Research Article

On Some Lacunary Almost Convergent Double Sequence Spaces and Banach Limits

Metin Başarır and Şükran Konca

Department of Mathematics, Sakarya University, 54187 Sakarya, Turkey

Correspondence should be addressed to Metin Başarır, basarir@sakarya.edu.tr

Received 13 June 2012; Accepted 9 July 2012

Academic Editor: Chaitan Gupta

Copyright © 2012 M. Başarır and Ş. Konca. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The object of this paper is to introduce some new sequence spaces related with the concept of lacunary strong almost convergence for double sequences and also to characterize these spaces through sublinear functionals that both dominate and generate Banach limits and to establish some inclusion relations.

1. Introduction and Preliminaries

Let ω_2 be the set of all real or complex double sequences. We mean the convergence in the Pringsheim sense, that is, a double sequence $x = (x_{i,j})_{i,j=0}^\infty$ has a Pringsheim limit λ (denoted by $P - \lim x = \lambda$) provided that given $\varepsilon > 0$ and there exists $N \in \mathbb{N}$ such that $|x_{i,j} - \lambda| < \varepsilon$ whenever $i,j \geq N$ [1]. We denote by c_2, the space of P-convergent sequences. A double sequence $x = (x_{i,j})$ is bounded if $\|x\| = \sup_{i,j \geq 0} |x_{i,j}| < \infty$. Let l_2^∞ and c_2^∞ be the set of all real or complex bounded double sequences and the set of bounded and convergent double sequences, respectively. Moricz and Rhoades [2] defined the almost convergence of double sequences that $x = (x_{i,j})$ is said to be almost convergent to a number λ if

$$\lim_{p,q \to \infty} \sup_{m,n \geq 0} \left| \frac{1}{(p+1)(q+1)} \sum_{i=m}^{m+p} \sum_{j=n}^{n+q} x_{i,j} - \lambda \right| = 0, \quad (1.1)$$

that is, the average value of $(x_{i,j})$ taken over any rectangle

$$D = \{(i,j) : m \leq i \leq m + p, \ n \leq j \leq n + q\}, \quad (1.2)$$
tends to \(\lambda \) as both \(p \) and \(q \) tend to \(\infty \) and this convergence is uniform in \(m \) and \(n \). We denote the space of almost convergent double sequences by \(f_2 \), as

\[
f_2 = \left\{ x = (x_{i,j}) : \lim_{k,l \to \infty} t_{klpq}(x) - \lambda = 0, \text{ uniformly in } p, q \right\},
\]

where

\[
t_{klpq}(x) = \frac{1}{(k+1)(l+1)} \sum_{i=p}^{p+k} \sum_{j=q}^{q+l} x_{i,j}.
\]

The notion of almost convergence for single sequences was introduced by Lorentz [3] and for double sequences by Moricz and Rhoades [2] and some further studies are in [4–14]. A double sequence \(x \) is called strongly almost convergent to a number \(\lambda \) if

\[
\lim_{k,l \to \infty} \frac{1}{(k+1)(l+1)} \sum_{i=p}^{p+k} \sum_{j=q}^{q+l} |x_{i,j} - \lambda e| = 0, \text{ uniformly in } p, q.
\]

By \([f_2] \), we denote the space of all strongly almost convergent double sequences. It is easy to see that the inclusions \(c_0^2 \subset [f_2] \subset f_2 \subset l^2 \) strictly hold. As in the case of single sequences, every almost convergent double sequence is bounded. But a convergent double sequence need not be bounded. Thus, a convergent double sequence need not be almost convergent. However every bounded convergent double sequence is almost convergent.

The notion of strong almost convergence for single sequences has been introduced by Maddox [15, 16] and for double sequences by Başarır [17].

A linear functional \(L \) on \(l^2 \) is said to be Banach limit if it has the following properties [7],

1. \(L(x) \geq 0 \) if \(x \geq 0 \) (i.e., \(x_{i,j} \geq 0 \) for all \(i, j \)),
2. \(L(e) = 1 \), where \(e = (e_{i,j}) \) with \(e_{i,j} = 1 \) for all \(i, j \) and
3. \(L(x) = L(S_{10}x) = L(S_{01}x) = L(S_{11}x) \) where the shift operators \(S_{10}x, S_{01}x, S_{11}x \) are defined by \(S_{10}x = (x_{i+1,j}) \), \(S_{01}x = (x_{i,j+1}) \), \(S_{11}x = (x_{i+1,j+1}) \).

Let \(B_2 \) be the set of all Banach limits on \(l^2 \). A double sequence \(x = (x_{i,j}) \) is said to be almost convergent to a number \(\lambda \) if \(L(x) = \lambda \) for all \(L \in B_2 \). If \(\varphi \) is any sublinear functional on \(l^2 \), then we write \(\{l^2, \varphi\} \) to denote the set of all linear functionals \(F \) on \(l^2 \), such that \(F \leq \varphi \), that is, \(F(x) \leq \varphi(x) \), \(\forall x \in l^2 \). A sublinear functional \(\varphi \) is said to generate Banach limits if \(F \in \{l^2, \varphi\} \) implies that \(F \) is a Banach limit; \(\varphi \) is said to dominate Banach limits if \(F \) is a Banach limit implies that \(F \in \{l^2, \varphi\} \). Then if \(\varphi \) both generates and dominates Banach limits, then \(\{l^2, \varphi\} \) is the set of all Banach limits.

Using the notations for single sequences, we present the notations for double-lacunary sequences that can be seen in [10]. The double sequence \(\theta_{r,s} = \{(k_r, l_s)\} \) is called a double-lacunary if there exist two increasing sequences of nonnegative integers such that \(k_0 = 0, \ h_r = k_r - k_{r-1} \to \infty \) as \(r \to \infty \) and \(l_0 = 0, \ l_s = l_s - l_{s-1} \to \infty \) as \(s \to \infty \). Let \(k_{r,s} = k_r l_s, \ h_{r,s} = h_r l_s, \ \theta_{r,s} \) is determined by \(I_{r,s} = \{(i, j) : k_{r-1} < i < k_r \text{ and } l_{s-1} < j \leq l_s\} \). Also \(\bar{I}_{r,s} = \{(i, j) : k_{r-1} < i < k_r \text{ or } l_{s-1} < j < l_s\} \) and \(\theta = \bar{\theta}_{r,s} \) is determined by \(\bar{I}_{r,s} = \{(i, j) : k_{r-1} < i < k_r \text{ or } l_{s-1} < j < l_s\} \).
\(I_1 = \{ (i, j) : \mathbb{N} \leq j \leq \mathbb{N} \} \) and \(I^2 = \{ (i, j) : l_{r-1} \leq j \leq l_{r} \} \) with \(q_r = k_r/k_{r-1}, \ q_s = l_s/l_{s-1} \) and \(q_{rs} = q_rq_s. \)

Das and Mishra [18] introduced the space of lacunary almost convergent sequences by combining the space of lacunary convergent sequences and the space of almost convergent sequences. Savas and Patterson [10] extended the notions of lacunary almost convergence and lacunary strongly almost convergence to double-lacunary \(\mathcal{P} \)-convergence and double-lacunary strongly almost \(\mathcal{P} \)-convergence. They also established multidimensional analogues of Das and Patel’s results.

We will use the following definition which may be called convergence in Pringsheim’s sense with a bound:

\[
(x_{i,j} - L) = O(1), \quad (i, j \to \infty),
\]

and also we will use the following definition which may be called convergence in Pringsheim’s sense as follows:

\[
(x_{i,j} - L) = o(1), \quad (i, j \to \infty).
\]

The following sequence spaces were introduced and examined by Başarir [19]:

\[
\omega_\theta = \left\{ x : \limsup_r \frac{1}{h_r} \sum_{k \in I_r} tk_i(x - s) = 0, \text{ for some } s \right\},
\]

\[
[w]_\theta = \left\{ x : \limsup_r \frac{1}{h_r} \sum_{k \in I_r} |tk_i(x - s)| = 0, \text{ for some } s \right\},
\]

\[
[w_1]_\theta = \left\{ x : \limsup_r \frac{1}{h_r} \sum_{k \in I_r} tk_i(|x - s|) = 0, \text{ for some } s \right\},
\]

with respect to sublinear functionals on \(l_\infty \) (the set of all real or complex bounded single sequences) by

\[
\phi_\theta(x) = \limsup_r \frac{1}{h_r} \sum_{k \in I_r} tk_i(x),
\]

\[
\psi_\theta(x) = \limsup_r \frac{1}{h_r} \sum_{k \in I_r} |tk_i(x)|,
\]

\[
\zeta_\theta(x) = \limsup_r \frac{1}{h_r} \sum_{k \in I_r} tk_i(|x|),
\]

where \(tk_i(x) = (1/k) \sum_{j \in I_r} x_j \) and \(|x| = (|x_j|)_{j=1}^\infty \).

It can be easily seen that each of the above functionals are finite, well defined, and sublinear on \(l_\infty \). There is a very close connection among these sequence spaces with the sublinear functionals which were given by Başarir [19]. Recently Mursaleen and
Mohiuddine [7] generalized the sequence spaces which were studied by Das and Sahoo [20] for single sequences, to the double sequences as follows:

\[w_2 = \left\{ x = (x_{i,j}) : \frac{1}{(m+1)(n+1)} \sum_{k=0}^{m} \sum_{l=0}^{n} t_{klpq}(x - \lambda e) \to 0, \right\} \]

\[\text{as } m, n \to \infty, \text{ uniformly in } p, q, \text{ for some } \lambda \}

\[\left[w_2 \right] = \left\{ x = (x_{i,j}) : \frac{1}{(m+1)(n+1)} \sum_{k=0}^{m} \sum_{l=0}^{n} |t_{klpq}(x - \lambda e)| \to 0, \right\} \]

\[\text{as } m, n \to \infty, \text{ uniformly in } p, q, \text{ for some } \lambda \}

\[\left[w \right]_2 = \left\{ x = (x_{i,j}) : \frac{1}{(m+1)(n+1)} \sum_{k=0}^{m} \sum_{l=0}^{n} |t_{klpq}(x - \lambda e)| \to 0, \right\} \]

\[\text{as } m, n \to \infty, \text{ uniformly in } p, q, \text{ for some } \lambda \}

by using (1.4).

The object of the present paper is to determine some new sublinear functionals involving double-lacunary sequence that both dominates and generates Banach limits. We also extend the sequence spaces which were introduced for single sequences by Başarir [19] to the double sequences with respect to these sublinear functionals. Furthermore, we present some inclusion relations with these new sequence spaces between the sequence spaces which were introduced by Mursaleen and Mohiuddine [7], earlier.

2. Sublinear Functionals and Double-Lacunary Sequence Spaces

In this section, we introduce the following sequence spaces:

\[w_0^2 = \left\{ x = (x_{i,j}) : P - \lim_{r,s \to \infty} \sup_{p,q} \frac{1}{h_{r,s}(k,l) \in T_{r,s}} \sum_{k=0}^{m} \sum_{l=0}^{n} t_{klpq}(x - \lambda e) = 0, \text{ for some } \lambda \right\} \]

\[\left[w_0^2 \right] = \left\{ x = (x_{i,j}) : P - \lim_{r,s \to \infty} \sup_{p,q} \frac{1}{h_{r,s}(k,l) \in T_{r,s}} \sum_{k=0}^{m} \sum_{l=0}^{n} |t_{klpq}(x - \lambda e)| = 0, \text{ for some } \lambda \right\} \]

\[\left[w \right]_0^2 = \left\{ x = (x_{i,j}) : P - \lim_{r,s \to \infty} \sup_{p,q} \frac{1}{h_{r,s}(k,l) \in T_{r,s}} \sum_{k=0}^{m} \sum_{l=0}^{n} t_{klpq}(x - \lambda e) = 0, \text{ for some } \lambda \right\} \]

\[W(\theta, 2) = \left\{ x = (x_{i,j}) : P - \lim_{r,s \to \infty} \sup_{p,q} \frac{1}{h_{r,s}(k,l) \in T_{r,s}} \sum_{k=0}^{m} \sum_{l=0}^{n} t_{klpq}(x - \lambda e) = 0, \text{ for some } \lambda \right\} \]
Abstract and Applied Analysis

\[[W(\theta, 2)] = \left\{ x = (x_{i,j}) : P - \lim_{r,s \to \infty} \sup_{p,q} \frac{1}{h_r,s_{(k,l) \in T_{r,s}}} \sum_{(k,l) \in T_{r,s}} |t_{k00}(x - \lambda e)| = 0, \text{ for some } \lambda \right\}, \]

\[W[\theta, 2] = \left\{ x = (x_{i,j}) : P - \lim_{r,s \to \infty} \frac{1}{h_r,s_{(k,l) \in T_{r,s}}} \sum_{(k,l) \in T_{r,s}} t_{k00}(|x - \lambda e|) = 0, \text{ for some } \lambda \right\}. \]

(2.1)

It may be noted that almost convergent double sequences are necessarily bounded but the sequence spaces \(w^2_{\phi} \) and \([w^2_{\phi}]\) may contain unbounded sequences. Now we define the following functionals on \(l^\infty_2 \) for a double-lacunary sequence \(\theta = (\bar{\theta}_{r,s}) \) by,

\[\phi^2_{\theta}(x) = \lim_{r,s \to \infty} \sup_{p,q} \frac{1}{h_r,s_{(k,l) \in T_{r,s}}} \sum_{(k,l) \in T_{r,s}} t_{klpq}(x), \]

\[\psi^2_{\theta}(x) = \lim_{r,s \to \infty} \sup_{p,q} \frac{1}{h_r,s_{(k,l) \in T_{r,s}}} \sum_{(k,l) \in T_{r,s}} |t_{klpq}(x)|, \]

\[\zeta^2_{\theta}(x) = \lim_{k,i \to \infty} \sup_{p,q} t_{klpq}(x), \]

\[\eta^2_{\theta}(x) = \lim_{k,i \to \infty} \sup_{p,q} t_{klpq}(|x|). \]

(2.2)

It is easy to see that each of the above functionals are finite, well defined, and sublinear on \(l^\infty_2 \).

Throughout the paper we will write \(\lim_{r,s \to \infty} \) for \(P - \lim_{r,s \to \infty} \) and by this notation we shall mean the convergence in the Pringsheim sense. In the following theorem, we demonstrate that \(\{l^\infty_{2, \phi} \} \) is the set of all Banach limits on \(l^\infty_2 \) and characterize the space \(w^2_{\phi} \cap l^\infty_2 \) in terms of the sublinear functional \(\phi^2_{\theta} \).

Theorem 2.1. One has the following.

1. The sublinear functional \(\phi^2_{\theta} \) both dominates and generates Banach limits, that is, \(\phi^2_{\theta}(x) = \zeta^2_{\theta}(x), \) for all \(x = (x_{i,j}) \in l^\infty_2. \)

2. \(f_2 = \left\{ x = (x_{i,j}) \in l^\infty_2 : \phi^2_{\theta}(x) = -\phi^2_{\theta}(-x) \right\} \)

\[= \left\{ x = (x_{i,j}) \in l^\infty_2 : \frac{1}{h_r,s_{(k,l) \in T_{r,s}}} \sum_{(k,l) \in T_{r,s}} t_{klpq}(x) \to \lambda, \text{ as } r,s \to \infty, \text{ uniformly in } p,q. \right\} \]

(2.3)

\[= w^2_{\theta} \cap l^\infty_2. \]
Proof. (1) From the definition of ζ_2, for given $\epsilon > 0$ there exist k_0, l_0 such that
\[
 t_{klpq}(x) < \zeta_2(x) + \epsilon,
\]
for $k \geq k_0, \ l \geq l_0$ and for all p, q. This implies that
\[
 \phi^2_0(x) < \zeta_2(x) + \epsilon,
\]
for all $x = (x_{i,j}) \in l_2^\infty$. Since ϵ is arbitrary, so that $\phi^2_0(x) \leq \zeta_2(x)$, for all $x = (x_{i,j}) \in l_2^\infty$ and hence
\[
 \left\{ l_2^\infty, \phi^2_0 \right\} \subseteq \left\{ l_2^\infty, \zeta_2 \right\} = B_2,
\]
that is, ϕ^2_0 generates Banach limits.

Conversely, suppose that $L \in B_2$. As L is the shift invariant, that is, $L(S_{11}x) = L(x) = L(S_{10}x) = L(S_{01}x)$ and using the properties of $L \in B_2$, we obtain
\[
 L(x) = L \left(\frac{1}{(k+1)(l+1)} \sum_{p=0}^{k} \sum_{q=0}^{l} x_{i,j} \right) = L(t_{klpq}(x))
\]
\[
 = \frac{1}{h_{r,s}} \sum_{(k,j) \in \mathbb{T}_{r,s}} t_{klpq}(x) \leq \sup_{p,q} \frac{1}{h_{r,s}} \sum_{k,l \in \mathbb{T}_{r,s}} t_{klpq}(x).
\]

It follows from the definition of ϕ^2_0, that for given $\epsilon > 0$ there exist r_0, s_0 such that
\[
 \frac{1}{h_{r,s}} \sum_{(k,j) \in \mathbb{T}_{r,s}} t_{klpq}(x) < \phi^2_0(x) + \epsilon,
\]
for $r \geq r_0, \ s \geq s_0$ and for all p, q. Hence by (2.8) and properties (1) and (2) of Banach limits, we have
\[
 L \left(\frac{1}{h_{r,s}} \sum_{(k,j) \in \mathbb{T}_{r,s}} t_{klpq}(x) \right) \leq L \left(\phi^2_0(x) + \epsilon \right) = \phi^2_0(x) + \epsilon,
\]
for $r \geq r_0, \ s \geq s_0$ and for all p, q; where $e = (e_{i,j})$ with $e_{i,j} = 1$ for all i, j. Since ϵ is arbitrary, it follows from (2.7) and (2.9) that
\[
 L(x) \leq \phi^2_0(x), \ \forall x = (x_{i,j}) \in l_2^\infty.
\]

Hence
\[
 B_2 \subseteq \left\{ l_2^\infty, \phi^2_0 \right\}.
\]
Abstract and Applied Analysis

That is, ϕ_0^2 dominates Banach limits. Combining (2.6) and (2.11), we get

$$\{l_2^\infty, \zeta_2\} = \{l_2^\infty, \phi_0^2\},$$

(2.12)

this implies that ϕ_0^2 dominates and generates Banach limits and $\phi_0^2(x) = \zeta_2(x)$ for all $x \in l_2^\infty$.

(2) As a consequence of Hahn-Banach theorem, $\{l_2^\infty, \phi_0^2\}$ is non empty and a linear functional $F \in \{l_2^\infty, \phi_0^2\}$ is not necessarily uniquely defined at any particular value of x. This is evident in the manner the linear functionals are constructed. But in order that all the functionals $\{l_2^\infty, \phi_0^2\}$ coincide at $x = (x_{i,j})$, it is necessary and sufficient that

$$\phi_0^2(x) = -\phi_0^2(-x),$$

(2.13)

we have

$$\lim \sup \sup_{r,s} \frac{1}{h_{r,s}(k,l) \in I_{r,s}} \sum_{k,l} t_{klpq}(x) = \lim \inf \inf_{r,s} \frac{1}{h_{r,s}(k,l) \in I_{r,s}} \sum_{k,l} t_{klpq}(x).$$

(2.14)

But (2.14) holds if and only if

$$\frac{1}{h_{r,s}(k,l) \in I_{r,s}} \sum_{k,l} t_{klpq}(x) \rightarrow \lambda, \quad \text{as} \quad r,s \rightarrow \infty, \text{uniformly in } p,q.$$

(2.15)

Hence, $x = (x_{i,j}) \in w_0^2 \cap l_2^\infty$. But (2.13) is equivalent to $\zeta_2(x) = -\zeta_2(-x)$, this holds if and only if $x = (x_{i,j}) \in f_2$. This completes the proof of the theorem.

If $F(x - \lambda e) = 0$ for all $F \in \{l_2^\infty, \phi_0^2\}$, then we say that $x = (x_{i,j})$ is ϕ_0^2-convergent to λ. Similarly we define the ϕ_0^2-convergent sequences. In the following theorem we characterize the spaces $[w_0^2] \cap l_2^\infty$ and $[w_0^2] \cap l_2^\infty$ in terms of the sublinear functionals.

Theorem 2.2. One has the following:

1. $[w_0^2] \cap l_2^\infty = \{x = (x_{i,j}) : \phi_0^2(x - \lambda e) = 0, \text{for some } \lambda\} = \{x = (x_{i,j}) : F(x - \lambda e) = 0, \text{for all } F \in \{l_2^\infty, \phi_0^2\}, \text{for some } \lambda\}$

(2) $[w_0^2] \cap l_2^\infty = \{x = (x_{i,j}) : \phi_0^2(x - \lambda e) = 0, \text{for some } \lambda\} = \{x = (x_{i,j}) : F(x - \lambda e) = 0, \text{for all } F \in \{l_2^\infty, \phi_0^2\}, \text{for some } \lambda\}$.

Proof. (1) It can be easily verified that $x = (x_{i,j}) \in [w_0^2] \cap l_2^\infty$ if and only if

$$\phi_0^2(x - \lambda e) = -\phi_0^2(\lambda e - x).$$

(2.16)

Since $\phi_0^2(x) = -\phi_0^2(-x)$ then (2.16) reduces to

$$\phi_0^2(x - \lambda e) = 0.$$

(2.17)
Now if \(F \in \{l_2^\infty, q_0^2\} \) then from (2.17) and linearity of \(F \), we have
\[
F(x - \lambda e) = 0. \tag{2.18}
\]

Conversely, suppose that \(F(x - \lambda e) = 0 \) for all \(F \in \{l_2^\infty, q_0^2\} \) and hence by Hahn-Banach theorem, there exists \(F_0 \in \{l_2^\infty, q_0^2\} \) such that \(F_0(x) = q_0^2(x) \). Hence
\[
0 = F_0(x - \lambda e) = q_0^2(x - \lambda e). \tag{2.19}
\]

(2) The proof is similar to the proof of (1), above.

\[
\square
\]

3. Inclusion Relations

We establish here some inclusion relations between the sequence spaces defined in Section 2.

Theorem 3.1. We have the following proper inclusions and the limit is preserved in each case.

1. \([f_2] \subset [w_0^2] \subset [w_0^3] \subset W(\theta, 2)\).
2. \([w_0^3] \subset [w_0^2] \subset [W(\theta, 2)] \subset W(\theta, 2)\).
3. \([w_0^2] \subset W(\theta, 2) \subset [W(\theta, 2)] \subset W(\theta, 2)\).

Proof. (1) Let \(x \in [f_2] \) with \([f_2] - \lim x = \lambda\). Then
\[
t_{klpq}(|x - \lambda e|) \longrightarrow 0, \text{ as } k, l \longrightarrow \infty, \text{ uniformly in } p, q. \tag{3.1}
\]

This implies that
\[
\frac{1}{h_{r,s}} \sum_{(k,l) \in T_{r,s}} t_{klpq}(|x - \lambda e|) \longrightarrow 0, \text{ as } k, l \longrightarrow \infty, \text{ uniformly in } p, q. \tag{3.2}
\]

This proves that \(x \in [w_0^2] \) and \([f_2] - \lim x = [w_0^3] - \lim x = \lambda\). Since
\[
\frac{1}{h_{r,s}} \left| \sum_{(k,l) \in T_{r,s}} t_{klpq}(x - \lambda e) \right| \leq \frac{1}{h_{r,s}} \sum_{(k,l) \in T_{r,s}} |t_{klpq}(x - \lambda e)| \leq \frac{1}{h_{r,s}} \sum_{(k,l) \in T_{r,s}} t_{klpq}(|x - \lambda e|), \tag{3.3}
\]
this implies that \([w_0^3] \subset [w_0^2] \subset [w_0^2] \) and \([w_0^3] - \lim x = [w_0^2] - \lim x = w_0^2 - \lim x = \lambda\). Since
\[
\frac{1}{h_{r,s}} \sum_{(k,l) \in T_{r,s}} t_{klpq}(x - \lambda e) \tag{3.4}
\]
converges uniformly in \(p, q \) as \(r, s \to \infty \), implies the convergence for \(p = 0 = q \). It follows that \(w_0^2 \subset W(\theta, 2) \) and \(w_0^2 - \lim x = W(\theta, 2) - \lim x = \lambda \). This completes the proof of (1).

It is easy to see the proof of (2) and (3). So we omit them. \(\square \)

Theorem 3.2. One has the following proper inclusions;

\[
[f_2] \subset \left(\left[w_0^2 \right] \cap I_2^0 \right) \subset \left(\left[w_0^2 \right] \cap I_2^m \right) \subset f_2.
\] (3.5)

Proof. The proof of the theorem is similar as in [7, Theorem 4.2]. So we omit it. \(\square \)

Prior to giving Lemmas 3.3 and 3.5, we need the following notations used in [10]:

\[
I_C^1 = \{(i, j) : q \leq j \leq q + n, p + m < i < \infty \}, \quad I_C^2 = \{(i, j) : q + n < j < \infty, p \leq i \leq p + m \},
\]

\[
C_{p,q}^{m,n} = \left\{ \left(i, j \right) : \begin{cases} \left(0 \leq i \leq p + m \text{ or } q \leq j \leq q + n \right) \\ \left(I_C^1 \cup I_C^2 \right) \end{cases} \right\},
\]

\[
I_D^1 = \{(i, j) : q + (y + 1)h_s - 1 < j < \infty, p + xh_r \leq i \leq p + (x + 1)h_r - 1 \}, \quad I_D^2 = \{(i, j) : q + yh_s \leq j \leq q + (y + 1)h_s - 1, p + (x + 1)h_r - 1 < i < \infty \},
\]

\[
D_{p,q}^{x,y} = \left\{ \left(i, j \right) : \begin{cases} \left(p + xh_r \leq i \leq p + (x + 1)h_r - 1 \text{ or } q + yh_s \leq j \leq q + (y + 1)h_s - 1 \right) \\ \left(I_D^1 \cup I_D^2 \right) \end{cases} \right\}.
\] (3.6)

Lemma 3.3. Suppose \(\varepsilon > 0 \) there exist \(m_0, n_0, p_0, \) and \(q_0 \) such that

\[
\frac{1}{\left| C_{0,0}^{m,n} \right|} \sum_{\left(k,l \right) \in C_{0,0}^{m,n}} \left(\frac{1}{\left| C_{p,q}^{m,n} \right|} \sum_{\left(i,j \right) \in C_{p,q}^{m,n}} \left| x_{i,j} - \lambda e \right| \right) < \varepsilon,
\] (3.7)

for \(m \geq m_0, n \geq n_0 \) and \(p \geq p_0, q \geq q_0 \). Then \(x \in [w]_2 \).

Proof. Let \(\varepsilon > 0 \) be given. Choose \(m_0^1, n_0^1, p_0 \) and \(q_0 \) such that

\[
\frac{1}{\left| C_{0,0}^{m,n} \right|} \sum_{\left(k,l \right) \in C_{0,0}^{m,n}} \left(\frac{1}{\left| C_{p,q}^{m,n} \right|} \sum_{\left(i,j \right) \in C_{p,q}^{m,n}} \left| x_{i,j} - \lambda e \right| \right) < \frac{\varepsilon}{6}
\] (3.8)

for \(m \geq m_0^1, n \geq n_0^1, p \geq p_0, q \geq q_0 \). We need only to show that given \(\varepsilon > 0 \) there exist \(m_0^2 \) and \(n_0^2 \) such that

\[
\frac{1}{\left| C_{0,0}^{m,n} \right|} \sum_{\left(k,l \right) \in C_{0,0}^{m,n}} \left(\frac{1}{\left| C_{p,q}^{m,n} \right|} \sum_{\left(i,j \right) \in C_{p,q}^{m,n}} \left| x_{i,j} - \lambda e \right| \right) < \varepsilon,
\] (3.9)
for \(m \geq m_0^2 \), \(n \geq n_0^2 \) and \(0 \leq p \leq p_0 \), \(0 \leq q \leq q_0 \). If we take \(m_0 = \max\{m_0^1, m_0^2\} \) and \(n_0 = \max\{n_0^1, n_0^2\} \), then (3.9) holds for \(m \geq m_0, \ n \geq n_0 \) and for all \(p \) and \(q \), which gives the result. Once \(p_0 \) and \(q_0 \) have been chosen, they are fixed, so

\[
\sum_{(k,l) \in C_{p,q}^{0,0}} \left(\frac{1}{C_{p,q}^{m,n}} \right) \sum_{(i,j) \in C_{p,q}^{0,0}} |x_{i,j} - \lambda e| = M, \tag{3.10}
\]

is finite. Now taking \(0 \leq p \leq p_0, \ 0 \leq q \leq q_0 \) and \(m \geq p_0, \ n \geq q_0 \) we have from (3.8) and (3.10)

\[
\frac{1}{C_{m,n}^{0,0}} \sum_{(k,l) \in C_{p,q}^{m,n}} \left(\frac{1}{C_{p,q}^{m,n}} \right) \sum_{(i,j) \in C_{p,q}^{m,n}} |x_{i,j} - \lambda e| \]
\[
= \frac{1}{C_{m,n}^{0,0}} \sum_{(k,l) \in C_{p,q}^{0,0}} \left(\frac{1}{C_{p,q}^{0,0}} \right) \sum_{(i,j) \in C_{p,q}^{0,0}} |x_{i,j} - \lambda e| \]
\[
+ \frac{1}{C_{m,n}^{0,0}} \sum_{(k,l) \in C_{p,q}^{0,0}} \left(\frac{1}{C_{p,q}^{0,0}} \right) \sum_{(i,j) \in C_{p,q}^{0,0}} |x_{i,j} - \lambda e| \]
\[
+ \frac{1}{C_{m,n}^{0,0}} \sum_{(k,l) \in C_{p,q}^{0,0}} \left(\frac{1}{C_{p,q}^{0,0}} \right) \sum_{(i,j) \in C_{p,q}^{0,0}} |x_{i,j} - \lambda e| \]
\[
\leq \frac{M}{|C_{m,n}^{0,0}|} + \frac{3}{6} \cdot \frac{\varepsilon}{6} = \frac{M}{|C_{m,n}^{0,0}|} + \frac{\varepsilon}{2}.
\]

Therefore taking \(m \) and \(n \) sufficiently large, we can make \(M/|C_{m,n}^{0,0}| + \varepsilon/2 < \varepsilon \) which gives (3.9) and hence the result. \(\square \)

Theorem 3.4. We have \([w]_0^2 = [w]_2\) for every \(\tilde{d}_{r,s} \).

Proof. Let \(x \in [w]_0^2 \), then given \(\varepsilon > 0 \) there exist \(r_0, \ s_0 \) and \(\lambda \) such that

\[
\frac{1}{H_{r,s}^{0,0}} \sum_{(k,l) \in C_{r,s}^{0,0}} t_{k,l,p,q}(|x - \lambda e|) < \varepsilon, \tag{3.12}
\]
Lemma 3.5. Suppose, for a given $\varepsilon > 0$, there exist m_0, n_0, p_0, and q_0 such that

$$\left| \sum_{(k,l) \in C_{p,q}} \frac{1}{C_{m,n}^{m_0,n_0}} | (x_{i,j} - \lambda e) \right| < \varepsilon,$$

for all $m \geq m_0$, $n \geq n_0$, $p \geq p_0$, and $q \geq q_0$. Then $x \in [w_2]$.

Proof. Let $\varepsilon > 0$ be given and choose m_0, n_0, p_0 and q_0 such that

$$\left| \sum_{(k,l) \in C_{p,q}} \frac{1}{C_{m,n}^{m_0,n_0}} \sum_{(i,j) \in C_{p,q}^{p+k,q+l}} (x_{i,j} - \lambda e) \right| < \varepsilon/4,$$

for all $m \geq m_0$, $n \geq n_0$, $p \geq p_0$, and $q \geq q_0$. As in Lemma 3.3, it is enough to show that there exist m_1 and n_1 such that for $m \geq m_1$, $n \geq n_1$ implies

$$\left| \sum_{(k,l) \in C_{p,q}} \frac{1}{C_{m,n}^{m_0,n_0}} \sum_{(i,j) \in C_{p,q}^{p+k,q+l}} (x_{i,j} - \lambda e) \right| < \varepsilon.$$
for all p and q with $0 \leq p \leq p_0$ and $0 \leq q \leq q_0$. Since p_0 and q_0 are fixed,

$$\sum_{(k,j) \in C_{i,j}^{m,n} \cap C_{i,j}^{p,q}} \left(\frac{1}{C_{p,q}} \sum_{(i,j) \in C_{p,q}} |x_{i,j} - \lambda e| \right) = M. \quad (3.17)$$

Now, let $0 \leq p \leq p_0$, $0 \leq q \leq q_0$, and $m \geq p_0$, $n \geq q_0$ and consider the following:

$$\sum_{(k,j) \in C_{i,j}^{m,n} \cap C_{i,j}^{p,q}} \left(\frac{1}{C_{p,q}} \sum_{(i,j) \in C_{p,q}} |x_{i,j} - \lambda e| \right) \leq \sum_{(k,j) \in C_{i,j}^{m,n} \cap C_{i,j}^{p,q}} \left(\frac{1}{C_{p,q}} \sum_{(i,j) \in C_{p,q}} |x_{i,j} - \lambda e| \right)$$

$$\leq \sum_{(k,j) \in C_{i,j}^{m,n} \cap C_{i,j}^{p,q}} \left(\frac{1}{C_{p,q}} \sum_{(i,j) \in C_{p,q}} |x_{i,j} - \lambda e| \right) \leq \sum_{(k,j) \in C_{i,j}^{m,n} \cap C_{i,j}^{p,q}} \left(\frac{1}{C_{p,q}} \sum_{(i,j) \in C_{p,q}} |x_{i,j} - \lambda e| \right)$$

Let $k - p_0 \geq m^1_0$, then $k + p - p_0 \geq m^1_0$ for $0 \leq p \leq p_0$. Also if we let $l - q_0 \geq n^1_0$, then $l + q - q_0 \geq n^1_0$ for $0 \leq q \leq q_0$. Therefore from (3.15)

$$\sum_{(k,j) \in C_{i,j}^{m,n} \cap C_{i,j}^{p,q}} \left(\frac{1}{C_{p,q}} \sum_{(i,j) \in C_{p,q}} |x_{i,j} - \lambda e| \right) \leq \sum_{(k,j) \in C_{i,j}^{m,n} \cap C_{i,j}^{p,q}} \left(\frac{1}{C_{p,q}} \sum_{(i,j) \in C_{p,q}} |x_{i,j} - \lambda e| \right)$$

$$< \sum_{(k,j) \in C_{i,j}^{m,n} \cap C_{i,j}^{p,q}} \left(\frac{1}{C_{p,q}} \sum_{(i,j) \in C_{p,q}} |x_{i,j} - \lambda e| \right)$$

$$< \frac{\varepsilon}{4} \quad (3.19)$$
From (3.18) and (3.19)

$$\frac{1}{C_{m,n}} \sum_{(k,l) \in C_{m,n}^0} \frac{1}{C_{p,q}^{p+k,q+l}} \sum_{(i,j) \in C_{p,q}^{p+k,q+l}} \left| x_{i,j} - \lambda e \right| \leq \frac{M}{C_{m,n}} + 2\varepsilon < \varepsilon, \quad (3.20)$$

for sufficiently large values of m and n. Hence the result. \qed

Theorem 3.6. For every $\theta_{r,s}$, one has $[w_{r}^2] \cap l^\infty_2 = [w_{\lambda}] \cap l^\infty_2$.

Proof. Let $x \in [w_{r}^2] \cap l^\infty_2$. For $\varepsilon > 0$, there exist r_0, s_0, p_0 and q_0 such that

$$\frac{1}{h_{r,s}} \sum_{(k,l) \in C_{r,s}^{h_{r,s}-1}} \left| t_{klpq}(x - \lambda e) \right| < \frac{\varepsilon}{2} \quad (3.21)$$

for $r \geq r_0$, $s \geq s_0$, $p \geq p_0$ and $q \geq q_0$ with $p = k_{r,s} + 1 + \alpha$ where $\alpha \geq 0$, $q = l_{r,s} + 1 + \beta$ and $\beta \geq 0$. Let $m \geq h_{r}$ and $n \geq h_{s}$ where $m \geq 1$ and $n \geq 1$. Then

$$\frac{1}{C_{m,n}} \sum_{(k,l) \in C_{m,n}^0} \frac{1}{C_{p,q}^{p+k,q+l}} \sum_{(i,j) \in C_{p,q}^{p+k,q+l}} \left| x_{i,j} - \lambda e \right| = \frac{1}{C_{m,n}} \sum_{(k,l) \in C_{m,n}^0} \left| t_{klpq}(x - \lambda e) \right| + \frac{1}{C_{m,n}} \sum_{(k,l) \in C_{m,n}^0} \left| t_{klpq}(x - \lambda e) \right| \quad (3.22)$$

$$\leq \frac{1}{C_{m,n}} \sum_{x, y = 0}^{\delta_1 - 1} \sum_{(k,l) \in C_{m,n}^0} \left| t_{klpq}(x - \lambda e) \right| + \frac{1}{C_{m,n}} \sum_{(k,l) \in C_{m,n}^0} \left| x_{i,j} - \lambda e \right| \quad (3.23)$$

Since $(x_{i,j}) \in l^\infty_2$ for all i and j, there exists M such that $|x_{i,j} - \lambda e| \leq M$. From (3.21) and (3.22), we have the following:

$$\frac{1}{C_{m,n}} \sum_{(k,l) \in C_{m,n}^0} \frac{1}{C_{p,q}^{p+k,q+l}} \sum_{(i,j) \in C_{p,q}^{p+k,q+l}} \left| x_{i,j} - \lambda e \right| \leq \frac{\delta_1 \delta_2}{C_{m,n}} \left(h_{r,s} \varepsilon \right)^2 + M h_{r,s} \quad (3.24)$$

Thus for m and n sufficiently large, we have the following:

$$\frac{1}{C_{m,n}} \sum_{(k,l) \in C_{m,n}^0} \frac{1}{C_{p,q}^{p+k,q+l}} \sum_{(i,j) \in C_{p,q}^{p+k,q+l}} \left| x_{i,j} - \lambda e \right| < \varepsilon, \quad (3.25)$$
for $r \geq r_0$, $s \geq s_0$ and $p \geq p_0$, $q \geq q_0$. Thus by Lemma 3.5, we have $[w^2_0] \cap I^r_2 \subset [w_2] \cap I^r_2$. It is clear that $[w_2] \cap I^r_2 \subset [w^2_0] \cap I^r_2$. This completes the proof of the theorem. \hfill \Box

Corollary 3.7. $[f_2] \subset [w^2_0] \subset ([w^2_0] \cap I^r_2) \subset (w^2_0 \cap I^r_2) = f_2$.

Proof. It is easy to see by combining Theorem 3.4, Theorem 3.6 with \cite[Theorems 4.1 and 3.1(ii)]{7}. So we omit it. \hfill \Box

A paranormed space (X, g) is a topological linear space with the topology given by the paranorm g. It may be recalled that a paranorm g is a real subadditive function on X such that $g(\theta) = 0$, $g(x) = g(-x)$ and scalar multiplication is continuous, that is, $\mu_n \to \mu$, $x_n \to x$ imply that $(\mu_n x_n) \to (\mu x)$ where μ_n, μ are scalars and $x, x_n \in X$.

Let $u = (u_{k,l})$ be a bounded double sequence of positive real numbers, that is, $u_{k,l} > 0$ for all k, l with $\sup_{k,l} u_{k,l} = H < \infty$. Let

$$[w^2_0(u)] = \left\{ x = (x_{i,j}) : \limsup_{r,s} \frac{1}{h_{r,s}(k,l) \in T_{r,s}} \sum |t_{klpq}(x - \lambda e)|^{u_{k,l}} = 0 \text{ for some } \lambda \right\}. \quad (3.25)$$

If $u = (u_{k,l})$ is constant we write $[w^2_0]_u$ in place of $[w^2_0(u)]$. If we take $u = (u_{k,l})$ with $u_{k,l} = 1$ for all k and l, then $[w^2_0(u)]$ is reduced to $[w^2_0]$ which is defined in Section 2.

Theorem 3.8. Let $u = (u_{k,l})$ be a bounded sequence of positive real numbers with $\sup_{k,l} u_{k,l} = H < \infty$. Then $[w^2_0(u)]$ is a complete linear topological space paranormed by

$$g(x) = \sup_{r,s} \left(\frac{1}{h_{r,s}(k,l) \in T_{r,s}} \sum |t_{klpq}(x)|^{u_{k,l}} \right)^{1/M}, \quad (3.26)$$

where $M = \max(1, H)$. In the case u is constant, $[w^2_0]_u$ is a Banach space if $u \geq 1$ and is a p-normed space if $0 < u < 1$.

Proof. It is easy to see that $[w^2_0(u)]$ is a linear space with coordinatewise addition and scalar multiplication. Clearly $g(\theta) = 0$, $g(x) = g(-x)$ and g is subadditive. To prove the continuity of multiplication, assume that $x \in [w^2_0(u)]$. Since $u = (u_{k,l})$ is bounded and positive there exists a constant $\delta > 0$ such that $u_{k,l} \geq \delta$ for all k, l. Now for $|\mu| \leq 1$, $|\mu|^{u_{k,l}} \leq |\mu|^\delta$ and hence $g(\mu x) \leq |\mu|^\delta g(x)$. This proves the fact that g is a paranorm on $[w^2_0(u)]$.

To prove that $[w^2_0(u)]$ is complete, assume that (x^n) is a Cauchy sequence in $[w^2_0(u)]$, that is, $g(x^n - x^m) \to 0$ as $m, n \to \infty$. Since

$$\frac{1}{h_{r,s}(k,l) \in T_{r,s}} \sum |t_{klpq}(x^m - x^n)|^{u_{k,l}} \leq \left[g(x^m - x^n) \right]^M, \quad (3.27)$$

it follows that $|t_{klpq}(x^m - x^n)|^{u_{k,l}} = 0(1)$ as $m, n \to \infty$ for each k, l, p, q. In particular

$$t_{00pq}(x^m - x^n) = \left| x^m_{p,q} - x^n_{p,q} \right| \to 0 \quad \text{as } m, n \to \infty, \text{ for each fixed } p \text{ and } q. \quad (3.28)$$
Abstract and Applied Analysis

Hence, \((x^m)\) is a Cauchy sequence in \(\mathbb{R}\) (or \(\mathbb{C}\)). Since \(\mathbb{R}\) (or \(\mathbb{C}\)) is complete, there exists \(x \in \mathbb{R}\) (or \(\mathbb{C}\)) such that \(x^m \to x\) coordinate wise as \(m \to \infty\). It follows from (3.27) that given \(\varepsilon > 0\), there exists \(m_0 \in \mathbb{N}\) such that

\[
\left(\frac{1}{h_{r,s}} \sum_{(k,l) \in I_{r,s}} |t_{klpq}(x^m - x^n)|^{\rho_{k,l}}\right)^{1/M} < \varepsilon,
\]

for \(m, n > m_0\). Now making \(n \to \infty\) and then taking supremum with respect to \(p\) and \(q\) in (3.29) we obtain \(g(x^m - x) \leq \varepsilon\) for \(m > m_0\). This proves that \(x^m \to x\) and \(x \in \left[w^2_\theta(u)\right]\). Hence \(\left[w^2_\theta(u)\right]\) is complete. When \(u\) is constant, it is easy to derive the rest of the theorem. \(\square\)

Theorem 3.9. Let \(0 < \rho_{k,l} \leq \sigma_{k,l} < \infty\) for each \(k\) and \(l\). Then \(\left[w^2_\theta(\rho)\right] \subset \left[w^2_\theta(\sigma)\right]\).

Proof. Let \(x \in \left[w^2_\theta(\rho)\right]\). By the definition of \(\left[w^2_\theta(\rho)\right]\), that for given \(\varepsilon > 0\) there exist \(r_0, s_0\) such that

\[
\frac{1}{h_{r,s}} \sum_{(k,l) \in I_{r,s}} |t_{klpq}(x - \lambda e)|^{\rho_{k,l}} < \varepsilon,
\]

for \(r > r_0, s > s_0\) and for all \(p, q\). Since \(1/h_{r,s} \to 0\) as \(r, s \to \infty\), then

\[
\sum_{(k,l) \in I_{r,s}} |t_{klpq}(x - \lambda e)|^{\rho_{k,l}} < \infty,
\]

for \(r > r_0, s > s_0\) and for all \(p, q\). This implies that

\[
|t_{klpq}(x - \lambda e)| < 1,
\]

for sufficiently large values of \(k, l\) and for all \(p, q\). Then we get,

\[
\frac{1}{h_{r,s}} \sum_{(k,l) \in I_{r,s}} |t_{klpq}(x - \lambda e)|^{\sigma_{k,l}} \leq \frac{1}{h_{r,s}} \sum_{(k,l) \in I_{r,s}} |t_{klpq}(x - \lambda e)|^{\rho_{k,l}} = o(1),
\]

as \(r, s \to \infty\) and for all \(p, q\). Hence,

\[
\limsup_{r,s \to \infty} \frac{1}{h_{r,s}} \sum_{(k,l) \in I_{r,s}} |t_{klpq}(x - \lambda e)|^{\rho_{k,l}} = 0,
\]

is obtained and consequently we have \(x \in \left[w^2_\theta(\rho)\right]\). This completes the proof. \(\square\)
Theorem 3.10. One has the following.

1. Let \(0 < \inf_{k,l} u_{k,l} \leq u_{k,l} \leq 1\) for each \(k\) and \(l\). Then \([w^2_\theta(u)] \subset [w^2_\theta]\).

2. Let \(1 \leq u_{k,l} \leq \sup_{k,l} u_{k,l} < \infty\) for each \(k\) and \(l\). Then \([w^2_\theta] \subset [w^2_\theta(u)]\).

Proof. (1) It is clear from the above theorem. If we take \(\rho_{k,l} = u_{k,l}\) and \(\sigma_{k,l} = 1\) for each \(k\) and \(l\), then we have \([w^2_\theta(u)] \subset [w^2_\theta]\).

(2) From the above theorem, if we take \(\rho_{k,l} = 1\) and \(\sigma_{k,l} = u_{k,l}\) for each \(k\) and \(l\), then we have \([w^2_\theta] \subset [w^2_\theta(u)]\).

This completes the proof. \(\square\)

Acknowledgment

The authors are grateful to anonymous referees for their careful reading of the paper which improved it greatly.

References

