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Abstract. 
We propose a hybrid total-variation-type model for the image restoration problem based on combining advantages of the ROF model with the LLT model. Since two 
	
		

			𝐿
		

		

			1
		

	
-norm terms in the proposed model make it difficultly solved by using some classically numerical methods directly, we first employ the alternating direction method of multipliers (ADMM) to solve a general form of the proposed model. Then, based on the ADMM and the Moreau-Yosida decomposition theory, a more efficient method called the proximal point method (PPM) is proposed and the convergence of the proposed method is proved. Some numerical results demonstrate the viability and efficiency of the proposed model and methods.


1. Introduction
 Image restoration is of momentous significance in coherent imaging systems and various image processing applications. The goal is to recover the real image from the deteriorated image, for example, image denoising, image deblurring, image inpainting, and so forth; see [1–3] for details.
For the additive noisy image, many denoising models have been proposed based on PDEs or variational methods over the last decades [1–3]. The essential idea for this class of models is to filter out the noise in an image while preserving significant features such as edges and textures. However, due to the ill-posedness of the restoration problem, we have to employ some regularization methods [4] to overcome it. The general form of regularization methods consists in minimizing an energy functional of the following form: 
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 is the observed image, and 
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 is the image to be restored. The development of the energy functional (1.1) actually profits from the ROF model [5] which is of the following form: 
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					for image deblurring [6] and 
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 is the inpainting domain. Furthermore, this model was applied to restore the multiplicative noisy image which usually appears in various image processing applications such as in laser images, ultrasound images [8], synthetic aperture radar (SAR) [9], and medical ultrasonic images [10]. One of the models based on 
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However, as we all know the 
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 term usually reduces the computational solution of the above models to be piecewise constant, which is also called the staircasing effect in smooth regions of the image. The staircase effect implies to produce new edges that do not exist in the true image so that the restored image is unsatisfactory to the eye. To overcome this drawback, some high-order models [12–15] have been proposed such as a model proposed by Lysaker, Lundervold, and Tai (the LLT model) with the following form: 
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. However, these classes of models can blur the edges of the image in the course of restoration. Therefore, it is a natural choice to combine advantages of the ROF model and the LLT model if we want to preserve edges while avoiding the staircase effect in smooth regions. One of convex combinations between the 
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 can depict the information of edges, we can employ it as a balance function; that is, we can apply the following model: 
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 tends to be predominant at the locations with smooth signals. Based on the advantages of the hybrid model (1.7), we also extend it to the image restoration models (1.3)–(1.5) in this paper.
Another topic for image restoration is to find some efficient methods to solve the above proposed models. In fact, there are many different methods based on PDE or convex optimization to solve the minimization problem (1.1) by means of the specific models (1.2)–(1.6). For example, for the purpose of solving the ROF model (1.2) or the LLT model (1.6), we can use the gradient descent method [5, 13], the Chambolle’s dual method [13, 17, 18], the primal and dual method [19–21], the second order cone programming method [22], the multigrid method [23], operator splitting method [24–26], the inverse scale method [27], and so forth. However, different from the ROF model (1.2) and the LLT model (1.6), the model (1.7) includes two 
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-norm terms which make it solved more difficultly. More generally, the model (1.7) can be fell into the following framework: 
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 is a parameter. A specific form of (1.8) was considered by Afonso and Bioucas-Dias in [28] where a Bregman iterative method was proposed to solve the model with the combination of the 
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-norm term and the total variation (TV) term. Actually this splitting Bregman method is formally equivalent to the alternating direction method of multipliers (ADMM) [24, 29–34]. However, the ADMM ineluctably tends to solve some subproblems which correspond to the related modified problems. Furthermore, these make us obtain the numerical results by requiring much more computational cost. In order to obtain an efficient numerical method, it is a natural choice to avoid solving the related subproblems. In this paper, we propose a proximal point method (PPM) which can be deduced from the ADMM. This deduction is based on the connection that the sum of the projection operator and the shrinkage operator is equal to the identity operator; it is known as the Moreau-Yosida decomposition Theorem  31.5 in [35]. Then the PPM not only keeps the advantages of the ADMM but also requires much less computational cost. This implies that the PPM is much more fast and efficient, especially for the larger scale images. Furthermore, using the monotone operator theory, we give the convergence analysis of the proposed method. Moreover, we extend the PPM to solve the model (1.7) to image deblurring, image inpainting, and the multiplicative noisy image restoration. Experimental results show that the restored images generated by the proposed models and methods are desirable.
The paper is organized as follows. In Section 2, we recall some knowledge related to convex analysis. In Section 3, we first propose the ADMM to solve the problem (1.8) and then give the PPM to improve this method. In Section 4, we give some applications by using the proposed algorithms and also compare the related models and the proposed methods. Some concluding remarks are given in Section 5.
2. Notations and Definitions
 Let us describe some notations and definitions used in this paper. For simplifying, we use 
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3. The Alternating Direction Method of Multipliers (ADMM) and the Proximal Point Method (PPM)
 Variable splitting methods such as the ADMM [29–32, 44] and the operator splitting methods [42, 45, 46] have been recently used in the image, signal, and data processing community. The key of this class of methods is to transform the original problem into some subproblems so that we can easily solve these subproblems by employing some numerical methods. In this section we first consider to use the ADMM to solve the general minimization problem (1.8). However, the computational cost of the ADMM is tediously increased due to its looser form. In order to overcome this drawback, we thus change this method to a compacter form called the proximal method based on the relationship (2.9) in Remark 2.8.
3.1. The Alternating Direction Method of Multipliers (ADMM)
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 are a surjective map. It seems that the problem (3.1) including three variables looks more complex than the original unconstrained problem (1.8). In fact, this problem can be solved more easily under the condition that 
	
		

			ℎ
		

		

			1
		

	
 and 
	
		

			ℎ
		

		

			2
		

	
 are nondifferentiable. In the augmented Lagrangian framework [33, 34, 47, 48], the problem (3.1) equivalently solves the following minimization Lagrangian function: 
								
	
 		
			(
			3
			.
			2
			)
		
 	

	
		
			m
			i
			n
		

		
			𝑢
			,
			𝑣
			,
			𝑧
			,
			𝜁
		

		

			1
		

		
			,
			𝜁
		

		

			2
		

		
			,
			𝜇
		

		

			1
		

		
			,
			𝜇
		

		

			2
		

		

			𝐿
		

		

			
		

		
			𝑢
			,
			𝑣
			,
			𝑧
			,
			𝜁
		

		

			1
		

		
			,
			𝜁
		

		

			2
		

		
			,
			𝜇
		

		

			1
		

		
			,
			𝜇
		

		

			2
		

		

			
		

		

			=
		

		

			𝜃
		

		
			
		
		

			2
		

		

			‖
		

		
			𝑢
			−
			𝑓
		

		

			‖
		

		

			2
		

		

			𝐿
		

		

			2
		

		
			+
			ℎ
		

		

			1
		

		

			(
		

		

			𝑣
		

		

			)
		

		

			+
		

		

			
		

		

			𝜁
		

		

			1
		

		
			,
			Λ
		

		

			1
		

		
			𝑢
			−
			𝑣
		

		

			
		

		

			+
		

		

			𝜇
		

		

			1
		

		
			
		
		

			2
		

		

			‖
		

		

			‖
		

		

			Λ
		

		

			1
		

		
			𝑢
			−
			𝑣
		

		

			‖
		

		

			‖
		

		

			2
		

		

			𝐿
		

		

			2
		

		
			+
			ℎ
		

		

			2
		

		

			(
		

		

			𝑧
		

		

			)
		

		

			+
		

		

			
		

		

			𝜁
		

		

			2
		

		
			,
			Λ
		

		

			2
		

		
			𝑢
			−
			𝑧
		

		

			
		

		

			+
		

		

			𝜇
		

		

			2
		

		
			
		
		

			2
		

		

			‖
		

		

			‖
		

		

			Λ
		

		

			2
		

		
			𝑢
			−
			𝑧
		

		

			‖
		

		

			‖
		

		

			2
		

		

			𝐿
		

		

			2
		

		

			,
		

	

							where 
	
		

			𝜁
		

		

			𝑖
		

	
 is the Lagrangian multiplier and 
	
		

			𝜇
		

		

			𝑖
		

	
 is the penalty parameter for 
	
		
			𝑖
			=
			1
		

	
, 
	
		

			2
		

	
. Then we can use the following augmented Lagrangian method (ALM): 
	
 		
			(
			3
			.
			3
			a
			)
		
 		
			(
			3
			.
			3
			b
			)
		
 		
			(
			3
			.
			3
			c
			)
		
 	

	
		

			(
		

		

			𝑢
		

		

			𝑛
		

		
			,
			𝑣
		

		

			𝑛
		

		
			,
			𝑧
		

		

			𝑛
		

		

			)
		

		
			=
			a
			r
			g
			m
			i
			n
		

		
			𝑢
			,
			𝑣
			,
			𝑧
		

		

			𝐿
		

		

			
		

		
			𝑢
			,
			𝑣
			,
			𝑧
			,
			𝜁
		

		
			𝑛
			−
			1
		

		

			1
		

		
			,
			𝜁
		

		
			𝑛
			−
			1
		

		

			2
		

		
			,
			𝜇
		

		

			1
		

		
			,
			𝜇
		

		

			2
		

		

			
		

		

			,
		

		

			𝜁
		

		

			𝑛
		

		

			1
		

		
			=
			𝜁
		

		
			𝑛
			−
			1
		

		

			1
		

		
			+
			𝜇
		

		

			1
		

		

			
		

		

			Λ
		

		

			1
		

		
			𝑢
			−
			𝑣
		

		

			
		

		

			,
		

		

			𝜁
		

		

			𝑛
		

		

			2
		

		
			=
			𝜁
		

		
			𝑛
			−
			1
		

		

			2
		

		
			+
			𝜇
		

		

			2
		

		

			
		

		

			Λ
		

		

			2
		

		
			𝑢
			−
			𝑧
		

		

			
		

	
with choosing the original values 
	
		

			𝜁
		

		

			0
		

		

			1
		

	
 and 
	
		

			𝜁
		

		

			0
		

		

			2
		

	
 to solve (3.2). If we set 
	
		

			𝑑
		

		

			𝑛
		

		

			𝑖
		

		
			=
			𝜁
		

		

			𝑛
		

		

			𝑖
		

		
			/
			𝜇
		

		

			𝑖
		

	
 for 
	
		
			𝑖
			=
			1
		

	
, 
	
		

			2
		

	
 and omit the terms which are independent of 
	
		
			(
			𝑢
		

		

			𝑛
		

		
			,
			𝑣
		

		

			𝑛
		

		
			,
			𝑧
		

		

			𝑛
		

		

			)
		

	
 in (3.3a), the above strategy (3.3a)–(3.3c) can be written as 
	
 		
			(
			3
			.
			4
			a
			)
		
 		
			(
			3
			.
			4
			b
			)
		
 		
			(
			3
			.
			4
			c
			)
		
 	

	
		

			(
		

		

			𝑢
		

		

			𝑛
		

		
			,
			𝑣
		

		

			𝑛
		

		
			,
			𝑧
		

		

			𝑛
		

		

			)
		

		
			=
			a
			r
			g
			m
			i
			n
		

		
			𝑢
			,
			𝑣
			,
			𝑧
		

		

			𝜃
		

		
			
		
		

			2
		

		

			‖
		

		
			𝑢
			−
			𝑓
		

		

			‖
		

		

			2
		

		

			𝐿
		

		

			2
		

		
			+
			ℎ
		

		

			1
		

		

			(
		

		

			𝑣
		

		

			)
		

		

			+
		

		

			𝜇
		

		

			1
		

		
			
		
		

			2
		

		

			‖
		

		

			‖
		

		

			Λ
		

		

			1
		

		
			𝑢
			−
			𝑣
			+
			𝑑
		

		
			𝑛
			−
			1
		

		

			1
		

		

			‖
		

		

			‖
		

		

			2
		

		

			𝐿
		

		

			2
		

		
			+
			ℎ
		

		

			2
		

		

			(
		

		

			𝑧
		

		

			)
		

		

			,
		

		

			+
		

		

			𝜇
		

		

			2
		

		
			
		
		

			2
		

		

			‖
		

		

			‖
		

		

			Λ
		

		

			2
		

		
			𝑢
			−
			𝑧
			+
			𝑑
		

		
			𝑛
			−
			1
		

		

			2
		

		

			‖
		

		

			‖
		

		

			2
		

		

			𝐿
		

		

			2
		

		

			,
		

		

			𝑑
		

		

			𝑛
		

		

			1
		

		
			=
			𝑑
		

		
			𝑛
			−
			1
		

		

			1
		

		
			+
			Λ
		

		

			1
		

		

			𝑢
		

		

			𝑛
		

		
			−
			𝑣
		

		

			𝑛
		

		

			,
		

		

			𝑑
		

		

			𝑛
		

		

			2
		

		
			=
			𝑑
		

		
			𝑛
			−
			1
		

		

			2
		

		
			+
			Λ
		

		

			2
		

		

			𝑢
		

		

			𝑛
		

		
			−
			𝑧
		

		

			𝑛
		

	
for the original values 
	
		

			𝑑
		

		

			0
		

		

			1
		

	
 and 
	
		

			𝑑
		

		

			0
		

		

			2
		

	
. Then we can use the following ADMM to solve (3.4a)–(3.4c). 
Algorithm 3.1 (ADMM for solving (3.4a)–(3.4c)). (1) Choose the original values: 
	
		

			𝑣
		

		

			0
		

	
, 
	
		

			𝑧
		

		

			0
		

	
, 
	
		

			𝑑
		

		

			0
		

		

			1
		

	
, and 
	
		

			𝑑
		

		

			0
		

		

			2
		

	
. Set 
	
		

			𝜃
		

	
, 
	
		

			𝜇
		

		

			1
		

	
, 
	
		

			𝜇
		

		

			2
		

		
			>
			0
		

	
 and 
	
		
			𝑛
			=
			1
		

	
. (2) Compute 
	
		
			(
			𝑢
		

		

			𝑛
		

		
			,
			𝑣
		

		

			𝑛
		

		
			,
			𝑧
		

		

			𝑛
		

		
			,
			𝑑
		

		

			𝑛
		

		

			1
		

		
			,
			𝑑
		

		

			𝑛
		

		

			2
		

		

			)
		

	
 by

	
 		
			(
			3
			.
			5
			a
			)
		
 		
			(
			3
			.
			5
			b
			)
		
 		
			(
			3
			.
			5
			c
			)
		
 		
			(
			3
			.
			5
			d
			)
		
 		
			(
			3
			.
			5
			e
			)
		
 	

	
		

			𝑢
		

		

			𝑛
		

		
			=
			a
			r
			g
			m
			i
			n
		

		

			𝑢
		

		

			𝜃
		

		
			
		
		

			2
		

		

			‖
		

		
			𝑢
			−
			𝑓
		

		

			‖
		

		

			2
		

		

			𝐿
		

		

			2
		

		

			+
		

		

			𝜇
		

		

			1
		

		
			
		
		

			2
		

		

			‖
		

		

			‖
		

		

			Λ
		

		

			1
		

		
			𝑢
			−
			𝑣
		

		
			𝑛
			−
			1
		

		
			+
			𝑑
		

		
			𝑛
			−
			1
		

		

			1
		

		

			‖
		

		

			‖
		

		

			2
		

		

			𝐿
		

		

			2
		

		

			+
		

		

			𝜇
		

		

			2
		

		
			
		
		

			2
		

		

			‖
		

		

			‖
		

		

			Λ
		

		

			2
		

		
			𝑢
			−
			𝑧
		

		
			𝑛
			−
			1
		

		
			+
			𝑑
		

		
			𝑛
			−
			1
		

		

			2
		

		

			‖
		

		

			‖
		

		

			2
		

		

			𝐿
		

		

			2
		

		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		

		
			=
			ℎ
			(
			𝑢
			)
		

		

			,
		

		

			𝑣
		

		

			𝑛
		

		
			=
			a
			r
			g
			m
			i
			n
		

		

			𝑣
		

		

			ℎ
		

		

			1
		

		

			(
		

		

			𝑣
		

		

			)
		

		

			+
		

		

			𝜇
		

		

			1
		

		
			
		
		

			2
		

		

			‖
		

		

			‖
		

		

			Λ
		

		

			1
		

		

			𝑢
		

		

			𝑛
		

		
			−
			𝑣
			+
			𝑑
		

		
			𝑛
			−
			1
		

		

			1
		

		

			‖
		

		

			‖
		

		

			2
		

		

			𝐿
		

		

			2
		

		

			,
		

		

			𝑧
		

		

			𝑛
		

		
			=
			a
			r
			g
			m
			i
			n
		

		

			𝑧
		

		

			ℎ
		

		

			2
		

		

			(
		

		

			𝑧
		

		

			)
		

		

			+
		

		

			𝜇
		

		

			2
		

		
			
		
		

			2
		

		

			‖
		

		

			‖
		

		

			Λ
		

		

			2
		

		

			𝑢
		

		

			𝑛
		

		
			−
			𝑧
			+
			𝑑
		

		
			𝑛
			−
			1
		

		

			2
		

		

			‖
		

		

			‖
		

		

			2
		

		

			𝐿
		

		

			2
		

		

			,
		

		

			𝑑
		

		

			𝑛
		

		

			1
		

		
			=
			𝑑
		

		
			𝑛
			−
			1
		

		

			1
		

		
			+
			Λ
		

		

			1
		

		

			𝑢
		

		

			𝑛
		

		
			−
			𝑣
		

		

			𝑛
		

		

			,
		

		

			𝑑
		

		

			𝑛
		

		

			2
		

		
			=
			𝑑
		

		
			𝑛
			−
			1
		

		

			2
		

		
			+
			Λ
		

		

			2
		

		

			𝑢
		

		

			𝑛
		

		
			−
			𝑧
		

		

			𝑛
		

		

			.
		

	


					(3) If the stop criterion is not satisfied, set 
	
		
			𝑛
			∶
			=
			𝑛
			+
			1
		

	
 and go to step 
	
		
			(
			2
			)
		

	
. 
Since 
	
		
			ℎ
			(
			𝑢
			)
		

	
 is differentiable and strictly convex, we can get the unique solution of (3.5a) which satisfies 
	
 		
			(
			3
			.
			6
			a
			)
		
 		
			(
			3
			.
			6
			b
			)
		
 		
			(
			3
			.
			6
			c
			)
		
 		
			(
			3
			.
			6
			d
			)
		
 		
			(
			3
			.
			6
			e
			)
		
 	

	
		

			𝜃
		

		

			(
		

		

			𝑢
		

		

			𝑛
		

		
			−
			𝑓
		

		

			)
		

		
			+
			𝜇
		

		

			1
		

		

			Λ
		

		

			∗
		

		

			1
		

		

			
		

		

			Λ
		

		

			1
		

		

			𝑢
		

		

			𝑛
		

		
			−
			𝑣
		

		
			𝑛
			−
			1
		

		
			+
			𝑑
		

		
			𝑛
			−
			1
		

		

			1
		

		

			
		

		
			+
			𝜇
		

		

			2
		

		

			Λ
		

		

			∗
		

		

			2
		

		

			
		

		

			Λ
		

		

			2
		

		

			𝑢
		

		

			𝑛
		

		
			−
			𝑧
		

		
			𝑛
			−
			1
		

		
			+
			𝑑
		

		
			𝑛
			−
			1
		

		

			2
		

		

			
		

		
			=
			0
			,
		

		
			0
			=
			𝑤
		

		

			𝑛
		

		

			1
		

		
			+
			𝜇
		

		

			1
		

		

			
		

		

			𝑣
		

		

			𝑛
		

		
			−
			𝑑
		

		
			𝑛
			−
			1
		

		

			1
		

		
			−
			Λ
		

		

			1
		

		

			𝑢
		

		

			𝑛
		

		

			
		

		

			,
		

		
			0
			=
			𝑤
		

		

			𝑛
		

		

			2
		

		
			+
			𝜇
		

		

			2
		

		

			
		

		

			𝑧
		

		

			𝑛
		

		
			−
			𝑑
		

		
			𝑛
			−
			1
		

		

			2
		

		
			−
			Λ
		

		

			2
		

		

			𝑢
		

		

			𝑛
		

		

			
		

		

			,
		

		

			𝑑
		

		

			𝑛
		

		

			1
		

		
			=
			𝑑
		

		
			𝑛
			−
			1
		

		

			1
		

		
			+
			Λ
		

		

			1
		

		

			𝑢
		

		

			𝑛
		

		
			−
			𝑣
		

		

			𝑛
		

		

			,
		

		

			𝑑
		

		

			𝑛
		

		

			2
		

		
			=
			𝑑
		

		
			𝑛
			−
			1
		

		

			2
		

		
			+
			Λ
		

		

			2
		

		

			𝑢
		

		

			𝑛
		

		
			−
			𝑧
		

		

			𝑛
		

		

			,
		

	
where 
	
		

			Λ
		

		

			∗
		

		

			1
		

	
 and 
	
		

			Λ
		

		

			∗
		

		

			2
		

	
 are the adjoint operators of 
	
		

			Λ
		

		

			1
		

	
 and 
	
		

			Λ
		

		

			2
		

	
, 
	
		

			𝑤
		

		

			𝑛
		

		

			1
		

		
			∈
			𝜕
			ℎ
		

		

			1
		

		
			(
			𝑣
		

		

			𝑛
		

		

			)
		

	
 and 
	
		

			𝑤
		

		

			𝑛
		

		

			2
		

		
			∈
			𝜕
			ℎ
		

		

			2
		

		
			(
			𝑧
		

		

			𝑛
		

		

			)
		

	
, respectively. It follows that the solution 
	
		

			𝑢
		

		

			𝑛
		

	
 in (3.6a) can be directly obtained by the following explicit formulation: 
								
	
 		
			(
			3
			.
			7
			)
		
 	

	
		

			𝑢
		

		

			𝑛
		

		

			=
		

		

			
		

		
			𝜃
			𝐼
			+
			𝜇
		

		

			1
		

		

			Λ
		

		

			∗
		

		

			1
		

		

			Λ
		

		

			1
		

		
			+
			𝜇
		

		

			2
		

		

			Λ
		

		

			∗
		

		

			2
		

		

			Λ
		

		

			2
		

		

			
		

		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		

		

			𝑀
		

		
			−
			1
		

		

			
		

		
			𝜃
			𝑓
			+
			𝜇
		

		

			1
		

		

			Λ
		

		

			∗
		

		

			1
		

		

			
		

		

			𝑣
		

		
			𝑛
			−
			1
		

		
			−
			𝑑
		

		
			𝑛
			−
			1
		

		

			1
		

		

			
		

		
			+
			𝜇
		

		

			2
		

		

			Λ
		

		

			∗
		

		

			2
		

		

			
		

		

			𝑧
		

		
			𝑛
			−
			1
		

		
			−
			𝑑
		

		
			𝑛
			−
			1
		

		

			2
		

		
			
			
		

		

			.
		

	

							However, when the operator 
	
		

			𝑀
		

	
 is ill-posed, the solution is unsuitable or unavailable. Hence we have to go back to (3.6a) and to employ some iteration strategy such as the Gauss-Seidel method to solve this equation. On the other hand, it is obvious that (3.5b) and (3.5c) can be looked at as the proximal mapping, so the solutions of the minimization problems (3.5b) and (3.5c) can be obviously written as 
								
	
 		
			(
			3
			.
			8
			)
		
 	

	
		

			𝑣
		

		

			𝑛
		

		

			=
		

		
			P
			r
			o
			x
		

		
			1
			/
			𝜇
		

		

			1
		

		

			ℎ
		

		

			1
		

		

			
		

		

			Λ
		

		

			1
		

		

			𝑢
		

		

			𝑛
		

		
			+
			𝑑
		

		
			𝑛
			−
			1
		

		

			1
		

		

			
		

		
			,
			𝑧
		

		

			𝑛
		

		

			=
		

		
			P
			r
			o
			x
		

		
			1
			/
			𝜇
		

		

			2
		

		

			ℎ
		

		

			2
		

		

			
		

		

			Λ
		

		

			2
		

		

			𝑢
		

		

			𝑛
		

		
			+
			𝑑
		

		
			𝑛
			−
			1
		

		

			2
		

		

			
		

		

			.
		

	

Theorem 3.2.  Assume that 
	
		
			(
			𝑢
		

		

			∗
		

		
			,
			𝑣
		

		

			∗
		

		
			,
			𝑧
		

		

			∗
		

		
			,
			𝑤
		

		

			∗
		

		

			1
		

		
			,
			𝑤
		

		

			∗
		

		

			2
		

		

			)
		

	
 is the saddle point of the Lagrange function 
									
	
 		
			(
			3
			.
			9
			)
		
 	

	
		

			ℒ
		

		

			
		

		
			𝑢
			,
			𝑣
			,
			𝑧
			,
			𝑤
		

		

			1
		

		
			,
			𝑤
		

		

			2
		

		

			
		

		

			=
		

		

			𝜃
		

		
			
		
		

			2
		

		

			‖
		

		
			𝑢
			−
			𝑓
		

		

			‖
		

		

			2
		

		

			𝐿
		

		

			2
		

		
			+
			ℎ
		

		

			1
		

		

			(
		

		

			𝑣
		

		

			)
		

		

			+
		

		

			
		

		

			𝑤
		

		

			1
		

		
			,
			Λ
		

		

			1
		

		
			𝑢
			−
			𝑣
		

		

			
		

		
			+
			ℎ
		

		

			2
		

		

			(
		

		

			𝑧
		

		

			)
		

		

			+
		

		

			
		

		

			𝑤
		

		

			2
		

		
			,
			Λ
		

		

			2
		

		
			𝑢
			−
			𝑧
		

		

			
		

		

			.
		

	

								Then 
	
		

			𝑢
		

		

			∗
		

	
 is the solution of the minimization problem (1.8). Furthermore, the sequence 
	
		
			{
			(
			𝑢
		

		

			𝑛
		

		
			,
			𝑣
		

		

			𝑛
		

		
			,
			𝑧
		

		

			𝑛
		

		
			)
			}
		

	
 generated by Algorithm 3.1 converges to 
	
		
			(
			𝑢
		

		

			∗
		

		
			,
			𝑣
		

		

			∗
		

		
			,
			𝑧
		

		

			∗
		

		

			)
		

	
. 
Notice that Algorithm 3.1 can be actually looked at as the split Bregman method [25]. The based idea of this method is to introduce some intermediate variables so as to transform the original problem into some subproblems which are easily solved. The connection between the split Bregman method and the ADMM has been shown in [29, 49]. However, our algorithm considers the sum of three convex functions, which is more general than the related algorithms in [25, 49]. Furthermore, it must be noted that 
	
		

			𝑣
		

	
 and 
	
		

			𝑧
		

	
 are completely separated in (3.4a), so the two subproblems (3.5b) and (3.5c) are parallel. Therefore the convergence results of the ADMM can be applied here.
3.2. The Proximal Point Method
Though the ADMM in Algorithm 3.1 can effectively solve the original problem (3.1), we have to solve five subproblems. This actually makes this method suffer from a looser form as in [25, 45] so that it can badly affect its numerical computation efficiency. In this subsection, we propose a compacter form comparing to the ADMM. This formation called the PPM by using the relationship (2.9) in Remark 2.8 can reduce the original five subproblems of the ADMM in Algorithm 3.1 to solve three subproblems, thus it can improve computation cost of the ADMM. Now we have rewritten (3.5a)–(3.5e) with a little variation as the following form: 
	
 		
			(
			3
			.
			1
			0
			a
			)
		
 		
			(
			3
			.
			1
			0
			b
			)
		
 		
			(
			3
			.
			1
			0
			c
			)
		
 		
			(
			3
			.
			1
			0
			d
			)
		
 		
			(
			3
			.
			1
			0
			e
			)
		
 	

	
		

			𝑣
		

		

			𝑛
		

		
			=
			a
			r
			g
			m
			i
			n
		

		

			𝑣
		

		

			ℎ
		

		

			1
		

		

			(
		

		

			𝑣
		

		

			)
		

		

			+
		

		

			𝜇
		

		

			1
		

		
			
		
		

			2
		

		

			‖
		

		

			‖
		

		
			𝑣
			−
			𝑑
		

		
			𝑛
			−
			1
		

		

			1
		

		
			−
			Λ
		

		

			1
		

		

			𝑢
		

		
			𝑛
			−
			1
		

		

			‖
		

		

			‖
		

		

			2
		

		

			𝐿
		

		

			2
		

		

			,
		

		

			𝑧
		

		

			𝑛
		

		
			=
			a
			r
			g
			m
			i
			n
		

		

			𝑧
		

		

			ℎ
		

		

			2
		

		

			(
		

		

			𝑧
		

		

			)
		

		

			+
		

		

			𝜇
		

		

			2
		

		
			
		
		

			2
		

		

			‖
		

		

			‖
		

		
			𝑧
			−
			𝑑
		

		
			𝑛
			−
			1
		

		

			2
		

		
			−
			Λ
		

		

			2
		

		

			𝑢
		

		
			𝑛
			−
			1
		

		

			‖
		

		

			‖
		

		

			2
		

		

			𝐿
		

		

			2
		

		

			,
		

		

			𝑑
		

		

			𝑛
		

		

			1
		

		
			=
			𝑑
		

		
			𝑛
			−
			1
		

		

			1
		

		
			+
			Λ
		

		

			1
		

		

			𝑢
		

		
			𝑛
			−
			1
		

		
			−
			𝑣
		

		

			𝑛
		

		

			,
		

		

			𝑑
		

		

			𝑛
		

		

			2
		

		
			=
			𝑑
		

		
			𝑛
			−
			1
		

		

			2
		

		
			+
			Λ
		

		

			2
		

		

			𝑢
		

		
			𝑛
			−
			1
		

		
			−
			𝑧
		

		

			𝑛
		

		

			,
		

		

			𝑢
		

		

			𝑛
		

		
			=
			a
			r
			g
			m
			i
			n
		

		

			𝑢
		

		

			𝜃
		

		
			
		
		

			2
		

		

			‖
		

		
			𝑢
			−
			𝑓
		

		

			‖
		

		

			2
		

		

			𝐿
		

		

			2
		

		

			+
		

		

			𝜇
		

		

			1
		

		
			
		
		

			2
		

		

			‖
		

		

			‖
		

		

			Λ
		

		

			1
		

		
			𝑢
			−
			𝑣
		

		

			𝑛
		

		
			+
			𝑑
		

		

			𝑛
		

		

			1
		

		

			‖
		

		

			‖
		

		

			2
		

		

			𝐿
		

		

			2
		

		

			+
		

		

			𝜇
		

		

			2
		

		
			
		
		

			2
		

		

			‖
		

		

			‖
		

		

			Λ
		

		

			2
		

		
			𝑢
			−
			𝑧
		

		

			𝑛
		

		
			+
			𝑑
		

		

			𝑛
		

		

			2
		

		

			‖
		

		

			‖
		

		

			2
		

		

			𝐿
		

		

			2
		

	
with the first order optimality conditions given by 
	
 		
			(
			3
			.
			1
			1
			a
			)
		
 		
			(
			3
			.
			1
			1
			b
			)
		
 		
			(
			3
			.
			1
			1
			c
			)
		
 		
			(
			3
			.
			1
			1
			d
			)
		
 		
			(
			3
			.
			1
			1
			e
			)
		
 	

	
		

			𝑣
		

		

			𝑛
		

		

			=
		

		
			p
			r
			o
			x
		

		
			1
			/
			𝜇
		

		

			1
		

		

			ℎ
		

		

			1
		

		

			
		

		

			Λ
		

		

			1
		

		

			𝑢
		

		
			𝑛
			−
			1
		

		
			+
			𝑑
		

		
			𝑛
			−
			1
		

		

			1
		

		

			
		

		

			,
		

		

			𝑧
		

		

			𝑛
		

		

			=
		

		
			p
			r
			o
			x
		

		
			1
			/
			𝜇
		

		

			1
		

		

			ℎ
		

		

			2
		

		

			
		

		

			Λ
		

		

			2
		

		

			𝑢
		

		
			𝑛
			−
			1
		

		
			+
			𝑑
		

		
			𝑛
			−
			1
		

		

			2
		

		

			
		

		

			,
		

		

			𝑑
		

		

			𝑛
		

		

			1
		

		
			=
			𝑑
		

		
			𝑛
			−
			1
		

		

			1
		

		
			+
			Λ
		

		

			1
		

		

			𝑢
		

		
			𝑛
			−
			1
		

		
			−
			𝑣
		

		

			𝑛
		

		

			,
		

		

			𝑑
		

		

			𝑛
		

		

			2
		

		
			=
			𝑑
		

		
			𝑛
			−
			1
		

		

			2
		

		
			+
			Λ
		

		

			2
		

		

			𝑢
		

		
			𝑛
			−
			1
		

		
			−
			𝑧
		

		

			𝑛
		

		

			,
		

		

			𝜃
		

		

			(
		

		

			𝑢
		

		

			𝑛
		

		
			−
			𝑓
		

		

			)
		

		
			+
			𝜇
		

		

			1
		

		

			Λ
		

		

			∗
		

		

			1
		

		

			
		

		

			Λ
		

		

			1
		

		

			𝑢
		

		

			𝑛
		

		
			−
			𝑣
		

		

			𝑛
		

		
			+
			𝑑
		

		

			𝑛
		

		

			1
		

		

			
		

		
			+
			𝜇
		

		

			2
		

		

			Λ
		

		

			∗
		

		

			2
		

		

			
		

		

			Λ
		

		

			2
		

		

			𝑢
		

		

			𝑛
		

		
			−
			𝑧
		

		

			𝑛
		

		
			+
			𝑑
		

		

			𝑛
		

		

			2
		

		

			
		

		
			=
			0
			.
		

	
If (3.11e) is replaced by 
								
	
 		
			(
			3
			.
			1
			2
			)
		
 	

	
		

			𝜃
		

		

			(
		

		

			𝑢
		

		

			𝑛
		

		
			−
			𝑓
		

		

			)
		

		
			+
			𝜇
		

		

			1
		

		

			Λ
		

		

			∗
		

		

			1
		

		

			
		

		

			Λ
		

		

			1
		

		

			𝑢
		

		
			𝑛
			−
			1
		

		
			−
			𝑣
		

		

			𝑛
		

		
			+
			𝑑
		

		
			𝑛
			−
			1
		

		

			1
		

		

			
		

		
			+
			𝜇
		

		

			2
		

		

			Λ
		

		

			∗
		

		

			2
		

		

			
		

		

			Λ
		

		

			2
		

		

			𝑢
		

		
			𝑛
			−
			1
		

		
			−
			𝑧
		

		

			𝑛
		

		
			+
			𝑑
		

		
			𝑛
			−
			1
		

		

			2
		

		

			
		

		
			=
			0
			,
		

	

							it follows from (3.11a)–(3.11e) and Moreau-Yosida decomposition Theorem  31.5 in [35] that 
								
	
 		
			(
			3
			.
			1
			3
			)
		
 	

	
		

			𝑑
		

		

			𝑛
		

		

			1
		

		

			=
		

		
			p
			r
			o
			x
		

		

			𝜇
		

		

			1
		

		

			ℎ
		

		

			∗
		

		

			1
		

		

			
		

		

			Λ
		

		

			1
		

		

			𝑢
		

		
			𝑛
			−
			1
		

		
			+
			𝑑
		

		
			𝑛
			−
			1
		

		

			1
		

		

			
		

		

			,
		

		

			𝑑
		

		

			𝑛
		

		

			2
		

		

			=
		

		
			p
			r
			o
			x
		

		

			𝜇
		

		

			2
		

		

			ℎ
		

		

			∗
		

		

			2
		

		

			
		

		

			Λ
		

		

			2
		

		

			𝑢
		

		
			𝑛
			−
			1
		

		
			+
			𝑑
		

		
			𝑛
			−
			1
		

		

			2
		

		

			
		

		

			,
		

		

			𝑢
		

		

			𝑛
		

		
			=
			𝑓
			−
		

		

			
		

		

			𝜇
		

		

			1
		

		
			
		
		

			𝜃
		

		

			Λ
		

		

			∗
		

		

			1
		

		

			𝑑
		

		

			𝑛
		

		

			1
		

		

			+
		

		

			𝜇
		

		

			2
		

		
			
		
		

			𝜃
		

		

			Λ
		

		

			∗
		

		

			2
		

		

			𝑑
		

		

			𝑛
		

		

			2
		

		

			
		

		

			.
		

	

							So we propose the following algorithm to solve (3.1).
Algorithm 3.3 (PPM for solving (3.1)). (1) Choose the original values: 
	
		

			𝑑
		

		

			0
		

		

			1
		

	
, 
	
		

			𝑑
		

		

			0
		

		

			2
		

	
, and 
	
		

			𝑢
		

		

			0
		

	
. Set 
	
		

			𝜃
		

	
, 
	
		

			𝜇
		

		

			1
		

	
, 
	
		

			𝜇
		

		

			2
		

		
			>
			0
		

	
 and 
	
		
			𝑛
			=
			1
		

	
. (2) Compute 
	
		
			(
			𝑑
		

		

			𝑛
		

		

			1
		

		
			,
			𝑑
		

		

			𝑛
		

		

			2
		

		
			,
			𝑢
		

		

			𝑛
		

		

			)
		

	
 by (3.13). (3) If the stop criterion is not satisfied, set 
	
		
			𝑛
			∶
			=
			𝑛
			+
			1
		

	
 and go to step 
	
		
			(
			2
			)
		

	
. 
Lemma 3.4.  Set 
	
		

			𝑥
		

		

			1
		

	
, 
	
		

			𝑥
		

		

			2
		

		
			∈
			𝑋
		

	
 and 
	
		

			𝐴
		

	
 is a maximal monotone operator, then the operators 
	
		

			𝐻
		

		
			𝑐
			𝐴
		

	
 and 
	
		

			𝐽
		

		
			𝑐
			𝐴
		

	
 satisfy 
									
	
 		
			(
			3
			.
			1
			4
			)
		
 	

	
		

			1
		

		
			
		
		

			𝑐
		

		

			2
		

		

			‖
		

		

			‖
		

		

			𝐽
		

		
			𝑐
			𝐴
		

		
			(
			𝑥
		

		

			1
		

		
			)
			−
			𝐽
		

		
			𝑐
			𝐴
		

		
			(
			𝑥
		

		

			2
		

		

			)
		

		

			‖
		

		

			‖
		

		

			2
		

		

			𝐿
		

		

			2
		

		

			+
		

		

			‖
		

		

			‖
		

		

			𝐻
		

		
			𝑐
			𝐴
		

		
			(
			𝑥
		

		

			1
		

		
			)
			−
			𝐻
		

		
			𝑐
			𝐴
		

		
			(
			𝑥
		

		

			2
		

		

			)
		

		

			‖
		

		

			‖
		

		

			2
		

		

			𝐿
		

		

			2
		

		

			≤
		

		

			1
		

		
			
		
		

			𝑐
		

		

			2
		

		

			‖
		

		

			‖
		

		

			𝑥
		

		

			1
		

		
			−
			𝑥
		

		

			2
		

		

			‖
		

		

			‖
		

		

			2
		

		

			𝐿
		

		

			2
		

		

			.
		

	

Theorem 3.5.  Assume that 
	
		

			ℎ
		

		

			1
		

		
			(
			𝑥
			)
		

	
 and 
	
		

			ℎ
		

		

			2
		

		
			(
			𝑢
			)
		

	
 are convex and proper. If 
	
		

			𝜇
		

		

			1
		

		
			∈
			(
			0
			,
			1
			/
			𝜃
			‖
			Λ
		

		

			1
		

		

			‖
		

		

			2
		

		

			)
		

	
 and 
	
		

			𝜇
		

		

			2
		

		
			∈
			(
			0
			,
			1
			/
			𝜃
			‖
			Λ
		

		

			2
		

		

			‖
		

		

			2
		

		

			)
		

	
, here 
	
		
			‖
			⋅
			‖
			∶
			=
			m
			a
			x
			{
			‖
			𝐾
			𝑥
			‖
		

		

			𝐿
		

		

			2
		

		
			∶
			𝑥
			∈
			𝑋
		

	
 with 
	
		
			‖
			𝑥
			‖
		

		

			𝐿
		

		

			2
		

		
			≤
			1
			}
		

	
 for a continuous linear operator 
	
		

			𝐾
		

	
, then the sequence 
	
		
			{
			(
			𝑢
		

		

			𝑛
		

		
			,
			𝑑
		

		

			𝑛
		

		

			1
		

		
			,
			𝑑
		

		

			𝑛
		

		

			2
		

		
			)
			}
		

	
 generated by Algorithm 3.3 converges to the limit point 
	
		

			(
		

		
			
		
		

			𝑑
		

		

			1
		

		

			,
		

		
			
		
		

			𝑑
		

		

			2
		

		

			,
		

		
			
		
		
			𝑢
			)
		

	
. Furthermore, the limit point 
	
		
			
		
		

			𝑢
		

	
 is the solution of (1.8). 
4. Some Applications in Image Restoration
 In Section 4.1, we apply the ADMM and the above PPM to the image denoising problem. Here we also compare the proposed hybrid model with the ROF model and the LLT model. Then, based on the proposed hybrid model, we set the PPM as a basic method to solve image deblurring, image inpainting, and image denoising for the multiplicative noise in the last three subsections. For simplicity, we assume that the image region 
	
		

			Ω
		

	
 is squared with the size 
	
		
			𝑀
			×
			𝑀
		

	
 and set 
	
		
			𝑆
			=
			𝑅
		

		
			𝑀
			×
			𝑀
		

	
, 
	
		
			𝑇
			=
			𝑆
			×
			𝑆
		

	
, and 
	
		
			𝑍
			=
			𝑇
			×
			𝑇
		

	
 as in [17]. The usual scalar product can be denoted as 
	
		
			⟨
			𝑝
		

		

			1
		

		
			,
			𝑝
		

		

			2
		

		

			⟩
		

		

			𝑇
		

		
			∶
			=
		

		

			∑
		

		

			𝑀
		

		
			𝑖
			=
			1
		

		

			∑
		

		

			𝑀
		

		
			𝑗
			=
			1
		

		

			𝑝
		

		

			1
		

		
			𝑖
			,
			𝑗
		

		

			𝑝
		

		

			2
		

		
			𝑖
			,
			𝑗
		

	
 for 
	
		

			𝑝
		

		

			1
		

		
			,
			𝑝
		

		

			2
		

		
			∈
			𝑇
		

	
 and 
	
		
			(
			𝐩
			,
			𝐪
			)
		

		

			𝑍
		

		

			=
		

		

			∑
		

		

			𝑀
		

		
			𝑖
			,
			𝑗
			=
			1
		

		
			(
			𝑝
		

		
			1
			1
		

		
			𝑖
			,
			𝑗
		

		

			𝑞
		

		
			1
			1
		

		
			𝑖
			,
			𝑗
		

		
			+
			𝑝
		

		
			1
			2
		

		
			𝑖
			,
			𝑗
		

		

			𝑞
		

		
			1
			2
		

		
			𝑖
			,
			𝑗
		

		
			+
			𝑝
		

		
			2
			1
		

		
			𝑖
			,
			𝑗
		

		

			𝑞
		

		
			2
			1
		

		
			𝑖
			,
			𝑗
		

		
			+
			𝑝
		

		
			2
			2
		

		
			𝑖
			,
			𝑗
		

		

			𝑞
		

		
			2
			2
		

		
			𝑖
			,
			𝑗
		

		

			)
		

	
 for 
	
		
			𝐩
			,
			𝐪
			∈
			𝑍
		

	
. The 
	
		

			𝐿
		

		

			1
		

	
 norm of 
	
		
			𝐩
			=
			(
			𝑝
		

		

			1
		

		
			,
			𝑝
		

		

			2
		

		
			)
			∈
			𝑇
		

	
 is defined by 
	
		
			|
			𝐩
			|
		

		

			ℓ
		

		

			1
		

		

			=
		

		

			
		

		
			
		
		

			𝑝
		

		

			2
		

		

			1
		

		
			+
			𝑝
		

		

			2
		

		

			2
		

	
 and the 
	
		

			ℓ
		

		

			1
		

	
 norm of 
	
		
			𝐪
			=
			(
			𝑞
		

		

			1
		

		
			,
			𝑞
		

		

			2
		

		
			;
			𝑞
		

		

			3
		

		
			,
			𝑞
		

		

			4
		

		
			)
			∈
			𝑍
		

	
 is defined by 
	
		
			|
			𝐪
			|
		

		

			ℓ
		

		

			1
		

		

			=
		

		

			
		

		
			
		
		

			𝑞
		

		

			2
		

		

			1
		

		
			+
			𝑞
		

		

			2
		

		

			2
		

		
			+
			𝑞
		

		

			2
		

		

			3
		

		
			+
			𝑞
		

		

			2
		

		

			4
		

	
. If 
	
		
			𝑢
			∈
			𝑆
		

	
, we use 
	
		

			∇
		

		

			+
		

		
			=
			(
			∇
		

		

			+
		

		

			𝑥
		

		
			,
			∇
		

		

			+
		

		

			𝑦
		

		
			)
			∈
			𝑇
		

	
 to denote the first order forward difference operator with 
						
	
 		
			(
			4
			.
			1
			)
		
 	

	
		

			∇
		

		

			+
		

		

			𝑥
		

		

			𝑢
		

		
			𝑖
			,
			𝑗
		

		

			=
		

		

			
		

		

			𝑢
		

		
			𝑖
			+
			1
			,
			𝑗
		

		
			−
			𝑢
		

		
			𝑖
			,
			𝑗
		

		
			f
			o
			r
		

		
			1
			≤
			𝑖
			<
			𝑁
			,
		

		

			0
		

		
			f
			o
			r
		

		
			𝑖
			=
			𝑁
			,
		

		

			∇
		

		

			+
		

		

			𝑦
		

		

			𝑢
		

		
			𝑖
			,
			𝑗
		

		

			=
		

		

			
		

		

			𝑢
		

		
			𝑖
			,
			𝑗
			+
			1
		

		
			−
			𝑢
		

		
			𝑖
			,
			𝑗
		

		
			f
			o
			r
		

		
			1
			≤
			𝑗
			<
			𝑁
			,
		

		

			0
		

		
			f
			o
			r
		

		
			𝑗
			=
			𝑁
			,
		

	

					and use 
	
		

			∇
		

		

			−
		

		
			=
			(
			∇
		

		

			−
		

		

			𝑥
		

		
			,
			∇
		

		

			−
		

		

			𝑦
		

		

			)
		

	
 to denote the first order backward difference operator with 
						
	
 		
			(
			4
			.
			2
			)
		
 	

	
		

			∇
		

		

			−
		

		

			𝑥
		

		

			𝑢
		

		
			𝑖
			,
			𝑗
		

		

			=
		

		

			⎧
		

		

			⎪
		

		

			⎨
		

		

			⎪
		

		

			⎩
		

		
			−
			𝑢
		

		
			𝑖
			,
			𝑗
		

		

			,
		

		
			f
			o
			r
		

		
			𝑖
			=
			1
			,
		

		

			𝑢
		

		
			𝑖
			,
			𝑗
		

		
			−
			𝑢
		

		
			𝑖
			−
			1
			,
			𝑗
		

		
			f
			o
			r
		

		
			1
			<
			𝑖
			<
			𝑁
			,
		

		

			𝑢
		

		

			(
		

		
			𝑖
			,
			𝑗
		

		

			)
		

		
			f
			o
			r
		

		
			𝑖
			=
			𝑁
			,
		

		

			∇
		

		

			−
		

		

			𝑦
		

		

			𝑢
		

		
			𝑖
			,
			𝑗
		

		

			=
		

		

			⎧
		

		

			⎪
		

		

			⎨
		

		

			⎪
		

		

			⎩
		

		
			−
			𝑢
		

		
			𝑖
			,
			𝑗
		

		
			f
			o
			r
		

		
			𝑗
			=
			1
			,
		

		

			𝑢
		

		
			𝑖
			,
			𝑗
		

		
			−
			𝑢
		

		
			𝑖
			,
			𝑗
			−
			1
		

		
			f
			o
			r
		

		
			1
			<
			𝑗
			<
			𝑁
			,
		

		

			𝑢
		

		
			𝑖
			,
			𝑗
		

		
			f
			o
			r
		

		
			𝑗
			=
			𝑁
			,
		

	

					for 
	
		
			𝑖
			,
			𝑗
			=
			1
			,
			…
			,
			𝑁
		

	
. Based on the first order difference operators, we can give the second order difference operator as follows: 
						
	
 		
			(
			4
			.
			3
			)
		
 	

	
		

			∇
		

		

			2
		

		

			𝑢
		

		
			𝑖
			,
			𝑗
		

		

			=
		

		

			⎛
		

		

			⎜
		

		

			⎜
		

		

			⎝
		

		

			∇
		

		

			−
		

		

			𝑥
		

		

			
		

		

			∇
		

		

			+
		

		

			𝑥
		

		

			𝑢
		

		
			𝑖
			,
			𝑗
		

		

			
		

		

			∇
		

		

			+
		

		

			𝑥
		

		

			
		

		

			∇
		

		

			+
		

		

			𝑦
		

		

			𝑢
		

		
			𝑖
			,
			𝑗
		

		

			
		

		

			∇
		

		

			−
		

		

			𝑦
		

		

			
		

		

			∇
		

		

			−
		

		

			𝑥
		

		

			𝑢
		

		
			𝑖
			,
			𝑗
		

		

			
		

		

			∇
		

		

			−
		

		

			𝑦
		

		

			
		

		

			∇
		

		

			+
		

		

			𝑦
		

		

			𝑢
		

		
			𝑖
			,
			𝑗
		

		

			
		

		

			⎞
		

		

			⎟
		

		

			⎟
		

		

			⎠
		

		
			∈
			𝑍
			.
		

	

					Using the same approach, we can define some other second order operators such as 
	
		

			∇
		

		

			+
		

		

			𝑥
		

		
			(
			∇
		

		

			−
		

		

			𝑥
		

		

			𝑢
		

		
			𝑖
			,
			𝑗
		

		

			)
		

	
, 
	
		

			∇
		

		

			−
		

		

			𝑥
		

		
			(
			∇
		

		

			−
		

		

			𝑦
		

		

			𝑢
		

		
			𝑖
			,
			𝑗
		

		

			)
		

	
, 
	
		

			∇
		

		

			+
		

		

			𝑦
		

		
			(
			∇
		

		

			+
		

		

			𝑥
		

		

			𝑢
		

		
			𝑖
			,
			𝑗
		

		

			)
		

	
, and 
	
		

			∇
		

		

			+
		

		

			𝑦
		

		
			(
			∇
		

		

			−
		

		

			𝑦
		

		

			𝑢
		

		
			𝑖
			,
			𝑗
		

		

			)
		

	
. Then we can give the first order and the second divergence operators as 
						
	
 		
			(
			4
			.
			4
			)
		
 	

	
		
			d
			i
			v
			𝑢
		

		
			𝑖
			,
			𝑗
		

		
			=
			∇
		

		

			−
		

		

			𝑥
		

		

			𝑢
		

		
			𝑖
			,
			𝑗
		

		
			+
			∇
		

		

			−
		

		

			𝑦
		

		

			𝑢
		

		
			𝑖
			,
			𝑗
		

		

			,
		

		
			d
			i
			v
		

		

			2
		

		

			𝑢
		

		
			𝑖
			,
			𝑗
		

		
			=
			∇
		

		

			+
		

		

			𝑥
		

		

			
		

		

			∇
		

		

			−
		

		

			𝑥
		

		

			𝑢
		

		
			𝑖
			,
			𝑗
		

		

			
		

		
			+
			∇
		

		

			−
		

		

			𝑥
		

		

			
		

		

			∇
		

		

			−
		

		

			𝑦
		

		

			𝑢
		

		
			𝑖
			,
			𝑗
		

		

			
		

		
			+
			∇
		

		

			+
		

		

			𝑦
		

		

			
		

		

			∇
		

		

			+
		

		

			𝑥
		

		

			𝑢
		

		
			𝑖
			,
			𝑗
		

		

			
		

		
			+
			∇
		

		

			+
		

		

			𝑦
		

		

			
		

		

			∇
		

		

			−
		

		

			𝑦
		

		

			𝑢
		

		
			𝑖
			,
			𝑗
		

		

			
		

		

			.
		

	

					Furthermore, if we set 
	
		
			𝐩
			∈
			𝑇
		

	
 and 
	
		
			𝐪
			∈
			𝑍
		

	
, it is easy to deduce that 
						
	
 		
			(
			4
			.
			5
			)
		
 	

	
		

			‖
		

		
			d
			i
			v
			𝑝
		

		

			‖
		

		

			2
		

		

			2
		

		
			≤
			8
		

		

			‖
		

		

			𝐩
		

		

			‖
		

		

			2
		

		

			𝑇
		

		

			,
		

		

			‖
		

		

			‖
		

		
			d
			i
			v
		

		

			2
		

		

			𝑞
		

		

			‖
		

		

			‖
		

		

			2
		

		

			2
		

		
			≤
			6
			4
		

		

			‖
		

		

			𝐪
		

		

			‖
		

		

			2
		

		

			𝑍
		

		

			.
		

	

Remark 4.1. The related examples in the following subsections are performed using Windows 7 and Matlab 2009(a) on a desktop with Intel Core i5 processor at 2.4 GHz and 4 GB memory. All of the parameters for related models are chosen by trial and empirically which can yield better restored images. On the other hand, we should notice that it is not very expensive when we use the ADMM and the PPM to get 
	
		

			𝑢
		

		

			𝑛
		

	
, but the total computational effort of one outer iteration requiring many inner steps can be very huge. In order to reduce the computational effort and keep fair comparison of these two methods, we so simplify the inner-outer iterative framework by performing only one-step in inner iteration. It is obvious that these sets are very efficient from the following numerical experiences. 
4.1. Image Denoising for the Additive Noise
 In this subsection, we consider to use the ADMM and the PPM to solve (1.7) for restoring the additive noisy image. If we set 
	
		

			Λ
		

		

			1
		

		
			=
			∇
		

	
 and 
	
		

			Λ
		

		

			2
		

		
			=
			∇
		

		

			2
		

	
, then the algorithms are proposed as follows. 
Algorithm 4.2 (ADMM to solve (1.7)). (1) Choose the original 
	
		

			𝑑
		

		

			0
		

		

			1
		

		
			=
			𝑣
		

		

			0
		

		
			=
			𝟎
			∈
			𝑇
		

	
 and 
	
		

			𝑑
		

		

			0
		

		

			2
		

		
			=
			𝑧
		

		

			0
		

		
			=
			𝟎
			∈
			𝑍
		

	
. Set 
	
		

			𝜃
		

	
, 
	
		

			𝜇
		

		

			1
		

	
, 
	
		

			𝜇
		

		

			2
		

		
			>
			0
		

	
 and 
	
		
			𝑛
			=
			1
		

	
. (2) Compute 
	
		
			(
			𝑢
		

		

			𝑛
		

		
			,
			𝑣
		

		

			𝑛
		

		
			,
			𝑧
		

		

			𝑛
		

		
			,
			𝑑
		

		

			𝑛
		

		

			1
		

		
			,
			𝑑
		

		

			𝑛
		

		

			2
		

		

			)
		

	
 by 
	
 		
			(
			4
			.
			6
			a
			)
		
 		
			(
			4
			.
			6
			b
			)
		
 		
			(
			4
			.
			6
			c
			)
		
 		
			(
			4
			.
			6
			d
			)
		
 		
			(
			4
			.
			6
			e
			)
		
 	

	
		

			
		

		
			𝜃
			𝐼
			−
			𝜇
		

		

			1
		

		
			Δ
			+
			𝜇
		

		

			2
		

		

			Δ
		

		

			2
		

		

			
		

		

			𝑢
		

		

			𝑛
		

		
			=
			𝜃
			𝑓
			+
			𝜇
		

		

			1
		

		
			d
			i
			v
		

		

			
		

		

			𝑣
		

		
			𝑛
			−
			1
		

		
			−
			𝑑
		

		
			𝑛
			−
			1
		

		

			1
		

		

			
		

		
			−
			𝜇
		

		

			2
		

		
			d
			i
			v
		

		

			2
		

		

			
		

		

			𝑧
		

		
			𝑛
			−
			1
		

		
			−
			𝑑
		

		
			𝑛
			−
			1
		

		

			2
		

		

			
		

		

			𝑣
		

		

			𝑛
		

		

			=
		

		
			∇
			𝑢
		

		

			𝑛
		

		
			+
			𝑑
		

		
			𝑛
			−
			1
		

		

			1
		

		
			
		
		

			|
		

		

			|
		

		
			∇
			𝑢
		

		

			𝑛
		

		
			+
			𝑑
		

		
			𝑛
			−
			1
		

		

			1
		

		

			|
		

		

			|
		

		

			ℓ
		

		

			1
		

		
			⋅
			m
			a
			x
		

		

			
		

		

			|
		

		

			|
		

		
			∇
			𝑢
		

		

			𝑛
		

		
			+
			𝑑
		

		
			𝑛
			−
			1
		

		

			1
		

		

			|
		

		

			|
		

		

			ℓ
		

		

			1
		

		

			−
		

		

			(
		

		
			1
			−
			𝑔
		

		

			(
		

		

			𝑥
		

		
			)
			)
		

		
			
		
		

			𝜇
		

		

			1
		

		
			,
			0
		

		

			
		

		

			,
		

		

			𝑧
		

		

			𝑛
		

		

			=
		

		

			∇
		

		

			2
		

		

			𝑢
		

		

			𝑛
		

		
			+
			𝑑
		

		
			𝑛
			−
			1
		

		

			2
		

		
			
		
		

			|
		

		

			|
		

		

			∇
		

		

			2
		

		

			𝑢
		

		

			𝑛
		

		
			+
			𝑑
		

		
			𝑛
			−
			1
		

		

			2
		

		

			|
		

		

			|
		

		

			ℓ
		

		

			1
		

		
			⋅
			m
			a
			x
		

		

			
		

		

			|
		

		

			|
		

		

			∇
		

		

			2
		

		

			𝑢
		

		

			𝑛
		

		
			+
			𝑑
		

		
			𝑛
			−
			1
		

		

			2
		

		

			|
		

		

			|
		

		

			ℓ
		

		

			1
		

		

			−
		

		

			𝑔
		

		

			(
		

		

			𝑥
		

		

			)
		

		
			
		
		

			𝜇
		

		

			2
		

		
			,
			0
		

		

			
		

		

			,
		

		

			𝑑
		

		

			𝑛
		

		

			1
		

		
			=
			𝑑
		

		
			𝑛
			−
			1
		

		

			1
		

		
			+
			∇
			𝑢
		

		

			𝑛
		

		
			−
			𝑣
		

		

			𝑛
		

		

			,
		

		

			𝑑
		

		

			𝑛
		

		

			2
		

		
			=
			𝑑
		

		
			𝑛
			−
			1
		

		

			2
		

		
			+
			∇
		

		

			2
		

		

			𝑢
		

		

			𝑛
		

		
			−
			𝑧
		

		

			𝑛
		

		

			,
		

	
where 
	
		
			Δ
			=
			d
			i
			v
			∘
			∇
		

	
 and 
	
		

			Δ
		

		

			2
		

		

			=
		

		
			d
			i
			v
		

		

			2
		

		
			∘
			∇
		

		

			2
		

	
. (3) If the stop criterion is not satisfied, set 
	
		
			𝑛
			∶
			=
			𝑛
			+
			1
		

	
 and go to step 
	
		
			(
			2
			)
		

	
. 
Remark 4.3. For the first subproblem (4.6a), we can use the Gauss-Seidel method as shown in [25] to get the solution. However, in this paper, we use the following strategy: 
									
	
 		
			(
			4
			.
			7
			)
		
 	

	
		

			𝑢
		

		

			𝑛
		

		
			𝑖
			,
			𝑗
		

		

			=
		

		
			𝜃
			𝑓
		

		
			𝑖
			,
			𝑗
		

		
			+
			𝜇
		

		

			1
		

		
			d
			i
			v
		

		

			
		

		

			𝑣
		

		
			𝑛
			−
			1
		

		
			𝑖
			,
			𝑗
		

		
			−
			𝑑
		

		
			𝑛
			−
			1
		

		
			1
			,
			𝑖
			,
			𝑗
		

		

			
		

		
			+
			4
			𝜇
		

		

			1
		

		

			𝑢
		

		
			𝑛
			−
			1
		

		
			𝑖
			,
			𝑗
		

		
			−
			𝜇
		

		

			2
		

		
			d
			i
			v
		

		

			2
		

		

			
		

		

			𝑧
		

		
			𝑛
			−
			1
		

		
			𝑖
			,
			𝑗
		

		
			−
			𝑑
		

		
			𝑛
			−
			1
		

		
			2
			,
			𝑖
			,
			𝑗
		

		

			
		

		
			+
			2
			8
			𝜇
		

		

			2
		

		

			𝑢
		

		
			𝑛
			−
			1
		

		
			𝑖
			,
			𝑗
		

		
			
		
		
			𝜃
			+
			4
			𝜇
		

		

			1
		

		
			+
			2
			8
			𝜇
		

		

			2
		

		

			,
		

	

								where some information of operators 
	
		

			Δ
		

	
 and 
	
		

			Δ
		

		

			2
		

	
 related to 
	
		

			𝑢
		

	
 is used. The formulas (4.6b) and (4.6c) of Algorithm 4.2 can be easily deduced from 
									
	
 		
			(
			4
			.
			8
			)
		
 	

	
		
			m
			i
			n
		

		

			𝑣
		

		
			|
			(
		

		
			1
			−
			𝑔
		

		

			)
		

		

			𝑣
		

		

			|
		

		

			ℓ
		

		

			1
		

		

			+
		

		

			𝜇
		

		

			1
		

		
			
		
		

			2
		

		

			‖
		

		

			‖
		

		
			𝑣
			−
			∇
			𝑢
		

		

			𝑛
		

		
			−
			𝑑
		

		
			𝑛
			−
			1
		

		

			1
		

		

			‖
		

		

			‖
		

		

			2
		

		

			2
		

		

			,
		

		
			m
			i
			n
		

		

			𝑧
		

		

			|
		

		
			𝑔
			𝑣
		

		

			|
		

		

			ℓ
		

		

			1
		

		

			+
		

		

			𝜇
		

		

			2
		

		
			
		
		

			2
		

		

			‖
		

		

			‖
		

		
			𝑧
			−
			∇
		

		

			2
		

		

			𝑢
		

		

			𝑛
		

		
			−
			𝑑
		

		
			𝑛
			−
			1
		

		

			2
		

		

			‖
		

		

			‖
		

		

			2
		

		

			2
		

		

			.
		

	

								Furthermore, following form Theorem 3.2, we can also deduce that the sequence 
	
		
			{
			𝑢
		

		

			𝑛
		

		

			}
		

	
 generated by Algorithm 4.2 converges to the solution of (1.7). 
Algorithm 4.4 (PPM to solve (1.7)). (1) Choose the original 
	
		

			𝑑
		

		

			0
		

		

			1
		

		
			=
			𝟎
			∈
			𝑆
		

	
, 
	
		

			𝑑
		

		

			0
		

		

			2
		

		
			=
			𝟎
			∈
			𝑍
		

	
 and 
	
		

			𝑢
		

		

			0
		

		
			=
			𝑓
		

	
. Set 
	
		

			𝜃
		

	
, 
	
		

			𝜇
		

		

			1
		

	
, 
	
		

			𝜇
		

		

			2
		

		
			>
			0
		

	
 and 
	
		
			𝑛
			=
			1
		

	
. (2) Compute 
	
		
			(
			𝑑
		

		

			𝑛
		

		

			1
		

		
			,
			𝑑
		

		

			𝑛
		

		

			2
		

		
			,
			𝑢
		

		

			𝑛
		

		

			)
		

	
 by 
									
	
 		
			(
			4
			.
			9
			)
		
 	

	
		

			𝑑
		

		

			𝑛
		

		

			1
		

		

			=
		

		
			∇
			𝑢
		

		
			𝑛
			−
			1
		

		
			+
			𝑑
		

		
			𝑛
			−
			1
		

		

			1
		

		
			
		
		

			|
		

		

			|
		

		
			∇
			𝑢
		

		
			𝑛
			−
			1
		

		
			+
			𝑑
		

		
			𝑛
			−
			1
		

		

			1
		

		

			|
		

		

			|
		

		

			ℓ
		

		

			1
		

		
			⋅
			m
			i
			n
		

		

			
		

		

			|
		

		

			|
		

		
			∇
			𝑢
		

		
			𝑛
			−
			1
		

		
			+
			𝑑
		

		
			𝑛
			−
			1
		

		

			1
		

		

			|
		

		

			|
		

		

			ℓ
		

		

			1
		

		
			,
			1
		

		

			
		

		

			,
		

		

			𝑑
		

		

			𝑛
		

		

			2
		

		

			=
		

		

			∇
		

		

			2
		

		

			𝑢
		

		
			𝑛
			−
			1
		

		
			+
			𝑑
		

		
			𝑛
			−
			1
		

		

			2
		

		
			
		
		

			|
		

		

			|
		

		

			∇
		

		

			2
		

		

			𝑢
		

		
			𝑛
			−
			1
		

		
			+
			𝑑
		

		
			𝑛
			−
			1
		

		

			2
		

		

			|
		

		

			|
		

		

			ℓ
		

		

			1
		

		
			⋅
			m
			i
			n
		

		

			
		

		

			|
		

		

			|
		

		

			∇
		

		

			2
		

		

			𝑢
		

		
			𝑛
			−
			1
		

		
			+
			𝑑
		

		
			𝑛
			−
			1
		

		

			2
		

		

			|
		

		

			|
		

		

			ℓ
		

		

			1
		

		
			,
			1
		

		

			
		

		

			,
		

		

			𝑢
		

		

			𝑛
		

		
			=
			𝑓
			−
		

		

			𝜇
		

		

			1
		

		
			
		
		

			𝜃
		

		

			(
		

		
			1
			−
			𝑔
		

		

			)
		

		
			d
			i
			v
			𝑑
		

		

			𝑛
		

		

			1
		

		

			+
		

		

			𝜇
		

		

			2
		

		
			
		
		

			𝜃
		

		

			𝑔
		

		
			d
			i
			v
		

		

			2
		

		

			𝑑
		

		

			𝑛
		

		

			2
		

		

			.
		

	
(3) If the stop criterion is not satisfied, set 
	
		
			𝑛
			∶
			=
			𝑛
			+
			1
		

	
 and go to step 
	
		
			(
			2
			)
		

	
. 



For Algorithm 4.4, based on the relations in (4.5) and Theorem 3.5, we have the following result. 
Theorem 4.5.  If 
	
		

			𝜇
		

		

			1
		

		
			∈
			(
			0
			,
			1
			/
			8
			𝜃
			)
		

	
 and 
	
		

			𝜇
		

		

			2
		

		
			∈
			(
			0
			,
			1
			/
			6
			4
			𝜃
			)
		

	
, then the sequence 
	
		
			{
			𝑢
		

		

			𝑛
		

		

			}
		

	
 generated by Algorithm 4.4 converges to the solution of (1.7). 
Remark 4.6. For the above two algorithms, we can also set 
	
		

			𝑔
		

	
 as a constant between 0 and 1. In fact, it is easy to find that the algorithms correspond to solving the ROF model or the LLT model, respectively, when 
	
		
			𝑔
			=
			0
		

	
 or 
	
		
			𝑔
			=
			1
		

	
. At this time, the iteration strategy can be simplified as 
									
	
 		
			(
			4
			.
			1
			0
			)
		
 	

	
		

			𝑢
		

		

			𝑛
		

		
			𝑖
			,
			𝑗
		

		

			=
		

		
			𝜃
			𝑓
		

		
			𝑖
			,
			𝑗
		

		
			+
			𝜇
		

		

			1
		

		
			d
			i
			v
		

		

			
		

		

			𝑣
		

		
			𝑛
			−
			1
		

		
			𝑖
			,
			𝑗
		

		
			−
			𝑑
		

		
			𝑛
			−
			1
		

		
			1
			,
			𝑖
			,
			𝑗
		

		

			
		

		
			+
			4
			𝜇
		

		

			1
		

		

			𝑢
		

		
			𝑛
			−
			1
		

		
			𝑖
			,
			𝑗
		

		
			
		
		
			𝜃
			+
			4
			𝜇
		

		

			1
		

		

			,
		

		

			𝑢
		

		

			𝑛
		

		
			𝑖
			,
			𝑗
		

		

			=
		

		
			𝜃
			𝑓
		

		
			𝑖
			,
			𝑗
		

		
			−
			𝜇
		

		

			2
		

		
			d
			i
			v
		

		

			2
		

		

			
		

		

			𝑧
		

		
			𝑛
			−
			1
		

		
			𝑖
			,
			𝑗
		

		
			−
			𝑑
		

		
			𝑛
			−
			1
		

		
			2
			,
			𝑖
			,
			𝑗
		

		

			
		

		
			+
			2
			8
			𝜇
		

		

			2
		

		

			𝑢
		

		
			𝑛
			−
			1
		

		
			𝑖
			,
			𝑗
		

		
			
		
		
			𝜃
			+
			2
			8
			𝜇
		

		

			2
		

	

								for these two models, respectively. Furthermore, when 
	
		
			𝑔
			∈
			(
			0
			,
			1
			)
		

	
, these two algorithms correspond to solve the model which is the convex combination of the ROF model and the LLT model. 
Example 4.7. In this example, we compare the ADMM with the PPM for solving the ROF model (1.4), the LLT model (1.6), and the hybrid model (1.7). The original images with three different sizes shown in Figure 1 are added to the Gaussian white noise with the standard deviation 
	
		
			𝜎
			=
			1
			5
			.
			3
		

	
. Iterations were terminated when the stop conditions 
	
		
			‖
			𝑢
		

		
			𝑛
			+
			1
		

		
			−
			𝑢
		

		

			𝑛
		

		

			‖
		

		

			2
		

		
			/
			‖
			𝑢
		

		

			𝑛
		

		

			‖
		

		

			2
		

		
			≤
			𝜀
		

	
 are met. It is easy to find the related results from Table 1 that the PPM is faster than the ADMM. Especially, the average CPU time of the PPM compared with that of the ADMM can save about 50% for the ROF model and the LLT model. It saves about 40% for the hybrid model. 
Table 1: The related results in Example 4.7.
	

	
	
		
			𝑔
			=
			0
		

	
	The ROF model
	 	Stopping	ADMM 	PPM 
	Size	Conditions 
	
		

			𝜀
		

	
	Time (s)	Ite.	SNR 	Time (s)	Ite.	SNR 
	

	
	
		
			1
			2
			8
			×
			1
			2
			8
		

	
	
	
		
			1
			.
			0
			×
			1
			0
		

		
			−
			4
		

	
	0.2184	86	24.7949	0.1248	83	24.7043
	
	
		
			2
			5
			6
			×
			2
			5
			6
		

	
	
	
		
			1
			.
			0
			×
			1
			0
		

		
			−
			4
		

	
	0.9204	77	16.2934	0.2652	38	16.3540
	
	
		
			5
			1
			2
			×
			5
			1
			2
		

	
	
	
		
			1
			.
			0
			×
			1
			0
		

		
			−
			4
		

	
	4.3368	64	15.7146	1.9656	53	15.9353
	

	
	
		
			𝑔
			=
			1
		

	
	The LLT model 
	 	Stopping	ADMM 	PPM 
	Size	Conditions 
	
		

			𝜀
		

	
	Time (s) 	Ite. 	SNR 	Time (s) 	 Ite. 	SNR 
	

	
	
		
			1
			2
			8
			×
			1
			2
			8
		

	
	
	
		
			1
			.
			0
			×
			1
			0
		

		
			−
			4
		

	
	0.4368	60	24.5688	0.3432	80	 25.0287
	
	
		
			2
			5
			6
			×
			2
			5
			6
		

	
	
	
		
			1
			.
			0
			×
			1
			0
		

		
			−
			4
		

	
	1.7004	55	16.9065	0.9360	53	16.9083
	
	
		
			5
			1
			2
			×
			5
			1
			2
		

	
	
	
		
			1
			.
			0
			×
			1
			0
		

		
			−
			4
		

	
	15.4441	55	15.9432	7.2384	50	15.9512
	

	
	
		
			𝑔
			∈
			(
			0
			,
			1
			)
		

	
	The hybrid model 
	 	Stopping	ADMM 	PPM 
	Size	Conditions 
	
		

			𝜀
		

	
	Time (s)	Ite.	SNR 	Time (s)	Ite. 	SNR 
	

	
	
		
			1
			2
			8
			×
			1
			2
			8
		

	
	
	
		
			1
			.
			0
			×
			1
			0
		

		
			−
			4
		

	
	0.7176	69	25.7224	0.5304	70	25.4982
	
	
		
			2
			5
			6
			×
			2
			5
			6
		

	
	
	
		
			1
			.
			0
			×
			1
			0
		

		
			−
			4
		

	
	2.5584	55	16.9699	1.4664	52	16.9701
	
	
		
			5
			1
			2
			×
			5
			1
			2
		

	
	
	
		
			1
			.
			0
			×
			1
			0
		

		
			−
			4
		

	
	19.6561	56	15.9503	9.3445	50	15.9512
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(d)

























	
	


	
	
	


	
	
	


	
	
	


	
	
	


	
	


	
	
	


	
	
	


	
	
	


	
	
	


	
		
		
		
	
	
		
	
	
		
		
		
		
		
		
		
	

(e)













































	
		
		
		
	
	
		
	
	
		
		
		
		
		
		
	


	
	


	
	
	


	
	
	


	
	
	


	
	
	


	
	


	
	
	


	
	
	


	
	
	


	
	
	

(f)
Figure 1: The original images and the noisy images with three different sizes in Example 4.7.


Example 4.8.  In this example, the noisy image is added to the Gaussian white noisy with the standard deviation 
	
		
			𝜎
			=
			1
			2
		

	
. The algorithms will be stopped after 100 iterations. We compare the results generated by the ROF model, the LLT model, the convex combination of the ROF model and the hybrid model. As we can see from Table 2, the hybrid model get the lowest MSE and the highest SNR; these imply that the hybrid model can give the best restored image. On the other hand, it is easy to find that the ROF model makes staircasing effect appear and the LLT model leads to edge blurring. In fact, they are based on the fact that the restored model by the ROF model is piecewise constant on large areas and the LLT model as a higher model damps oscillations much faster in the region of edges. For the convex combined model and the hybrid model, they can efficiently suppress these two drawbacks. Furthermore, the hybrid model is more efficient than the convex combined model, because the hybrid model uses the edge detector function which can efficiently coordinate edge information. It should be noticed that here we use the Chambolle’s strategy [17] to solve the convex combined model so that it is slower than the strategy by using the PPM to solve the hybrid model. To focus on these facts, we present some zoomed-in local results and select a slice of the images which meets contours and the smooth regions shown in Figures 2 and 3. 
Table 2: The related data in Example 4.8 (here R.P. is the regularization parameter).
	

	Model	R.P.	Time (s)	SNR 	MSE
	

	ROF	4.5	0.8268	17.7677	44.0400
	LLT	3.0	2.0904	17.9998	42.7826
	Convex	3.5	2.6832	18.2399	39.7756
	Hybrid	4.5	2.5272	18.3694	39.1447
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(b)
Figure 2: The original and the noisy image in Example 4.8.
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(d)
Figure 3: The related restored images in Example 4.8.


4.2. Other Applications
 In this subsection, we extend the hybrid model to other classes of restoration problems. As we can see in Section 4.1, the hybrid model has some advantages compared with the ROF model and the LLT model. Since the PPM is faster and more efficient than the ADMM, we only employ the PPM to solve the related image restoration model. Now we first consider the following iteration strategy: 
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