Research Article

Stability of Difference Schemes for Fractional Parabolic PDE with the Dirichlet-Neumann Conditions

Zafer Cakir

Department of Mathematical Engineering, Gumushane University, 29100 Gumushane, Turkey

Correspondence should be addressed to Zafer Cakir, zafer@gumushane.edu.tr

Received 25 March 2012; Accepted 3 April 2012

Academic Editor: Allaberen Ashyralyev

Copyright © 2012 Zafer Cakir. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The stable difference schemes for the fractional parabolic equation with Dirichlet and Neumann boundary conditions are presented. Stability estimates and almost coercive stability estimates with $\ln \left(1/\tau + |h|\right)$ for the solution of these difference schemes are obtained. A procedure of modified Gauss elimination method is used for solving these difference schemes of one-dimensional fractional parabolic partial differential equations.

1. Introduction

Theory and applications, methods of solutions of problems for fractional differential equations have been studied extensively by many researchers [1–18]. In this study, initial-boundary-value problem for the fractional parabolic equation

$$\frac{\partial u(t,x)}{\partial t} + D_{1/2}^{1/2}u(t,x) - \sum_{p=1}^{m} \left(a_p(x)u_x^p \right) + \sigma u(t,x) = f(t,x),$$

$$x = (x_1, \ldots, x_m) \in \Omega, \quad 0 < t < T,$$

$$u(t,x)|_{S_1} = 0, \quad \left. \frac{\partial u(t,x)}{\partial \vec{n}} \right|_{S_2} = 0, \quad 0 \leq t \leq T, \quad S_1 \cup S_2 = S = \partial \Omega,$$

$$u(0,x) = 0, \quad x \in \Omega,$$
with Dirichlet and Neumann conditions is considered. Here $D^{1/2}_t = D^{0.5}_t$ is the standard Riemann-Liouville’s derivative of order $1/2$ and Ω is the open cube in the m-dimensional Euclidean space

$$R^m : \{ x \in \Omega : x = (x_1, \ldots, x_m) ; 0 < x_j < 1, 1 \leq j \leq m \},$$

(1.2)

with boundary $\overline{\Omega}$, $\overline{\Omega} = \Omega \cup S$, $a_p(x) (x \in \Omega)$ and $f(t, x) (t \in (0, T), x \in \Omega)$ are given smooth functions, $a_p(x) \geq a > 0, \sigma > 0$, and \vec{n} is the normal vector to Ω.

The first and second orders of accuracy stable difference schemes for the numerical solution of problem (1.1) are presented. Stability estimates and almost coercive stability estimates with $\ln(1/(\tau + |h|))$ for the solution of these difference schemes are obtained. The method is illustrated by numerical examples.

2. The First and Second Orders of Accuracy Stable Difference Schemes and Stability Estimates

The discretization of problem (1.1) is carried out in two steps. In the first step, let us define the grid space

$$\Omega_h = \{ x = x_p = (h_1p_1, \ldots, h_mp_m), p = (p_1, \ldots, p_m), 0 \leq p_j \leq M_j, h_jM_j = 1, j = 1, \ldots, m \},$$

$$\Omega_{h} = \overline{\Omega}_h \cap \Omega,$$

$$S_h = \overline{\Omega}_h \cap S.$$

(2.1)

We introduce the Hilbert space $L^2_{2h} = L^2_{2}(|\overline{\Omega}_h|)$ of the grid function $\varphi^h(x) = (\varphi(h_1p_1, \ldots, h_mp_m))$ defined on $\overline{\Omega}$, equipped with the norm

$$\| \varphi^h \|_{L^2_{2}(|\overline{\Omega}_h|)} = \left(\sum_{x \in \Omega_h} |\varphi^h(x)|^2 h_1 \cdots h_m \right)^{1/2}.$$

(2.2)

To the differential operator A^x generated by problem (1.1), we assign the difference operator A^x_h by the formula

$$A^x_h u^h = -\sum_{p=1}^{m} \left(a_p(x) u^h_{x_p}\right)_{x_p} + \sigma u^h_{x},$$

(2.3)

acting in the space of grid functions $u^h(x)$, satisfying the conditions $u^h(x) = 0$ for all $x \in S^1_{1}$ and $D^h u^h(x) = 0$ for all $x \in S^2_{1}$. Here $D^h u^h(x)$ is the approximation of $\partial u / \partial \vec{n}$. It is known that
Abstract and Applied Analysis

A^h is a self-adjoint positive definite operator in $L^2(\overline{\Omega}_h)$. With the help of A^h we arrive at the initial-boundary-value problem

$$\frac{dv^h(t,x)}{dt} + D^{1/2}_t v^h(t,x) + A_h^x v^h(t,x) = f^h(t,x), \quad 0 < t < T, \ x \in \Omega_h,$$

$v^h(0,x) = 0, \quad x \in \overline{\Omega}_h,$

for a finite system of ordinary fractional differential equations.

In the second step, applying the first order of approximation formula

$$D^{1/2}_\tau u_k = \frac{1}{\sqrt{\pi}} \sum_{r=1}^{k} \frac{\Gamma(k-r+1/2)}{(k-r)!} \left(\frac{u_{r} - u_{r-1}}{\tau^{1/2}} \right), \quad 1 \leq k \leq N,$$

for

$$D^{1/2}_t u(t_k) = \frac{1}{\Gamma(1/2)} \int_0^{t_k} (t_k - s)^{-1/2} u'(s)ds,$$

(see [19]) and using the first order of accuracy stable difference scheme for parabolic equations, one can present the first order of accuracy difference scheme with respect to t

$$\frac{u^h_k(x) - u^h_{k-1}(x)}{\tau} + D^{1/2}_t u^h_k + A_h^x u^h_k(x) = f^h_k(x), \quad x \in \overline{\Omega}_h,$$

$$f^h_k(x) = f^h(t_k, x), \quad t_k = k\tau, \ 1 \leq k \leq N, \ N\tau = T,$$

$$u^h_0(x) = 0, \quad x \in \overline{\Omega}_h,$$

for the approximate solution of problem (2.4). Here

$$\Gamma\left(k-r+\frac{1}{2}\right) = \int_0^\infty t^{k-r+1/2} e^{-t}dt.$$

(2.8)
Moreover, applying the second order of approximation formula

\[
D_i^{1/2} u_k = \begin{cases}
\left[-\frac{d\sqrt{2}}{3} \right] u_0 + \left[\frac{d\sqrt{2}}{3} \right] u_1, & k = 1, \\
\left[\frac{2d\sqrt{6}}{5} \right] u_0 + \left[\frac{d\sqrt{6}}{5} \right] u_1 + \left[\frac{d\sqrt{6}}{5} \right] u_2, & k = 2, \\
d \sum_{m=2}^{k-1} \left[(k-m)b_1(k-m) + b_2(k-m) \right] u_{m-1} + \left[(2m-2k-1)b_1(k-m) - 2b_2(k-m) \right] u_{m-1} \\
+ \left[(k-m+1)b_1(k-m) + b_2(k-m) \right] u_m \\
+ \frac{d}{6\sqrt{2}} [-u_{k-2} - 4u_{k-1} + 5u_k], & 3 \leq k \leq N,
\end{cases}
\]

(2.9)

for

\[
D_i^{1/2} u(t_k - \frac{\tau}{2}) = \frac{1}{\Gamma(1/2)} \int_0^{t_k-\tau/2} \left(t_k - \frac{\tau}{2} - s \right)^{-1/2} u'(s)ds
\]

(2.10)

and the Crank-Nicholson difference scheme for parabolic equations, one can present the second-order of accuracy difference scheme with respect to \(t \) and to \(x \) and

\[
\frac{u^h_k(x) - u^h_{k-1}(x)}{\tau} + D_i^{1/2}u^h_k(x) + \frac{1}{2} A_h\left(u^h_k(x) + u^h_{k-1}(x) \right) = f^h_k(x), \quad x \in \Omega_h,
\]

(2.11)

\[
f^h_k(x) = f(t_k - \frac{\tau}{2}, x), \quad t_k = k\tau, \quad 1 \leq k \leq N, \quad N\tau = T,
\]

\[
u^h_0(x) = 0, \quad x \in \Omega_h,
\]

for the approximate solution of problem (2.4). Here

\[
d = \frac{2}{\sqrt{A^*}}, \quad b_1(r) = \sqrt{r + \frac{1}{2} - \sqrt{r - \frac{1}{2}}}, \quad b_2(r) = -\frac{1}{3} \left(\left(r + \frac{1}{2} \right)^{3/2} - \left(r - \frac{1}{2} \right)^{3/2} \right).
\]

(2.12)

Theorem 2.1. Let \(\tau \) and \(|h| = \sqrt{h_1^2 + \cdots + h_n^2} \) be sufficiently small numbers. Then, the solutions of difference scheme (2.7) and (2.11) satisfy the following stability estimate:

\[
\max_{1 \leq k \leq N} \left\| u^h_k \right\|_{L^{2k}} \leq C_1 \max_{1 \leq k \leq N} \left\| f^h_k \right\|_{L^{2k}}.
\]

(2.13)

Here \(C_1 \) does not depend on \(\tau, \ h, \) and \(f^h_k, \ 1 \leq k \leq N. \)
Proof. For the solution of difference scheme (2.7), we have the following formulas:

\[u_k^h(x) = \sum_{s=1}^{k} R^{k-s+1} F^h_s(x) \tau, \quad 1 \leq k \leq N, \quad (2.14) \]

where

\[R = (I + \tau A^h)^{-1}, \]

\[F^h_k(x) = f^h_k(x) - D^{1/2}_\tau u^h_k(x), \quad (2.15) \]

\[D^{1/2}_\tau u^h_k(x) = \frac{1}{\sqrt{\pi}} \sum_{m=1}^{k} \frac{\Gamma(k - m + 1/2)}{(k - m)!} \tau^{-1/2} \left[-D^{1/2}_\tau u^h_m(x) + f^h_m(x) \right]. \]

The proof of (2.13) for (2.7) is based on (2.14) and estimate

\[\left\| A^h R \right\|_{L_{2h} \rightarrow L_{2h}} \leq \frac{1}{k \tau}, \quad \left\| R \right\|_{L_{2h} \rightarrow L_{2h}} \leq 1, \quad 1 \leq k \leq N, \quad (2.16) \]

and the triangle inequality.

In the same manner, we can obtain (2.13) for (2.11) using the inequality

\[\left\| A^h B^k C^2 \right\|_{L_{2h} \rightarrow L_{2h}} \leq \frac{1}{k \tau}, \quad \left\| B^k \right\|_{L_{2h} \rightarrow L_{2h}} \leq 1, \quad 1 \leq k \leq N. \quad (2.17) \]

Theorem 2.2. Let \(\tau \) and \(|h| = \sqrt{h_1^2 + \cdots + h_n^2} \) be sufficiently small numbers. Then, the solutions of difference scheme (2.7) satisfy the following almost coercive stability estimate:

\[\max_{1 \leq k \leq N} \left\| u^h_k - u^h_{k-1} \right\|_{L_{2h}} + \max_{1 \leq k \leq N} \frac{1}{k} \sum_{p=1}^{m} \left\| \left(u^h_k \right)_{x_p x_p j_p} \right\|_{L_{2h}} \leq C_2 \ln \frac{1}{\tau + |h|} \max_{1 \leq k \leq N} \left\| f^h_k \right\|_{L_{2h}}. \quad (2.18) \]

Here \(C_2 \) is independent of \(\tau, h \), and \(f^h_k, 1 \leq k \leq N \).

Proof. The proof of (2.18) for (2.7) is based on (2.14) and estimate (2.16) and the triangle inequality.

Theorem 2.3. Let \(\tau \) and \(|h| = \sqrt{h_1^2 + \cdots + h_n^2} \) be sufficiently small numbers. Then, the solutions of difference scheme (2.11) satisfy the following almost coercive stability estimate:

\[\max_{1 \leq k \leq N} \left\| u^h_k - u^h_{k-1} \right\|_{L_{2h}} + \max_{1 \leq k \leq N} \frac{1}{2} \sum_{p=1}^{m} \left\| \left(u^h_k + u^h_{k-1} \right)_{x_p x_p j_p} \right\|_{L_{2h}} \leq C_3 \ln \frac{1}{\tau + |h|} \max_{1 \leq k \leq N} \left\| f^h_k \right\|_{L_{2h}}. \quad (2.19) \]

Here \(C_3 \) does not depend on \(\tau, h \), and \(f^h_k, 1 \leq k \leq N \).
Proof. The proof of (2.19) for (2.11) is based on (2.14) and estimate (2.17) and the triangle inequality.

Remark 2.4. The method of proofs of Theorems 2.1–2.3 enables us to obtain the estimate of convergence of difference schemes of the first and second orders of accuracy for approximate solutions of the initial-boundary-value problem

\[
\frac{\partial u(\partial t, x)}{\partial t} - \sum_{p=1}^{n} a_p(x)u_{x_p} + \sum_{p=1}^{n} b_p(x)u_{x_p} + D^t u(t, x) = f(t; u(t, x), u_{x_1}(t, x), \ldots, u_{x_n}(t, x)),
\]

\[x = (x_1, \ldots, x_n) \in \Omega, \quad 0 < t < T,
\]

\[u(0, x) = 0, \quad x \in \Omega,
\]

\[u(t, x)|_{S_1} = 0, \quad \frac{\partial u(t, x)}{\partial \eta} |_{S_2} = 0
\]

(2.20)

for semilinear fractional parabolic partial differential equations.

Note that one has not been able to obtain a sharp estimate for the constants figuring in the stability estimates of Theorems 2.1, 2.2, and 2.3. Therefore, our interest in the present paper is studying the difference schemes (2.7) and (2.11) by numerical experiments. Applying these difference schemes, the numerical methods are proposed in the following section for solving the one-dimensional fractional parabolic partial differential equation. The method is illustrated by numerical experiments.

3. Numerical Applications

For numerical results we consider two examples.

Example 3.1. We consider the initial-boundary-value problem

\[
\frac{\partial u(t, x)}{\partial t} + D^t u(t, x) - \frac{\partial}{\partial x} \left((1 + x) \frac{\partial u(t, x)}{\partial x} \right) + u(t, x) = f(t, x),
\]

\[f(t, x) = \left[3 + t + \frac{16\sqrt{r}}{5\sqrt{\pi}} + (1 + x)2\pi^2 t \right] x^2 \sin^2 \pi x - (1 + x)2\pi^3 t^3 \cos^2 \pi x
\]

\[-2\pi t^3 \sin \pi x \cos \pi x, \quad 0 < t < 1, \quad 0 < x < 1,
\]

\[u(t, 0) = u_x(t, 1) = 0, \quad 0 \leq t \leq 1,
\]

\[u(0, x) = 0, \quad 0 \leq x \leq 1
\]

for the one-dimensional fractional parabolic partial differential equation. The exact solution of problem (3.1) is

\[u(t, x) = t^3 \sin^2 \pi x.
\]
First, applying difference scheme (2.7), we obtain

\[
\frac{u_n^k - u_n^{k-1}}{\tau} + \frac{1}{\sqrt{\pi}} \sum_{r=1}^{k} \frac{\Gamma(k - r + 1/2)}{(k - r)!} \frac{u_{n+r}^k - u_{n+r}^{k-1}}{\tau^{1/2}} - \frac{1}{h} \left[\left(1 + x_{n+1} \right) \frac{u_{n+1}^k - u_n^k}{h} - \left(1 + x_n \right) \frac{u_n^k - u_{n-1}^k}{h} \right] + u_n^k = \psi_n^k,
\]

(3.3)

\[
\psi_n^k = f(t_k, x_n), \quad t_k = k\tau, \quad 1 \leq k \leq N, \quad x_n = nh, \quad 1 \leq n \leq M - 1,
\]

\[
u_0^k = 0, \quad u_{M-1}^k = u_M^k, \quad 0 \leq k \leq N,
\]

\[
u_{\mathbf{0}}^n = 0, \quad 0 \leq n \leq M.
\]

We get the system of equations in the matrix form

\[
AU_{n+1} + BU_n + CU_{n-1} = D\psi_n, \quad 1 \leq n \leq M - 1,
\]

\[
U_0 = \tilde{\nu}, \quad U_{M-1} = U_M,
\]

(3.4)

where

\[
A = \begin{bmatrix}
0 & 0 & 0 & \cdots & 0 & 0 \\
0 & a_n & 0 & \cdots & 0 & 0 \\
0 & 0 & a_n & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & a_n & 0 \\
0 & 0 & 0 & \cdots & 0 & a_n
\end{bmatrix}_{(N+1) \times (N+1)},
\]

(3.5)

\[
B = \begin{bmatrix}
b_{11} & 0 & 0 & \cdots & 0 & 0 \\
b_{21} & b_{22} & 0 & \cdots & 0 & 0 \\
b_{31} & b_{32} & b_{33} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
b_{N1} & b_{N2} & b_{N3} & \cdots & b_{NN} & 0 \\
b_{N+1,1} & b_{N+1,2} & b_{N+1,3} & \cdots & b_{N+1,N} & b_{N+1,N+1}
\end{bmatrix}_{(N+1) \times (N+1)},
\]

(3.6)

\[
C = \begin{bmatrix}
0 & 0 & 0 & \cdots & 0 & 0 \\
0 & c_n & 0 & \cdots & 0 & 0 \\
0 & 0 & c_n & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & c_n & 0 \\
0 & 0 & 0 & \cdots & 0 & c_n
\end{bmatrix}_{(N+1) \times (N+1)},
\]

(3.7)
\[
D = \begin{bmatrix}
0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0 \\
0 & 0 & 0 & \cdots & 0 & 1 \\
\end{bmatrix}_{(N+1) \times (N+1)},
\] (3.8)

\[
\varphi_n = \begin{bmatrix}
\varphi_0^n \\
\varphi_1^n \\
\varphi_2^n \\
\vdots \\
\varphi_{N-1}^n \\
\varphi_N^n \\
\end{bmatrix}_{(N+1) \times 1}, \quad U_q = \begin{bmatrix}
U_q^0 \\
U_q^1 \\
U_q^2 \\
\vdots \\
U_q^{N-1} \\
U_q^N \\
\end{bmatrix}_{(N+1) \times 1},
\] , \quad q = n \pm 1, n,
(3.9)

\[
a_n = -\frac{1 + x_{n+1}}{\tau^2}, \quad c_n = -\frac{1 + x_n}{\tau^2},
\]

\[
b_{11} = 1, \quad b_{21} = -\frac{1}{\sqrt{\tau}} - \frac{1}{\tau}, \quad b_{22} = \frac{1}{\sqrt{\tau}} + \frac{1}{\tau} + \frac{2 + x_{n+1} + x_n}{\tau^2} + 1,
\]

\[
b_{31} = -\frac{\Gamma(1 + 1/2)}{\sqrt{\tau}}, \quad b_{32} = \frac{\Gamma(1 + 1/2) - \Gamma(1/2)}{\sqrt{\tau}} - \frac{1}{\tau}, \quad b_{33} = \frac{1}{\sqrt{\tau}} + \frac{1}{\tau} + \frac{2 + x_{n+1} + x_n}{\tau^2} + 1,
\]

\[
b_{ij} = \begin{cases}
\frac{\Gamma(i - 2 + 1/2)}{\sqrt{\tau}(i - 2)!}, & j = 1, \\
\sqrt{\tau} \left[\frac{\Gamma(i - j + 1/2)}{(i - j)!} - \frac{\Gamma(i - j - 1 + 1/2)}{(i - j - 1)!} \right] - \frac{1}{\tau}, & 2 \leq j \leq i - 2, \\
\sqrt{\tau} \left[\frac{\Gamma \left(1 + \frac{1}{2} \right) - \Gamma \left(\frac{1}{2} \right) }{\frac{1}{2}} \right] - \frac{1}{\tau}, & j = i - 1, \\
\frac{1}{\sqrt{\tau}} + \frac{1}{\tau} + \frac{2 + x_{n+1} + x_n}{\tau^2} + 1, & j = i, \\
0, & i < j \leq N + 1,
\end{cases}
\] (3.10)

for \(i = 4, 5, \ldots, N + 1 \) and

\[
\varphi_n^k = \left[3 + k\tau + \frac{16\sqrt{k\tau}}{5\sqrt{\pi}} + (1 + nh)2\pi^2k\tau \right](k\tau)^2\sin^2(\pi nh) \\
- (1 + nh)2\pi^2(k\tau)^3\cos^2(\pi nh) - 2\pi(k\tau)^3\sin(\pi nh)\cos(\pi nh).
\] (3.11)
So, we have the second-order difference equation with respect to n matrix coefficients. This type system was developed by Samarskii and Nikolaev [20]. To solve this difference equation we have applied a procedure for difference equation with respect to k matrix coefficients. Hence, we seek a solution of the matrix equation in the following form:

$$U_j = \alpha_{j+1} U_{j+1} + \beta_{j+1}, \quad U_M = (I - \alpha_M)^{-1} \beta_M, \quad j = M - 1, \ldots, 2, 1,$$

(3.12)

where α_j ($j = 1, 2, \ldots, M$) are $(N+1) \times (N+1)$ square matrices and β_j ($j = 1, 2, \ldots, M$) are $(N+1) \times 1$ column matrices defined by

$$\alpha_{j+1} = -(B + C \alpha_j)^{-1} A,$$
$$\beta_{j+1} = (B + C \alpha_j)^{-1} (D \varphi_j - C \beta_j), \quad j = 1, 2, \ldots, M - 1,$$

(3.13)

where $j = 1, 2, \ldots, M - 1$, α_1 is the $(N+1) \times (N+1)$ zero matrix and β_1 is the $(N+1) \times 1$ zero matrix.

Second, applying difference scheme (2.11), we obtain the second order of accuracy difference scheme in t and in x

$$u_n^k - u_n^{k-1} \frac{\tau}{\tau} + D^{1/2}_\tau u_n^k = \frac{1}{2} \left[(1 + x)n \frac{u_{n+1}^k - 2u_n^k + u_{n-1}^k}{h^2} + \frac{u_{n+1}^k - u_{n-1}^k}{2h} - u_n^k + (1 + x_n) \right] + \frac{u_{n+1}^{k-1} - 2u_n^{k-1} + u_{n-1}^{k-1}}{h^2} + \frac{u_{n+1}^{k-1} - u_{n-1}^{k-1}}{2h} - u_n^{k-1} = q_n^k,$$

(3.14)

$$q_n^k = f \left(t_k - \frac{\tau}{2}, x_n \right), \quad t_k = k\tau, \quad x_n = nh, 1 \leq k \leq N, 1 \leq n \leq M - 1,$$

$$u_0^k = 0, \quad 3u_M^k - 4u_{M-1}^k + u_{M-2}^k = 0, \quad 0 \leq k \leq N,$$

$$u_n^0 = 0, \quad 0 \leq n \leq M.$$

Here $D^{1/2}_\tau u_n^k$ is defined same as in (2.9). We get the system of equations in the matrix form

$$AU_{n+1} + BU_n + CU_{n-1} = D\varphi_n, \quad 1 \leq n \leq M - 1,$$

(3.15)

$$U_0 = \tilde{U}, \quad 3U_M - 4U_{M-1} + U_{M-2} = 0,$$
where

\[
A = \begin{bmatrix}
0 & 0 & 0 & \cdots & 0 & 0 \\
0 & a_n & a_n & 0 & \cdots & 0 \\
0 & 0 & a_n & a_n & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & a_n & 0 \\
0 & 0 & 0 & \cdots & a_n & a_n
\end{bmatrix}_{(N+1)\times(N+1)}, \tag{3.16}
\]

\[
B = \begin{bmatrix}
b_{11} & 0 & 0 & \cdots & 0 & 0 \\
b_{21} & b_{22} & 0 & \cdots & 0 & 0 \\
b_{31} & b_{32} & b_{33} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
b_{N1} & b_{N2} & b_{N3} & \cdots & b_{NN} & 0 \\
b_{N+1,1} & b_{N+1,2} & b_{N+1,3} & \cdots & b_{N+1,N} & b_{N+1,N+1}
\end{bmatrix}_{(N+1)\times(N+1)}, \tag{3.17}
\]

\[
C = \begin{bmatrix}
0 & 0 & 0 & \cdots & 0 & 0 \\
c_n & c_n & 0 & \cdots & 0 & 0 \\
0 & c_n & c_n & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & c_n & 0 \\
0 & 0 & 0 & \cdots & c_n & c_n
\end{bmatrix}_{(N+1)\times(N+1)}, \tag{3.18}
\]

\[
D = \begin{bmatrix}
0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0 \\
0 & 0 & 0 & \cdots & 0 & 1
\end{bmatrix}_{(N+1)\times(N+1)}, \tag{3.19}
\]

\[
\varphi_n = \begin{bmatrix}
\varphi_n^0 \\
\varphi_n^1 \\
\varphi_n^2 \\
\vdots \\
\varphi_n^{N-1} \\
\varphi_n^N
\end{bmatrix}_{(N+1)\times1}, \quad
U_q = \begin{bmatrix}
U_q^0 \\
U_q^1 \\
U_q^2 \\
\vdots \\
U_q^{N-1} \\
U_q^N
\end{bmatrix}_{(N+1)\times1}, \quad q = n \pm 1, n, \tag{3.20}
\]
\[a_n = -\frac{1}{2} \left(\frac{1 + x_n}{h^2} + \frac{1}{2h} \right), \quad c_n = \frac{1}{2} \left(\frac{1 + x_n}{h^2} - \frac{1}{2h} \right), \quad d = \frac{2}{\sqrt{\tau}} \]

\[
b_1(r) = \sqrt{r + \frac{1}{2}} - \sqrt{r - \frac{1}{2}}, \quad b_2(r) = -\frac{1}{3} \left[\left(r + \frac{1}{2} \right)^{3/2} - \left(r - \frac{1}{2} \right)^{3/2} \right],
\]

\[
b_{11} = 1, \quad b_{21} = -\frac{d\sqrt{2}}{3} - \frac{1}{\tau} + \frac{1 + x_n}{h^2} + \frac{1}{2'}, \quad b_{22} = \frac{d\sqrt{3}}{3} + \frac{1}{\tau} + \frac{1 + x_n}{h^2} + \frac{1}{2'}, \quad b_{31} = \frac{d\sqrt{6}}{5}, \quad b_{32} = \frac{d\sqrt{6}}{5} - \frac{1}{\tau} + \frac{1 + x_n}{h^2} + \frac{1}{2'}, \quad b_{33} = \frac{d\sqrt{6}}{5} + \frac{1}{\tau} + \frac{1 + x_n}{h^2} + \frac{1}{2'}, \quad b_{41} = d[1b_1(1) + b_2(1)], \quad b_{42} = d[-3b_1(1) - 2b_2(1)] - \frac{d}{6\sqrt{2}}, \quad b_{43} = d[2b_1(1) + b_2(1)] - 4\frac{d}{6\sqrt{2}} - \frac{1}{\tau} + \frac{1 + x_n}{h^2} + \frac{1}{2'}, \quad b_{44} = \frac{5d}{6\sqrt{2}} + \frac{1}{\tau} + \frac{1 + x_n}{h^2} + \frac{1}{2'}, \quad b_{51} = d[2b_1(2) + b_2(2)], \quad b_{52} = d[-5b_1(2) - 2b_2(2) + b_1(1) + b_2(1)], \quad b_{53} = d[3b_1(2) + b_2(2) - 3b_1(1) - 2b_2(1)] - \frac{d}{6\sqrt{2}}, \quad b_{54} = d[2b_1(1) + b_2(1)] - 4\frac{d}{6\sqrt{2}} - \frac{1}{\tau} + \frac{1 + x_n}{h^2} + \frac{1}{2'}, \quad b_{55} = \frac{5d}{6\sqrt{2}} + \frac{1}{\tau} + \frac{1 + x_n}{h^2} + \frac{1}{2'} \]

\[
b_{ij} = \begin{cases}
 d[(i - 3)b_1(i - 3) + b_2(i - 3)], & j = 1, \\
 d[(5 - 2i)b_1(i - 3) - 2b_2(i - 3) + (i - 4)b_1(i - 4) + b_2(i - 4)], & j = 2, \\
 d[(i - j + 1)b_1(i - j) + b_2(i - j) + (2j - 2i + 1)b_1(i - j - 1) - 2b_2(i - j - 1) + (i - j - 2)b_1(i - j - 2) + b_2(i - j - 2)], & 3 \leq j \leq i - 3, \\
 d[3b_1(2) + b_2(2) - 3b_1(1) - 2b_2(1)] - \frac{d}{6\sqrt{2}}, & j = i - 2, \\
 d[2b_1(1) + b_2(1)] - 4\frac{d}{6\sqrt{2}} - \frac{1}{\tau} + \frac{1 + x_n}{h^2} + \frac{1}{2'}, & j = i - 1, \\
 \frac{5d}{6\sqrt{2}} + \frac{1}{\tau} + \frac{1 + x_n}{h^2} + \frac{1}{2'}, & j = i, \quad i < j \leq N + 1, \\
 0, & j = i + 1, \end{cases}
\]

for \(i = 6, 7, \ldots, N + 1 \) and

\[
\varphi^k_n = \left[3 + k\tau + \frac{16\sqrt{k\tau}}{5\sqrt{\pi}} + (1 + nh)2\pi^2k\tau \right] (k\tau)^2\sin^2(\pi nh) - (1 + nh)2\pi^2(k\tau)^3\cos^2(\pi nh) - 2\pi(k\tau)^3\sin(\pi nh)\cos(\pi nh).
\]

For the solution of the matrix equation (3.15), we use the same algorithm as in the first order of accuracy difference scheme, where \(u_M = [3I - 4\alpha_M + \alpha_{M-1}\alpha_M]^{-1} * [(4I - \alpha_{M-1})\beta_M - \beta_{M-1}] \).
Example 3.2. We consider the initial-boundary-value problem

\[
\frac{\partial u(t, x)}{\partial t} + D_1^{1/2} u(t, x) - \frac{\partial}{\partial x} \left((1 + x) \frac{\partial u(t, x)}{\partial x} \right) + u(t, x) = f(t, x),
\]

\[
f(t, x) = \left[3 + t + \frac{16\sqrt{t}}{5\sqrt{\pi}} + (1 + x)2\pi^2 t \right] t^2 \sin^2 \pi x - (1 + x)2\pi^3 \cos^2 \pi x - 2\pi t^3 \sin \pi x \cos \pi x,
\]

for the one-dimensional fractional parabolic partial differential equation. The exact solution of problem (3.23) is

\[
u(t, x) = t^3 \sin^2 \pi x.
\]

First, applying difference scheme (2.7), we obtain

\[
\frac{u^k_n - u^{k-1}_n}{\tau} + \frac{1}{\sqrt{\pi}} \sum_{r=1}^{k} \frac{\Gamma(k - r + 1/2)}{(k - r)!} \frac{u^r_n - u^{r-1}_n}{\tau^{1/2}} - \frac{1}{h} \left[(1 + x_{n+1}) \frac{u^k_{n+1} - u^k_n}{h} - (1 + x_n) \frac{u^k_n - u^k_{n-1}}{h} \right] + u^k_n = q^k_n,
\]

\[
q^k_n = f(t_k, x_n), \quad t_k = k\tau, \quad 1 \leq k \leq N, \quad x_n = nh, \quad 1 \leq n \leq M - 1,
\]

\[
u^k_0 = u^1_0, \quad u^k_M = 0, \quad 0 \leq k \leq N, \quad u^0_n = 0, \quad 0 \leq n \leq M.
\]

We get the system of equations in the matrix form

\[
AU_{n+1} + BU_n + CU_{n-1} = Dq_n, \quad 1 \leq n \leq M - 1,
\]

\[
U_0 = U_1, \quad U_M = \bar{U}_M
\]

where matrices \(A, B, C, D, q_n, U_q\) \((q = n \mp 1, n)\) are defined same as in (3.5), (3.6), (3.7), (3.8), (3.9), respectively.

So, we have the second-order difference equation with respect to \(n\) matrix coefficients. To solve this difference equation we have applied a procedure for difference equation with
respect to k matrix coefficients. Hence, we seek a solution of the matrix equation in the following form:

$$U_j = \alpha_{j+1}U_{j+1} + \beta_{j+1}, \quad U_M = 0, \quad j = M - 1, \ldots, 2, 1,$$

(3.27)

where α_j ($j = 1, 2, \ldots, M$) are $(N + 1) \times (N + 1)$ square matrices and β_j ($j = 1, 2, \ldots, M$) are $(N + 1) \times 1$ column matrices defined by

$$\alpha_{j+1} = -(B + CA_j)^{-1}A,$$

$$\beta_{j+1} = (B + CA_j)^{-1}(D\varphi_j - C\beta_j), \quad j = 1, 2, \ldots, M - 1,$$

(3.28)

where $j = 1, 2, \ldots, M - 1$, α_1 is the $(N + 1) \times (N + 1)$ identity matrix and β_1 is the $(N + 1) \times 1$ zero matrix.

Second, applying the formulas

$$u_x(t_k, 0) = \frac{u_{1}^{k} - u_{0}^{k}}{h} - \frac{h}{2}u_{xx}(t_k, 0) + o\left(\tau^2\right), \quad 0 \leq k \leq N,$$

$$u_x(t_k, M) = \frac{3u_{M}^{k} - 4u_{M-1}^{k} + u_{M-2}^{k}}{2h} + o\left(\tau^2\right), \quad 0 \leq k \leq N,$$

$$u(t_k, 0) = \frac{u_{0}^{k+1} - u_{0}^{k-1}}{2\tau} + o\left(\tau^2\right), \quad 1 \leq k \leq N - 1,$$

$$u(t_N, 0) = \frac{3u_{0}^{N} - 4u_{0}^{N-1} + u_{0}^{N-2}}{2\tau} + o\left(\tau^2\right), \quad k = N,$$

(3.29)

and applying difference scheme (2.11), we obtain the second order of accuracy difference scheme in t and in x:

$$\frac{u_{n}^{k} - u_{n}^{k-1}}{\tau} + D_{x}^{1/2}u_{n}^{k} + \frac{1}{2}\left[\left(1 + x_n\right)\frac{u_{n+1}^{k} - 2u_{n}^{k} + u_{n-1}^{k}}{h^2} + \frac{u_{n+1}^{k} - u_{n-1}^{k}}{2h} - \frac{u_{n+1}^{k} - 2u_{n}^{k} + u_{n-1}^{k}}{2h}\right] = \varphi_{n}^{k},$$

$$\varphi_{n}^{k} = f\left(t_k - \frac{\tau}{2}, x_n\right), \quad t_k = k\tau, \quad x_n = nh, \quad 1 \leq k \leq N, \quad 1 \leq n \leq M - 1,$$

$$u_{0}^{0} = 0, \quad k = 0,$$

(3.30)

$$-\frac{h}{4\tau}u_{n}^{k+1} + \left[\frac{1}{h} + \frac{h}{2}D_{x}^{1/2}\right]u_{n}^{k-1} + \frac{h}{2}u_{n}^{k-1} = \frac{1}{h}u_{n}^{k} + \frac{h}{2}\varphi_{n}^{k}, \quad 1 \leq k \leq N - 1,$$

$$\frac{h}{4\tau}u_{0}^{N} - \frac{h}{2}u_{0}^{N-1} + \left[\frac{1}{h} + \frac{3h}{4}D_{x}^{1/2}\right]u_{0}^{N-1} = \frac{1}{h}u_{1}^{N} + \frac{h}{2}\varphi_{0}^{N}, \quad k = N,$$

$$u_{M}^{0} = 0, \quad 0 \leq k \leq N,$$

$$u_{n}^{0} = 0, \quad 0 \leq n \leq M.$$
Here \(D_t^{1/2} u_n^h \) is defined similar to (2.9). We get the system of equations in the matrix form

\[
AU_{n+1} + BU_n + CU_{n-1} = D\varphi_n, \quad 1 \leq n \leq M - 1,
\]

\[
EU_0 = FU_1 + R\varphi_0, \quad U_M = \tilde{0},
\]

(3.31)

where matrices \(A, \, B, \, C, \, D, \, \varphi_n, \, U_q \) \((q = n \pm 1, \, n)\) are defined same as in (3.16), (3.17), (3.18), (3.19), (3.20), respectively.

For the solution of the matrix equation (3.31), we use the same algorithm as in the first order of accuracy difference scheme, where

\[
u_M = \tilde{0}, \quad a_1 = E^{-1}F, \quad \beta_1 = E^{-1}R\varphi_0,
\]

\[
F = \begin{bmatrix}
0 & 0 & 0 & \cdots & 0 & 0 \\
0 & \frac{1}{h} & 0 & \cdots & 0 & 0 \\
0 & 0 & \frac{1}{h} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0 \\
0 & 0 & 0 & \cdots & 0 & \frac{1}{h}
\end{bmatrix}_{(N+1) \times (N+1)}, \quad R = \begin{bmatrix}
0 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{bmatrix}_{(N+1) \times (N+1)}
\]

\[
E = \begin{bmatrix}
e_{11} & 0 & 0 & \cdots & 0 & 0 \\
e_{21} & e_{22} & 0 & \cdots & 0 & 0 \\
e_{31} & e_{32} & e_{33} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
e_{N1} & e_{N2} & e_{N3} & \cdots & e_{NN} & 0 \\
e_{N+1,1} & e_{N+1,2} & e_{N+1,3} & \cdots & e_{N+1,N} & e_{N+1,N+1}
\end{bmatrix}_{(N+1) \times (N+1)}
\]

\[
e_{11} = 1, \quad e_{21} = \frac{h}{4\tau} - \frac{4h}{3\sqrt{\pi} \tau}, \quad e_{22} = \frac{1}{h} + \frac{h}{2} + \frac{4h}{3\sqrt{\pi} \tau}, \quad e_{23} = \frac{h}{4\tau},
\]

\[
e_{31} = \frac{2\sqrt{2}h}{15\sqrt{\pi} \tau}, \quad e_{32} = -\frac{16\sqrt{2}h}{15\sqrt{\pi} \tau} - \frac{h}{4\tau}, \quad e_{33} = \frac{1}{h} + \frac{h}{2} + \frac{14\sqrt{2}h}{15\sqrt{\pi} \tau}, \quad e_{34} = \frac{h}{4\tau},
\]

\[
e_{41} = \frac{dh}{2} \left[\left(1 + \frac{1}{2} \right) b_1(1) + b_2(1) \right],
\]

\[
e_{42} = \frac{dh}{2} \left[-4b_1(1) - 2b_2(1) + \frac{1}{2b_1}(0) + b_2(0) \right],
\]

\[
e_{43} = \frac{dh}{2} \left[\left(2 + \frac{1}{2} \right) b_1(1) + b_2(1) - 2 - 2 \left(-\frac{1}{3} \right) \right] - \frac{h}{4\tau},
\]

\[
e_{44} = \frac{1}{h} + \frac{h}{2} + \frac{dh}{2} \left[\left(1 + \frac{1}{2} \right) b_1(0) + b_2(0) \right], \quad e_{45} = \frac{h}{4\tau},
\]
\[
\begin{align*}
e_{51} &= \frac{dh}{2} \left[\left(2 + \frac{1}{2} \right) b_1(2) + b_2(2) \right], \\
e_{52} &= \frac{dh}{2} \left[-23b_1(2) - 2b_2(2) + \left(1 + \frac{1}{2} \right) b_1(1) + b_2(1) \right], \\
e_{53} &= \frac{dh}{2} \left[\left(2 + 1 + \frac{1}{2} \right) b_1(2) + b_2(2) - 22b_1(1) - 2b_2(1) + \frac{1}{2b_1} (0) + b_2(0) \right], \\
e_{54} &= \frac{dh}{2} \left[\left(1 + 1 + \frac{1}{2} \right) b_1(1) + b_2(1) - 2b_1(0) - 2b_2(0) \right] - \frac{h}{4\tau}, \\
e_{55} &= \frac{1}{h} + \frac{h}{2} + \frac{dh}{2} \left[\left(1 + \frac{1}{2} \right) b_1(0) + b_2(0) \right], \quad e_{56} = \frac{h}{4\tau}, \\
e_{ij} &= \begin{cases} \\
\frac{dh}{2} \left[\left(i - 3 + \frac{1}{2} \right) b_1(i-3) + b_2(i-3) \right], & j = 1, \\
\frac{dh}{2} \left[-2(i-2) b_1(i-3) - 2b_2(i-3) + \left(i - 4 + \frac{1}{2} \right) b_1(i-4) + b_2(i-4) \right], & j = 2, \\
\frac{dh}{2} \left[\left(i - j + 1 + \frac{1}{2} \right) b_1(i-j) + b_2(i-j) - 2(i-j) b_1(i-j-1) \\
-2b_2(i-j-1) + \left(i - j - 2 + \frac{1}{2} \right) b_1(i-j-2) + b_2(i-j-2) \right], & 3 \leq j \leq i-2, \\
-\frac{h}{4\tau} + \frac{dh}{2} \left[\left(2 + \frac{1}{2} \right) b_1(1) + b_2(1) - 2b_1(0) - 2b_2(0) \right], & j = i-1, \\
\frac{1}{h} + \frac{h}{2} + \frac{dh}{2} \left[\left(1 + \frac{1}{2} \right) b_1(0) + b_2(0) \right], & j = i, \\
\frac{h}{4\tau}, & j = i+1, \\
\frac{h}{4\tau} + \frac{dh}{2} \left[\left(i - N + 2 + \frac{1}{2} \right) b_1(i-N+1) + b_2(i-N+1) \\
-2(i-N+1) b_1(i-N) - 2b_2(i-N) + \left(i - N - 1 + \frac{1}{2} \right) b_1(i-N-1) + b_2(i-N-1) \right], & j = N-1, \\
-\frac{h}{4\tau} + \frac{dh}{2} \left[\left(2 + \frac{1}{2} \right) b_1(1) + b_2(1) - 2b_1(0) - 2b_2(0) \right], & j = N, \\
\frac{1}{h} + \frac{3h}{4\tau} + \frac{dh}{2} \left[\left(1 + \frac{1}{2} \right) b_1(0) + b_2(0) \right], & j = N+1, \\
0, & j > i+1,
\end{cases}
\end{align*}
\]

(3.32)

for \(i = 6, 7, \ldots, N + 1 \) and

\[
\varphi_0^k = -2\pi^2(k\tau)^3.
\]
Abstract and Applied Analysis

Table 1: Error analysis of first and second order of accuracy difference schemes for Example 3.1.

<table>
<thead>
<tr>
<th>Method</th>
<th>N = M = 25</th>
<th>N = M = 50</th>
<th>N = M = 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st order of accuracy</td>
<td>0.2553</td>
<td>0.1256</td>
<td>0.0622</td>
</tr>
<tr>
<td>2nd order of accuracy</td>
<td>0.0062</td>
<td>9.771 × 10^{-4}</td>
<td>1.963 × 10^{-4}</td>
</tr>
</tbody>
</table>

Table 2: Error analysis of first and second order of accuracy difference schemes for Example 3.2.

<table>
<thead>
<tr>
<th>Method</th>
<th>N = M = 25</th>
<th>N = M = 50</th>
<th>N = M = 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st order of accuracy</td>
<td>0.1653</td>
<td>0.0807</td>
<td>0.0399</td>
</tr>
<tr>
<td>2nd order of accuracy</td>
<td>0.0025</td>
<td>5.943 × 10^{-4}</td>
<td>1.453 × 10^{-4}</td>
</tr>
</tbody>
</table>

3.1. Error Analysis

Finally, we give the results of the numerical analysis. The error is computed by the following formula:

\[E_M^N = \max_{1 \leq k \leq N, 1 \leq n \leq M-1} |u(t_k, x_n) - u_n^k|, \]

(3.34)

where \(u(t_k, x_n) \) represents the exact solution and \(u_n^k \) represents the numerical solutions of these difference schemes at \((t_k, x_n)\). The numerical solutions are recorded for different values of \(N \) and \(M \). Tables 1 and 2 are constructed for \(N = M = 25, 50, \) and 100, respectively.

The results in Tables 1 and 2 show that, by using the Crank-Nicholson difference scheme, more accurate approximate results can be obtained rather than the first order of accuracy difference scheme.

Acknowledgment

The author is grateful to Professor Allaberen Ashyralyev (Fatih University, Turkey) for his comments and suggestions to improve the quality of the paper.

References

Abstract and Applied Analysis
