Research Article

A Note on Eulerian Polynomials

D. S. Kim, 1 T. Kim, 2 W. J. Kim, 3 and D. V. Dolgy 4

1 Department of Mathematics, Sogang University, Seoul 121-742, Republic of Korea
2 Department of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea
3 Division of General Education-Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea
4 Hanrimwon, Kwangwoon University, Seoul 139-701, Republic of Korea

Correspondence should be addressed to T. Kim, tkkim@kw.ac.kr

Received 29 May 2012; Accepted 25 June 2012

Academic Editor: Josef Diblik

Copyright © 2012 D. S. Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study Genocchi, Euler, and tangent numbers. From those numbers we derive some identities on Eulerian polynomials in connection with Genocchi and tangent numbers.

1. Introduction

As is well known, the Eulerian polynomials, $A_n(t)$, are defined by generating function as follows:

$$
\frac{1-t}{\exp(x(t-1)) - t} = e^{A(t)x} = \sum_{n=0}^{\infty} A_n(t) \frac{x^n}{n!},
$$

(1.1)

with the usual convention about replacing $A^n(t)$ by $A_n(t)$ (see [1–18]). From (1.1), we note that

$$(A(t) + (t-1))^n - tA_n(t) = (1-t)\delta_{0,n},$$

(1.2)

where $\delta_{n,k}$ is the Kronecker symbol (see [3]).

Thus, by (1.2), we get

$$A_0(t) = 1, \quad A_n(t) = \frac{1}{t-1} \sum_{l=0}^{n-1} \binom{n}{l} A_l(t)(t-1)^{n-l}, \quad (n \geq 1).$$

(1.3)
By (1.1), (1.2), and (1.3), we see that
\begin{equation}
\sum_{m=1}^{n} x^m = \sum_{m=1}^{n} \frac{(-1)^{m+1} \binom{n+1}{m}}{(m-1)!} \frac{t^{m+1} A_{m-1}(t)}{(t-1)^{m+1}} m^l + (-1)^n t l^n - 1 \frac{A_n(t)}{(t-1)^n+1}, \tag{1.4}
\end{equation}
where \(m \geq 1 \) and \(n \geq 0\) (see [1]).

The Genocchi polynomials are defined by
\begin{equation}
\frac{2t}{e^t + 1} e^{xt} = e^{G(x)t} = \sum_{n=0}^{\infty} G_n(x) \frac{t^n}{n!}, \tag{1.5}
\end{equation}
(see [6–18]). In the special case, \(x = 0\), \(G_n(0) = G_n\) are called the \(n\)th Genocchi numbers (see [14, 17, 18]).

It is well known that the Euler polynomials are also defined by
\begin{equation}
\frac{2}{e^t + 1} e^{xt} = e^{E(x)t} = \sum_{n=0}^{\infty} E_n(x) \frac{t^n}{n!}, \tag{1.6}
\end{equation}
(see [1–5, 19–24]). Here \(x = 0\), then \(E_n(0) = E_n\) is called the \(n\)th Euler number. From (1.6), we have
\begin{equation}
E_0 = 1, \quad (E + 1)^n + E_n = 2 \delta_{0,n}, \tag{1.7}
\end{equation}
(see [3–5, 19–23]).

As is well known, the Bernoulli numbers are defined by
\begin{equation}
B_0 = 1, \quad (B + 1)^n - B_n = \delta_{0,n}, \tag{1.8}
\end{equation}
(see [5, 18, 19]), with the usual convention about replacing \(B^n\) by \(B_n\).

From (1.8), we note that the Bernoulli polynomials are also defined as
\begin{equation}
B_n(x) = \sum_{l=0}^{n} \binom{n}{l} B_l x^{n-l} = (B + x)^n, \tag{1.9}
\end{equation}
(see [5, 18, 19]).

The tangent numbers \(T_{2n-1} \ (n \geq 1)\) are defined as the coefficients of the Taylor expansion of \(\tan x\):
\begin{equation}
\tan x = \sum_{n=1}^{\infty} \frac{T_{2n-1}}{(2n-1)!} x^{2n-1} = \frac{x}{1!} + \frac{x^3}{3!} 2 + \frac{x^5}{5!} 16 + \cdots, \tag{1.10}
\end{equation}
(see [1–3, 5]).

In this paper, we give some identities on the Eulerian polynomials at \(t = -1\) associated with Genocchi, Euler, and tangent numbers.
2. Witt’s Formula for Eulerian Polynomials

In this section, we assume that \(\mathbb{Z}_p, \mathbb{Q}_p, \) and \(\mathbb{C}_p \) will, respectively, denote the ring of \(p \)-adic integers, the field of \(p \)-adic numbers, and the completion of algebraic closure of \(\mathbb{Q}_p \). The \(p \)-adic norm is normalized so that \(|p|_p = 1/p \).

Let \(q \) be an indeterminate with \(|1 - q|_p < 1 \). Then the \(q \)-number is defined by

\[
[x]_q = \frac{1 - q^x}{1 - q}, \quad [x]_{-q} = \frac{1 - (-q)^x}{1 + q},
\]

(see [6–18]).

Let \(C(\mathbb{Z}_p) \) be the space of continuous functions on \(\mathbb{Z}_p \). For \(f \in C(\mathbb{Z}_p) \), the fermionic \(p \)-adic \(q \)-integral on \(\mathbb{Z}_p \) is defined by

\[
I_q(f) = \int_{\mathbb{Z}_p} f(x) d\mu_{-q}(x) = \lim_{N \to \infty} \frac{1}{p^{N-1}} \sum_{x=0}^{p^{N-1}} f(x) (-q)^x,
\]

(see [7, 10–13]). From (2.2), we can derive the following:

\[
q^{-1} I_q^{-1}(f_1) + I_q^{-1}(f) = [2]_{q^{-1}} f(0),
\]

where \(f_1(x) = f(x+1) \).

Let us take \(f(x) = e^{-x(1+q)t} \). Then, by (2.3), we get

\[
\left(\frac{q + e^{-(1+q)t}}{q} \right) \int_{\mathbb{Z}_p} e^{-x(1+q)t} d\mu_{-q^{-1}}(x) = [2]_{q^{-1}}.
\]

Thus, from (2.4), we have

\[
\int_{\mathbb{Z}_p} e^{-x(1+q)t} d\mu_{-q^{-1}}(x) = \frac{1 + q}{e^{-(1+q)t} + q} = \sum_{n=0}^{\infty} A_n(-q) \frac{t^n}{n!}.
\]

By Taylor expansion on the left-hand side of (2.5), we get

\[
\sum_{n=0}^{\infty} (-1)^n \int_{\mathbb{Z}_p} x^n d\mu_{-q^{-1}}(x)(1 + q)^n \frac{t^n}{n!} = \sum_{n=0}^{\infty} A_n(-q) \frac{t^n}{n!}.
\]

Comparing coefficients on the both sides of (2.6), we have

\[
\int_{\mathbb{Z}_p} x^n d\mu_{-q^{-1}}(x) = \frac{(-1)^n}{(1 + q)^n} A_n(-q).
\]

Therefore, by (2.7), we obtain the following theorem.
Theorem 2.1. For \(n \in \mathbb{Z}_+ \), one has

\[
\int_{\mathbb{Z}_p} x^n d\mu_{q^{-1}}(x) = \frac{(-1)^n}{(1 + q)^n} A_n(-q),
\]

where \(A_n(-q) \) is an Eulerian polynomials.

It seems interesting to study Theorem 2.1 at \(q = 1 \). By (2.3), we get

\[
L_1(f_1) + L_1(f) = 2f(0),
\]

where \(f_1(x) = f(x + 1) \). From (2.9), we can derive the following equation:

\[
\int_{\mathbb{Z}_p} f(x + n) d\mu_{1}(x) + (-1)^{n-1} \int_{\mathbb{Z}_p} f(x) d\mu_{1}(x) = 2 \sum_{l=0}^{n-1} (-1)^{n-l} f(l),
\]

where \(n \in \mathbb{Z}_+ \) (see [5–13]).

From (2.9), we can derive the following:

\[
0 = \int_{\mathbb{Z}_p} \sin a(x + 1) d\mu_{1}(x) + \int_{\mathbb{Z}_p} \sin ax d\mu_{1}(x)
\]

\[
= (\cos a + 1) \int_{\mathbb{Z}_p} \sin ax d\mu_{1}(x) + \sin a \int_{\mathbb{Z}_p} \cos ax d\mu_{1}(x),
\]

\[
2 = \int_{\mathbb{Z}_p} \cos a(x + 1) d\mu_{1}(x) + \int_{\mathbb{Z}_p} \cos ax d\mu_{1}(x)
\]

\[
= (\cos a + 1) \int_{\mathbb{Z}_p} \cos ax d\mu_{1}(x) - \sin a \int_{\mathbb{Z}_p} \sin ax d\mu_{1}(x).
\]

By (2.11), we get

\[
\int_{\mathbb{Z}_p} \sin ax d\mu_{1}(x) = -\frac{\sin a}{\cos a + 1} = -\tan \frac{a}{2}.
\]

From (1.10) and (2.12), we have

\[
\sum_{n=1}^{\infty} \frac{T_{2n-1}}{(2n-1)!} \left(\frac{a}{2} \right)^{2n-1} = -\int_{\mathbb{Z}_p} \sin ax d\mu_{1}(x) = \sum_{n=1}^{\infty} \frac{(-1)^n a^{2n-1}}{(2n-1)!} \int_{\mathbb{Z}_p} x^{2n-1} d\mu_{1}(x).
\]
By comparing coefficients on the both sides of (2.13), we get

\[\int_{\mathbb{Z}_p} x^{2n-1} d\mu_{-1}(x) = (-1)^n \frac{T_{2n-1}}{2^{2n-1}}, \quad \text{for } n \in \mathbb{N}, \tag{2.14} \]

where \(T_{2n-1} \) is the \((2n-1)\)th tangent number.

Therefore, by (2.14), we obtain the following theorem.

Theorem 2.2. For \(n \in \mathbb{N} \), one has

\[\int_{\mathbb{Z}_p} x^{2n-1} d\mu_{-1}(x) = (-1)^n \frac{T_{2n-1}}{2^{2n-1}}, \tag{2.15} \]

where \(T_{2n-1} \) is the \((2n-1)\)th tangent number.

From Theorem 2.1, one has

\[\int_{\mathbb{Z}_p} x^n d\mu_{-1}(x) = \frac{(-1)^n}{2^n} A_n(-1). \tag{2.16} \]

Therefore, by Theorem 2.2 and (2.16), we obtain the following corollary.

Corollary 2.3. For \(n \in \mathbb{N} \), one has

\[A_{2n-1}(-1) = (-1)^{n-1} T_{2n-1}. \tag{2.17} \]

From (1.6) and (2.9), we have

\[\int_{\mathbb{Z}_p} e^x d\mu_{-1}(x) = \frac{2}{e^1 + 1} = \sum_{n=0}^{\infty} E_n \frac{t^n}{n!}, \tag{2.18} \]

(see [5]). Thus, by (2.16) and (2.18), we get

\[\int_{\mathbb{Z}_p} x^{2n-1} d\mu_{-1}(x) = E_{2n-1} = (-1)^n \frac{T_{2n-1}}{2^{2n-1}}. \tag{2.19} \]

Therefore, by Corollary 2.3 and (2.19), we obtain the following corollary.

Corollary 2.4. For \(n \in \mathbb{N} \), one has

\[E_{2n-1} = (-1)^n \frac{T_{2n-1}}{2^{2n-1}} = \frac{A_{2n-1}(-1)}{2^{2n-1}}. \tag{2.20} \]
By (1.5) and (2.9), we get

\[t \int_{\mathbb{R}} e^{xt} d\mu(x) = \frac{2t}{e^t - 1} e^t - \frac{2t}{e^{2t} - 1} \]
\[= \sum_{n=0}^{\infty} B_n \left(\frac{1}{2} \right) 2^n \frac{t^n}{n!} - \sum_{n=0}^{\infty} \frac{2^n B_n t^n}{n!} \]
\[= \sum_{n=0}^{\infty} \left(B_n \left(\frac{1}{2} \right) - B_n \right) 2^n \frac{t^n}{n!}. \]

(2.21)

By (2.21), we get

\[\int_{\mathbb{R}} x^n d\mu(x) = \frac{(B_{n+1} (1/2) - B_{n+1}) 2^{n+1}}{n + 1}. \]

(2.22)

Thus, from (2.19), Theorem 2.2 and Corollary 2.3, we have

\[\frac{(B_{2n} (1/2) - B_{2n}) 2^{2n}}{2n} = (-1)^n \frac{T_{2n-1}}{2^{2n-1}} = -\frac{A_{2n-1} (-1)}{2^{2n-1}}. \]

(2.23)

Therefore, by (2.23), we obtain the following theorem.

Theorem 2.5. For \(n \in \mathbb{N} \), one has

\[\frac{(B_{2n} (1/2) - B_{2n}) 2^{2n}}{n} = (-1)^n \frac{T_{2n-1}}{2^{2n-2}} = -\frac{A_{2n-1} (-1)}{2^{2n-2}}. \]

(2.24)

From (1.5), we note that

\[t \int_{\mathbb{R}} e^{xt} d\mu(x) = \frac{2t}{e^t + 1} = \sum_{n=0}^{\infty} G_n \frac{t^n}{n!} \]

(2.25)

(see [13, 14]). Thus, by (2.25), we get

\[G_0 = 0, \quad (G + 1)^n + G_n = 2 \delta_{1,n}, \]

(2.26)

(see [13, 14]), with the usual convention about replacing \(G^n \) by \(G_n \).

From (1.5) and (2.9), one has

\[t \int_{\mathbb{R}} e^{xt} d\mu(x) = 2 \left(\frac{t}{e^t - 1} - \frac{2t}{e^{2t} - 1} \right) \]
\[= 2 \sum_{n=0}^{\infty} (B_n - 2^n B_n) \frac{t^n}{n!}. \]

(2.27)
Thus, by (2.27), we get

\[\int_{Z_p} x^n d\mu_{-1}(x) = 2 \left(\frac{B_{n+1} - 2^{n+1} B_{n+1}}{n+1} \right) \]

(2.28)

From (2.28), we have

\[\frac{G_{2n}}{2n} = \int_{Z_p} x^{2n-1} d\mu_{-1}(x) = \frac{B_{2n} - 2^{2n} B_{2n}}{n}, \quad \text{for } n \in \mathbb{N}. \]

(2.29)

Therefore, by (2.19), Corollary 2.3 and (2.29), we obtain the following theorem.

Theorem 2.6. For \(n \in \mathbb{N} \), we have

\[G_{2n} = 2 \left(B_{2n} - 2^{2n} B_{2n} \right). \]

(2.30)

In particular,

\[-\frac{1}{2^{2n-1}} (A_{2n-1}(-1)) = \left((-1)^n T_{2n-1} \right) \frac{1}{2^{2n-1}} = \frac{G_{2n}}{2n}. \]

(2.31)

3. Further Remark

In complex plane, we note that

\[\tan x = \frac{1}{i} \left(\frac{e^{ix} - e^{-ix}}{e^{ix} + e^{-ix}} \right) = \frac{1}{i} \left(1 - \frac{2e^{-ix}}{e^{ix} + e^{-ix}} \right) \]

\[= \frac{1}{i} \left(1 - \sum_{n=0}^{\infty} \frac{E_n}{n!} 2^n i^n x^n \right) = \frac{1}{i} \left(-\sum_{n=1}^{\infty} \frac{E_n}{n!} 2^n i^n x^n \right) \]

(3.1)

\[= \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)!} E_{2n-1} 2^{2n-1} x^{2n-1}. \]

By (1.10) and (3.1), we also get

\[T_{2n-1} = (-1)^n E_{2n-1} 2^{2n-1}, \quad \text{for } n \in \mathbb{N}. \]

(3.2)
Thus, by (1.10) and (3.3), we get

\[
\sum_{n=1}^{\infty} \frac{t^{2n}}{(2n)!} G_{2n} = t \tan \left(\frac{t}{2} \right) = t \sum_{n=1}^{\infty} \frac{(t/2)^{2n-1}}{(2n-1)!} T_{2n-1} = \sum_{n=1}^{\infty} \frac{t^{2n}}{(2n-1)!} 2^{2n-1} T_{2n-1}.
\]

(3.4) From (3.4), we have

\[
n T_{2n-1} = 2^{2n-2} G_{2n} = 2^{2n-1} \left(1 - 2^{2n} \right) B_{2n}.
\]

(3.5) By (1.1), we see that

\[
\frac{2}{1 + e^{-2it}} = \sum_{n=0}^{\infty} A_{n}(-1) \frac{t^{n} i^{n}}{n!}.
\]

(3.6) Thus, we note that

\[
\sum_{n=1}^{\infty} \frac{t^{n-1} A_{n}(-1) i^{n}}{n!} = \frac{1}{i} \left(\frac{2}{1 + e^{-2it}} - 1 \right) = \frac{1 - e^{-2it}}{(1 + e^{-2it})i} = \frac{((e^{it} - e^{-it})/2)}{((e^{it} + e^{-it})/2)i} \]

(3.7) From (3.7), we have

\[
A_{2n}(-1) = 0, \quad A_{2n-1}(-1) = (-1)^{n-1} T_{2n-1}, \quad (n \geq 1).
\]

(3.8) It is easy to show that

\[
\sum_{k=1}^{m} k^{n} (-1)^{k} = (-1)^{m} \sum_{k=0}^{n} \binom{n}{k} \frac{A_{k}(-1)}{2^{k+1}} m^{n-k} - \frac{((-1)^{m} - 1)}{2^{n+1}} A_{n}(-1).
\]

(3.9)
For simple calculation, we can derive the following equation:

\[
 i \tan x = \frac{e^{ix} - e^{-ix}}{e^{ix} + e^{-ix}} = 1 - \frac{2}{e^{2ix} - 1} + \frac{4}{e^{4ix} - 1}.
\] (3.10)

By (3.10), we get

\[
x \tan x = -ix + \frac{2ix}{e^{2ix} - 1} - \frac{4ix}{e^{4ix} - 1} = \sum_{n=1}^{\infty} \frac{(-1)^n B_{2n} 4^n (1 - 4^n)}{(2n)!} x^{2n}.
\] (3.11)

Thus, from (3.11), we have

\[
\tan x = \sum_{n=1}^{\infty} \frac{(-1)^n B_{2n} 4^n (1 - 4^n)}{(2n)!} x^{2n-1}.
\] (3.12)

By (1.10) and (3.12), we get

\[
T_{2n-1} = \frac{(-1)^n B_{2n} 4^n (1 - 4^n)}{2n}, \quad \text{for } n \in \mathbb{N}.
\] (3.13)

From Corollary 2.3 and (3.13), we can derive the following identity:

\[
A_{2n-1}(-1) = \frac{B_{2n} 2^{2n-1} (1 - 4^n)}{n}.
\] (3.14)

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology 2012R1A1A2003786. Also, the authors would like to thank the referees for their valuable comments and suggestions.

References

[1] L. Euler, *Institutiones calculi differentialis cum eius usu in analysi finitorum ac Doctrina serierum*, Methodus summanandi superior ulterius pro-mota, chapter VII, Academiae Imperialis Scientiarum Petropoli-tanae, St Petersbourg, Russia, 1755.

10 Abstract and Applied Analysis

Submit your manuscripts at http://www.hindawi.com