Research Article
Weighted Approximation for Jackson-Matsuoka Polynomials on the Sphere

Guo Feng
School of Mathematics and Information Engineering, Taizhou University, Zhejiang, Taizhou 317000, China

Correspondence should be addressed to Guo Feng, gfeng20080576@163.com

Received 13 December 2011; Revised 17 March 2012; Accepted 28 March 2012

Academic Editor: Norimichi Hirano

Copyright © 2012 Guo Feng. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We consider the best approximation by Jackson-Matsuoka polynomials in the weighted L^p space on the unit sphere of \mathbb{R}^d. Using the relation between K-functionals and modulus of smoothness on the sphere, we obtain the direct and inverse estimate of approximation by these polynomials for the h-spherical harmonics.

1. Introduction and Notations

Let $S := S^{d-1} = \{x : \|x\| = 1\}$ denote the unit sphere in \mathbb{R}^d ($d \geq 3$), $d \in \mathbb{N}$, where $\|x\|$ denotes the usual Euclidean norm, \mathbb{R} the set of real numbers. For a nonzero vector $v \in \mathbb{R}^d$, let σ_v denote the reflection with respect to the hyperplane perpendicular to v, $x \sigma_v := x - 2(\langle x, v \rangle / \|v\|^2)v$, $x \in \mathbb{R}^d$, where $\langle x, v \rangle$ denote the usual Euclidean inner product. Let G be a finite reflection group on \mathbb{R}^d with a fixed positive root system \mathbb{R}_+, normalized so that $\langle v, v \rangle = 2$ for all $v \in \mathbb{R}_+$. Then G is a subgroup of the orthogonal group generated by the reflections $\{\sigma_v : v \in \mathbb{R}_+\}$. Let κ be a nonnegative multiplicity function $v \mapsto \kappa_v$ defined on \mathbb{R}_+ with the property that $\kappa_v = \kappa_u$ whenever σ_u is conjugate to σ_v in G, then $v \mapsto \kappa_v$ is a G-invariant function. We consider the weighted best L^p approximation with respect to the measure $h^2_\kappa d\omega$ on S, where h^2_κ is defined by

$$h^2_\kappa = \prod_{v \in \mathbb{R}_+} |\langle x, v \rangle|^\kappa_v, \quad x \in \mathbb{R}^d, \quad (1.1)$$

dω is the surface (Lebesgue) measure on S. The function h_κ is a positive homogeneous function of degree $\gamma_\kappa := \sum_{v \in \mathbb{R}_+} \kappa_v$, and it is invariant under the reflection group. We denote
by $a_κ$ the normalization constant of $h_κ$, $a_κ^{-1} = \int_S h_κ^2(y)\,dω$ and denote by $L_p(h_κ^2)$, $1 \leq p \leq \infty$, the space of functions defined on S with the finite norm

$$\|f\|_κ^p := \left(a_κ \int_S |f(y)|^p h_κ^2(y)\,dω(y)\right)^{1/p}, \quad 1 \leq p < \infty,$$

(1.2)

and for $p = \infty$ we assume that $L_∞$ is replaced by $C(S)$ the space of continuous functions on S with the usual uniform norm $\|f\|_∞$.

$Δ_h$ denote the h-Laplacian. $Δ_{h,0}$ is the Laplace-Beltrami operator on the sphere. P_n^d denote the subspace of homogeneous polynomials of degree n in d variables. The h-harmonics are defined as the homogeneous polynomials satisfying the equation $Δ_h P = 0$, $P \in P_n^d$. Furthermore, let $σ_n^d(h_κ^2)$ denote the space of h-spherical harmonics of degree n in d variables. The spherical h-harmonics are the restriction of h-harmonics on the unit sphere. It is well known that spherical h-harmonics are eigenfunctions of $Δ_{h,0}$; that is,

$$Δ_{h,0} Y(x) = -n(n + 2λ)Y(x), \quad x \in S, \quad Y \in σ_n^d(h_κ^2).$$

(1.3)

The standard Hilbert space theory shows that $L_2(h_κ^2) = \sum_{n=0}^\infty \oplus σ_n^d(h_κ^2)$. That is, with each $f \in L_2(h_κ^2)$ we can associate its h-harmonic expansion

$$f(x) = \sum_{n=0}^\infty Y_n(h_κ^2; f, x), \quad x \in S,$$

(1.4)

in $L_2(h_κ^2)$ norm. For the surface measure ($κ = 0$), such a series is called the Laplace series (see [1]). The orthogonal projection $Y_n(h_κ^2) : L_2(h_κ^2) \rightarrow σ_n^d(h_κ^2)$ takes the form

$$Y_n(h_κ^2; f, x) := \int_Σ f(y) P_n(h_κ^2; x, y) h_κ^2(y)\,dω(y),$$

(1.5)

where $P_n(h_κ^2; x, y)$ is the reproducing kernel of the space of h-harmonics $σ_n^d(h_κ^2)$, which is given by (see [2])

$$P_n(h_κ^2; x, y) = \frac{n + 1}{λ} V_κ \left[C_n^λ(Δ, y) \right](x).$$

(1.6)

$C_n^λ$ is the ultraspherical polynomial of degree $n, λ := γ_κ + (d - 2)/2$, $γ_κ = \sum_{\nu \in \mathbb{N}}, κ_ν$, and the intertwining operator $V_κ$ is a linear operator uniquely determined by

$$V_κ P_n \subset P_n, \quad V_κ 1 = 1, \quad ∂_i V_κ = V_κ ∂_i, \quad 1 \leq i \leq d.$$
The spherical means are denoted by

$$T_{\theta}(f) = \frac{1}{|S^{d-2}|} \int |\sin \theta|^{d-2} f(y) d\omega(y),$$

where $|S^{d-2}| = \int_{S^{d-2}} d\omega = 2\pi^{(d-1)/2} / \Gamma((d - 1)/2)$.

The spherical means associated with h_κ, in which $T_{\theta}^\kappa(f)$ is defined by

$$c_1 \int_0^\pi T_{\theta}^\kappa(f, x) g(\cos \theta)(\sin \theta)^{2\kappa} d\theta = a_\kappa \int_\mathbb{R} f(y) V_\kappa g((x, y)) h_\kappa^2(y) d\omega(y),$$

where g is any function $[-1, 1] \mapsto \mathbb{R}$ such that the integral in the right-hand side is finite,

$c_1 = \int_1^0 (1 - t^2)^{(\lambda - 1)/2} dt = \Gamma(\lambda + 1/2)\sqrt{\pi}/\Gamma(\lambda + 1)$. $T_{\theta}^\kappa(f)$ is a proper extension of $T_{\theta}(f)$, since $T_{\theta}(f)$ satisfies $T_{\theta}^\kappa(f)$ when $\kappa = 0$ and $V_\kappa = id$, and the properties of T_{θ}^κ are well known (see [2]). In particular, the function $T_{\theta}^\kappa f(x)$ has the expansion

$$T_{\theta}^\kappa(f) \sim \sum_{n=0}^\infty \frac{C_n^1(\cos \theta)}{C_n^1(1)} \mathcal{Y}_n(h_\kappa^2; f) := \sum_{n=0}^\infty \frac{Q_n^1(\cos \theta)}{C_n^1(1)} \mathcal{Y}_n(h_\kappa^2; f).$$

Simultaneously, they lead to the following definition of an analog of the modulus of smoothness.

Definition 1.1 (see [2]). For $f \in L_p(h_\kappa^2)$, $1 \leq p < \infty$, or $f \in C(\mathbb{S})$, the modulus of smoothness on the sphere is given by

$$\omega(f; t)_{\kappa,p} := \sup_{0 < \theta \leq \pi} \left\| f - T_{\theta}^\kappa(f) \right\|_{\kappa,p}.$$

The K-functional of the sphere is given by

$$K(f; t^2)_{\kappa,p} = \inf_{g \in W_p(h_\kappa^2)} \left\{ \left\| f - g \right\|_{\kappa,p} + t^2 \left\| \Delta_{h,0} g \right\|_{\kappa,p} \right\}.$$

where $W_p(h_\kappa^2) := \{ f : f \in L_p(h_\kappa^2), -k(2 + 2\lambda)P_k(h_\kappa^2; f) = P_k(h_\kappa^2; g) \text{ for some } g \in L_p(h_\kappa^2) \}$, $0 < t < t_0$, t_0 is a positive constant.

In [2], Xu proved the weak equivalence relation

$$C^{-1} \omega(f; t)_{\kappa,p} \leq K(f; t^2)_{\kappa,p} \leq C \omega(f; t)_{\kappa,p}.$$

Throughout this paper, C denotes a positive constant independent on n and f and $C(a)$ denotes a positive constant dependent on a, which may be different according to the circumstances.
Based on the classical Jackson-Matsuoka kernel (see [3]), we define a new kernel

\[M_{n,j,i,s}(\theta) := \frac{1}{\Omega_{n,j,i,s}} \left(\frac{\sin^2 n\theta / 2}{\sin^2 \theta / 2} \right)^{2s}, \quad n = 1, 2, \ldots, \theta \in \mathbb{R}, \quad (1.14) \]

where \(j, i, s \in \mathbb{N}, \Omega_{n,j,i,s} \) is a constant chosen such that \(c_1 \int_0^\pi M_{n,j,i,s}(\theta) \sin^{2s} \theta d\theta = 1 \). It is known that \(M_{n,j,i,s}(\theta) \) is an even nonnegative operator. In particular, it is an even nonnegative trigonometric polynomial of degree at most \(2s(nj+2j-2i) \) for \(j > i \) and the Jackson polynomial for \(j = i \). Using \(M_{n,j,i,s}(\theta) \) we consider the spherical convolution

\[J_{n,j,i,s}(f; x) := (f * M_{n,j,i,s})(x) := c_1 \int_0^\pi T^s_\theta(f; x) M_{n,j,i,s}(\theta)(\sin^{2s} \theta) d\theta. \quad (1.15) \]

It is called the Jackson-Matsuoka polynomials on the sphere based on the Jackson-Matsuoka kernel. In particular, \((f_0 * M_{n,j,i,s})(x) = 1 \) for \(f_0(x) = 1 \). The classical Jackson-Matsuoka polynomials in the classical \(L_p \) space have been studied by many authors (see [3, 4]).

The purpose of this paper is to consider approximation by \(h \)-harmonic polynomials, which in the \(L_p \) metric can be viewed as weighted approximation, in which the measure \(d\omega \) on the sphere is replaced by \(h^p_\omega d\omega \). It is well known that the situation can be quite different from that of ordinary harmonics; the weighted approximation is not a simple extension. Since the orthogonal group acts transitively on the sphere \(S \), much of the results for the ordinary harmonics can be proved by considering just one point; the reflection groups do not act transitively on the sphere.

In this paper, we consider weighted approximation of the Jackson-Matsuoka polynomials on the sphere. With the help of the relation between \(K \)-functionals and modulus of smoothness of sphere and the properties of the spherical means, we obtain the direct and inverse estimate for the best approximation by Jackson-Matsuoka polynomials in the weighted \(L_p \) space on the unit sphere of \(\mathbb{R}^d \). We only consider best weighted approximation by Jackson-Matsuoka polynomials, and for the other polynomials on the unit sphere of \(\mathbb{R}^d \), the methods and the results are similar.

2. Auxiliary Lemmas

We need the following lemmas.

Lemma 2.1. Let \(\Omega_{n,j,i,s} = \int_0^\pi ((\sin^2 n\theta / 2) / (\sin^2 \theta / 2))^{2s} \sin^{2s} \theta d\theta \). Then, the weak equivalence

\[\Omega_{n,j,i,s} \asymp n^{4si-2j-1} \quad (2.1) \]

holds true for \(4si > 2\lambda + 1, \ j \geq i \), where the weak equivalence relation \(A(n) \asymp B(n) \) means that \(A(n) \ll B(n) \) and \(B(n) \ll A(n) \), and relation \(A_n \ll B_n \) means that there is a positive constant \(C \) independent on \(n \) such that \(A(n) \leq CB(n) \) holds.

The proof is similar to that of Lemma 2.2 and we omit it.
Lemma 2.2. For $4is > r + 2\lambda + 1, j \geq i, r \in \mathbb{R}$, there is a constant $C(\lambda, j, i, s)$ such that

$$
\int_0^\pi \theta^r M_{n,j,i,s}(\theta) \sin^{2\lambda} \theta \, d\theta \leq C(\lambda, j, i, s) n^{-r}.
$$

(2.2)

Proof. Since $\theta/\pi \leq \sin(\theta/2) \leq \theta/2$ and $\sin \theta \leq \theta$ hold for $0 \leq \theta \leq \pi$, by $\Omega_{n,j,i,s} \sim n^{4is-2\lambda-1}$, we have

$$
\int_0^\pi \theta^r M_{n,j,i,s}(\theta) \sin^{2\lambda} \theta \, d\theta \leq C(\lambda, j, i, s) n^{-4is+2\lambda+1} \int_0^\pi \theta^r \left(\frac{\sin^{2\lambda} n\theta/2}{\sin^{2\lambda} \theta/2} \right)^{2s} \sin^{2\lambda} \theta \, d\theta
\leq C(\lambda, j, i, s) n^{-4is+2\lambda+1} n^{4is-2\lambda-1} \int_0^{n\pi/2} t^{r+2\lambda} \left(\frac{\sin^{2\lambda} t}{t^{2\lambda}} \right)^{2s} \, dt
\leq C(\lambda, j, i, s) n^{-r} \left(\int_0^{\pi/2} t^{r+2\lambda} \left(\frac{\sin^{2\lambda} t}{t^{2\lambda}} \right)^{2s} \, dt + \int_{\pi/2}^\infty t^{r+2\lambda} \left(\frac{\sin^{2\lambda} t}{t^{2\lambda}} \right)^{2s} \, dt \right)
\leq C(\lambda, j, i, s) C_2 n^4 \leq C(\lambda, j, i, s) n^4,
$$

(2.3)

where

$$
C_2 = \int_0^{\pi/2} t^4 \left(\frac{\sin^{2\lambda} t}{t^{2\lambda}} \right)^{2s} \, dt + \int_{\pi/2}^\infty t^4 \left(\frac{\sin^{2\lambda} t}{t^{2\lambda}} \right)^{2s} \, dt, \quad 4is > r + 2\lambda + 1, j \geq i.
$$

(2.4)

Lemma 2.2 has been proved.

Lemma 2.3 (see [2]). For $0 \leq \theta \leq \pi$, one has

$$
T_0^x(g;x) - g(x) = \int_0^\theta \sin^{-2\lambda} t \, dt \int_0^t T_0^x(\Delta_{h,0} g) \sin^{2\lambda} u \, du
\leq \int_0^\theta \sin^{-2\lambda} t \Phi(t) B_t(\Delta_{h,0} g, x) \, dt,
$$

(2.5)

where

$$
B_t(\Delta_{h,0} g, x) = \frac{1}{\Phi(t)} \int_0^t T_0^x(\Delta_{h,0} g) \sin^{2\lambda} u \, du,
$$

(2.6)

and $\Phi(t) = c^{-1}_\lambda \int_0^t \sin^{2\lambda} u \, du$.

Lemma 2.4. Let \(g, \Delta_{h,0}g, \Delta_{h,0}^2g \in L^p(\mathbb{H}^2_2), 1 \leq p \leq \infty, J_{n,j,i,s}(f;x) \) be the Jackson-Matsuoka polynomials on the sphere based on the Jackson-Matsuoka kernel, \(4is > 2\lambda + 5, j \geq i \). Then, there is a constant \(C(\lambda, j, i, s) \) such that

\[
\|J_{n,j,i,s}g - g - \alpha(n)\Delta_{h,0}g\|_{p} \leq C(\lambda, j, i, s)n^{-\frac{4}{p}}\|\Delta_{h,0}^2g\|_{p},
\]

where \(\alpha(n) \approx n^{-2} \).

Proof. By Lemma 2.3, we have

\[
J_{n,j,i,s}(g;x) - g(x) = c_1 \int_0^\pi M_{n,j,i,s}(\theta) (T_\theta^0 (g;x) - g(x)) \sin^2 \theta \, d\theta
\]

\[
= c_1 \int_0^\pi M_{n,j,i,s}(\theta) \sin^2 \theta \, d\theta \int_0^\theta \frac{\Phi(t)}{\sin^2 t} B_t(\Delta_{h,0}g, x) \, dt
\]

\[
+ c_1 \Delta_{h,0}g(x) \int_0^\pi M_{n,j,i,s}(\theta) \sin^2 \theta \, d\theta \int_0^\theta \frac{\Phi(t)}{\sin^2 t} \left(B_t(\Delta_{h,0}g, x) - \Delta_{h,0}g(x) \right) \, dt
\]

\[
= \Delta_{h,0}g(x) \int_0^\pi M_{n,j,i,s}(\theta) \sin^2 \theta \, d\theta \int_0^\theta \frac{dt}{\sin^2 t} \int_0^t \sin^2 u \, du
\]

\[
+ \int_0^\pi M_{n,j,i,s}(\theta) \sin^2 \theta \, d\theta \int_0^\theta \frac{dt}{\sin^2 t} \int_0^t \sin^2 u \, du \left(B_t(\Delta_{h,0}g, x) - \Delta_{h,0}g(x) \right) \, du
\]

\[
:= \alpha(n)\Delta_{h,0}g(x) + \int_0^\pi M_{n,j,i,s}(\theta) \sin^2 \theta \Psi_\theta(g, x) \, d\theta,
\]

where

\[
\alpha(n) := \int_0^\pi M_{n,j,i,s}(\theta) \sin^2 \theta \, d\theta \int_0^\theta \frac{dt}{\sin^2 t} \int_0^t \sin^2 u \, du,
\]

\[
\Psi_\theta(g, x) := \int_0^\theta \frac{dt}{\sin^2 t} \int_0^t \sin^2 u \left(B_t(\Delta_{h,0}g, x) - \Delta_{h,0}g(x) \right) \, du
\]

By Lemma 2.1, we have

\[
\alpha(n) = \int_0^\pi M_{n,j,i,s}(\theta) \sin^2 \theta \, d\theta \int_0^\theta \frac{dt}{\sin^2 t} \int_0^t \sin^2 u \, du
\]

\[
\times \int_0^\pi M_{n,j,i,s}(\theta) \sin^2 \theta \, d\theta \int_0^\theta \frac{t \sin^2 \xi}{\sin^2 t} \, dt
\]

\[
\times \int_0^\pi \theta^2 M_{n,j,i,s}(\theta) \sin^2 \theta \, d\theta \propto n^{-2}, \quad (0 < \xi < t).
\]
We now estimate, using Lemma 2.3 again, the expression \(B_t(\Delta h, 0 \cdot g, x) = \Delta h, 0 \cdot g, x \), and obtain
\[
\| \Psi_\theta (g) \|_{\kappa,p} \leq C (\lambda, j, i, s) \theta^4 \| \Delta^2 h, 0 \cdot g \|_{\kappa,p}. \tag{2.11}
\]

By Lemma 2.2 and Hölder-Minkowski inequality shows that
\[
\left\| \int_0^\pi M_{n,j,i,s}(\theta) \sin^{2\lambda} \Psi_\theta (g, x) d\theta \right\|_{\kappa,p} \leq C (\lambda, j, i, s) \| \Delta^2 h, 0 \cdot g \|_{\kappa,p} \int_0^\pi \theta^4 M_{n,j,i,s}(\theta) \sin^{2\lambda} d\theta
\leq C (\lambda, j, i, s) n^{-4} \| \Delta^2 h, 0 \cdot g \|_{\kappa,p}. \tag{2.12}
\]

Consequently, by (2.8), (2.10), and (2.12) we complete the proof of this lemma.

Lemma 2.5. For \(t \geq 0 \), there is a constant \(C \) such that
\[
\omega(f; t\delta)_{\kappa,p} \leq C \max\{1, t^2\} \omega(f; \delta)_{\kappa,p}. \tag{2.13}
\]

Proof. By the equivalence relation between the modulus of smoothness and \(K \)-functional, and the definition of \(K(f; t^2)_{\kappa,p} \), we have
\[
\omega(f; t\delta)_{\kappa,p} \leq CK(f; (t\delta)^2)_{\kappa,p} \leq C \left(\| f - g \|_{\kappa,p} + t^2 \delta^2 \| \Delta h, 0 \cdot g \|_{\kappa,p} \right)
\leq C \max\{1, t^2\} \left(\| f - g \|_{\kappa,p} + \delta^2 \| \Delta h, 0 \cdot g \|_{\kappa,p} \right) \tag{2.14}
\leq C \max\{1, t^2\} K(f; \delta^2)_{\kappa,p} \leq C \max\{1, t^2\} \omega(f; \delta)_{\kappa,p}.
\]

Lemma 2.5 has been proved.

3. Main Results

Our main results are the following.

Theorem 3.1. Suppose that \(f \in L_p(h^2_x) \), \(1 \leq p \leq \infty \), \(J_{n,j,i,s}(f; x) \) is the Jackson-Matsuoka polynomials on the sphere based on the Jackson-Matsuoka kernel, \(4is > 2\lambda + 5 \), \(j \geq i \). Then
\[
\| J_{n,j,i,s}(f) - f \|_{\kappa,p} \leq \omega(f; n^{-1})_{\kappa,p}. \tag{3.1}
\]
Proof. First we prove \(\| J_{n; j, i, s}(f) - f \|_{k, p} \ll \omega(f; n^{-1})_{k, p} \). Since \((f_0 \ast M_{n; j, i, s})(x) = 1 \) for \(f_0(x) = 1 \), therefore, we have that

\[
\| J_{n; j, i, s}(f) - f \|_{k, p} = \left\| \int_0^\pi M_{n; j, i, s}(\theta)(f(x) - T_\theta^*(f; x)) \sin^2 \theta \, d\theta \right\|_{k, p} \\
\leq \int_0^\pi \| f - T_\theta^*(f) \|_{k, p} M_{n; j, i, s}(\theta) \sin^2 \theta \, d\theta.
\]

(3.2)

Splitting the integral over \([0, \pi]\) into two integrals over \([0, 1/n]\) and \([1/n, \pi]\), respectively, and using the definition of \(\omega(f; t)_{k, p} \), we conclude that

\[
\| f - T_\theta^*(f) \|_{k, p} \leq \omega(f; n^{-1})_{k, p} + \int_{1/n}^\pi \omega(f; \theta)_{k, p} M_{n; j, i, s}(\theta) \sin^2 \theta \, d\theta.
\]

(3.3)

From Lemma 2.5 it follows that, for \(\theta \geq n^{-1} \),

\[
\omega(f; \theta)_{k, p} = \omega\left(f; \frac{\theta}{n}\right)_{k, p} \leq C \max\{1, n^2 \theta^2\} \omega(f; \theta)_{k, p} \leq C n^2 \theta^2 \omega(f; \theta)_{k, p}.
\]

(3.4)

Therefore, it follows that

\[
\| J_{n; j, i, s}(f) - f \|_{k, p} \leq \omega(f; \theta)_{k, p} \left(1 + C n^2 \int_{1/n}^\pi \theta^2 M_{n; j, i, s}(\theta) \sin^2 \theta \, d\theta\right).
\]

(3.5)

From Lemma 2.2, we get

\[
\| J_{n; j, i, s}(f) - f \|_{k, p} \leq C(\lambda, j, i, s) \omega(f; n^{-1})_{k, p}.
\]

(3.6)

Next we prove \(\omega(f; n^{-1})_{k, p} \ll \| J_{n; j, i, s}(f) - f \|_{k, p} \). Let \(m \) be a fixed positive integer Denote by

\[
J_{m; n; j, i, s}^m(f) := \sum_{k=0}^m \left(\int_0^\pi M_{n; j, i, s}(\theta) Q_k^i(\cos \theta) \sin^2 \theta \, d\theta \right)^m Y_k(h^2; f).
\]

(3.7)

By orthogonality of the orthogonal projector \(Y_k \), we have that

\[
J_{m; n; j, i, s}^m(f) = \sum_{k=0}^m \left(\int_0^\pi M_{n; j, i, s}(\theta) Q_k^i(\cos \theta) \sin^2 \theta \, d\theta \right)^m
\times Y_k\left(h^2; \sum_{i=0}^m \left(\int_0^\pi M_{n; j, i, s}(\theta) Q_k^i(\cos \theta) \sin^2 \theta \, d\theta \right)^i Y_{\nu}\left(h^2; f\right)\right)
\]

(3.8)

\[
= J_{n; j, i, s}^m\left(J_{m; n; j, i, s}(f)\right).
\]
Letting \(g = J_{m,i,s}^n(f) \), by (3.8) we get

\[
\|f - g\|_{\kappa,p} = \|f - J_{m,i,s}^n(f)\|_{\kappa,p} \\
\leq \sum_{k=1}^{m} \|J_{m,i,s}^{k-1}(f) - J_{m,i,s}^k(f)\|_{\kappa,p} \\
\leq C(\lambda, j, i, s) \sum_{k=1}^{m} \|J_{m,i,s}^{k-1}(f) - J_{m,i,s}^k(f)\|_{\kappa,p} \\
\leq C(\lambda, j, i, s) m \|f - J_{m,i,s}(f)\|_{\kappa,p}
\]

(3.9)

where \(J_{m,i,s}(f) = f \).

On the other hand,

\[
\|\Delta_{h,0} J_{m,i,s}^m(f)\|_{\kappa,p} \leq \sum_{k=0}^{m} k(k + 2\lambda) \left(\int_0^{\pi} M_{n,j,s}(\theta) Q_k^1(\cos \theta) |\sin^{2\lambda} \theta d\theta \right) \sum_{k=0}^{m} \left(\int_0^{\pi} M_{n,j,s}(\theta) \theta^{-\lambda} \sin^{2\lambda} \theta d\theta \right) \sum_{k=0}^{m} Y_k \left(h_{2\lambda}^2; f \right).
\]

(3.10)

Note that [5]

\[
|Q_k^1(\cos \theta)| = \left| \frac{C_k^1(\cos \theta)}{C_k^1(1)} \right| \leq C \min\left\{ (k\theta)^{-1}, 1 \right\}.
\]

(3.11)

For \(k\theta \geq 1 \), from (2.2) it follows that

\[
\|\Delta_{h,0} J_{m,i,s}^m(f)\|_{\kappa,p} \leq C(\lambda, j, i, s) \sum_{k=0}^{m} k(k + 2\lambda) k^{-\frac{m\lambda}{2}} \left(\int_0^{\pi} M_{n,j,s}(\theta) \theta^{-\lambda} \sin^{2\lambda} \theta d\theta \right) \sum_{k=0}^{m} Y_k \left(h_{2\lambda}^2; f \right) \leq C(\lambda, j, i, s) m \|f\|_{\kappa,p}.
\]

(3.12)
holds for $m > 3/\lambda$. For $k\theta < 1$, by (2.2), we get

$$
\|\Delta_{h,0} J_{n,j,i,s}^m(f)\|_{k,p} \\
\leq \left\| \sum_{k=0}^{m} \left(\int_0^{\pi} M_{n,j,i,s}(\theta) \theta^{-2/m} (\theta^2 k(k+2\lambda))^{1/m} |Q_1^{1}(\cos \theta)| \sin^2 \theta d\theta \right)^m \right\|_{k,p} \\
\leq C(\lambda, j, i, s) \left\| \sum_{k=0}^{m} \left(\int_0^{\pi} M_{n,j,i,s}(\theta) \theta^{-2/m} (k\theta^2)^{2/m} \sin^2 \theta d\theta \right)^m \right\|_{k,p} \\
\leq C(\lambda, j, i, s) \left\| \sum_{k=0}^{m} \left(\int_0^{\pi} M_{n,j,i,s}(\theta) \theta^{-2/m} \sin^2 \theta d\theta \right)^m \right\|_{k,p} \\
\leq C(\lambda, j, i, s)n^2 \left\| \sum_{k=0}^{\infty} Y_k \left(h_{k,i}^2; f \right) \right\|_{k,p} \leq Cn^2 \|f\|_{k,p}.
$$

Consequently, the inequality

$$
\|\Delta_{h,0} J_{n,j,i,s}^m(f)\|_{k,p} \leq C(\lambda, j, i, s)n^2 \|f\|_{k,p}
$$

holds uniformly for $m > 3/\lambda$. Without loss of generality, we may assume $m_1 > 3/\lambda$, $m > m_1 + 3/\lambda$. Using Lemma 2.4 and (3.8), we have

$$
\alpha(n) \|\Delta_{h,0} J_{n,j,i,s}^m(f)\|_{k,p} = \|\alpha(n) \Delta_{h,0} J_{n,j,i,s}^m(f)\|_{k,p} \\
\leq \|J_{n,j,i,s}(f) - f\|_{k,p} + C(\lambda, j, i, s)n^2 \|\Delta_{h,0} J_{n,j,i,s}^m(f)\|_{k,p} \\
\leq m \|J_{n,j,i,s}(f) - f\|_{k,p} + C(\lambda, j, i, s)n^2 \|\Delta_{h,0} J_{n,j,i,s}^{m-m_1}(f)\|_{k,p} \\
\leq m \|J_{n,j,i,s}(f) - f\|_{k,p} \\
+ C(\lambda, j, i, s) \left(n^{-2} \|\Delta_{h,0} J_{n,j,i,s}^m(f)\|_{k,p} + n^{-2} \|J_{n,j,i,s}^m(f) - J_{n,j,i,s}^{m-m_1}(f)\|_{k,p} \right) \\
\leq m \|J_{n,j,i,s}(f) - f\|_{k,p} \\
+ C(\lambda, j, i, s) \left(\|J_{n,j,i,s}(f) - f\|_{k,p} + \|J_{n,j,i,s}^m(f)\|_{k,p} \right) \\
\leq C(\lambda, j, i, s) \left(\|J_{n,j,i,s}(f) - f\|_{k,p} + \|f\|_{k,p} \right).
$$
Consequently, \(n^{-2}\|\Delta_{n,0} J_{n,j,i,s}^m(f)\|_{\kappa,p} \leq C(\lambda, j, i, s)\|f - J_{n,j,i,s}(f)\|_{\kappa,p} \) by the definition of \(K(f; t^2)_{\kappa,p} \) and (1.13) shows that

\[
\omega(f; n^{-1})_{\kappa,p} \leq CK(f; n^{-2})_{\kappa,p} \\
\leq C\left(\|f - J_{n,j,i,s}^m(f)\|_{\kappa,p} + n^{-2}\|\Delta_{n,0} J_{n,j,i,s}^m(f)\|_{\kappa,p}\right) \\
\leq C(\lambda, j, i, s)\|f - J_{n,j,i,s}(f)\|_{\kappa,p} \\
\leq C(\lambda, j, i, s)\|f - J_{n,j,i,s}(f)\|_{\kappa,p'}
\]

that is, \(\omega(f; n^{-1})_{\kappa,p} \ll \|f - J_{n,j,i,s}(f)\|_{\kappa,p'} \).

The proof is completed. \(\square \)

Acknowledgments

The author would like to thank Professor Norimichi Hirano and the anonymous referees for their valuable comments, remarks, and suggestions which greatly help us to improve the presentation of this paper and make it more readable. Project is supported by the Natural Science Foundation of China (Grant no. 10671019), Zhejiang Provincial Natural Science Foundation (Grant no. Y12A010022), and Cultivation Fund of Taizhou University.

References
