

			
				𝑏
				𝑎
			

			
				𝑓
				(
				𝑡
				)
				𝑑
				𝑡
				−
				𝑏
				−
				𝑎
			

			
				
			
			
				6
				
				
				𝑓
				(
				𝑎
				)
				+
				4
				𝑓
				𝑎
				+
				𝑏
			

			
				
			
			
				2
				
				
				|
				|
				|
				|
				≤
				+
				𝑓
				(
				𝑏
				)
				(
				𝑏
				−
				𝑎
				)
			

			

				2
			

			
				
			
			
				3
				
				𝛽
			

			

				0
			

			
				−
				𝑓
				(
				𝑏
				)
				−
				𝑓
				(
				𝑎
				)
			

			
				
			
			
				
				.
				𝑏
				−
				𝑎
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