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Abstract. 
The Bäcklund transformations and abundant exact explicit solutions
for a class of nonlinear wave equation are obtained by the extended homogeneous balance
method. These solutions include the solitary wave solution of rational function,
the solitary wave solutions, singular solutions, and the periodic wave solutions of triangle
function type. In addition to rederiving some known solutions, some entirely new
exact solutions are also established. Explicit and exact particular solutions of many well-known
nonlinear evolution equations which are of important physical significance, such as
Kolmogorov-Petrovskii-Piskunov equation, FitzHugh-Nagumo equation, Burgers-Huxley
equation, Chaffee-Infante reaction diffusion equation, Newell-Whitehead equation, Fisher
equation, Fisher-Burgers equation, and an isothermal autocatalytic system, are obtained
as special cases.


1. Introduction
The existence of solitary wave solutions and periodic wave solutions is an important question in the study of nonlinear evolution equations. The methods of finding such solutions for integrable equations are well known: the solitary wave solutions can be found by inverse scattering transformation [1] and the Hirota bilinear method [2], and the periodic solutions can be represented by sums of equally spaced solitons represented by sech-function [3, 4]. Weiss et al. developed the singular manifold method to introduce the Painlevé property in the theory of partial differential equations [5]. The beauty of the singular manifold method is that this expansion for a nonlinear PDE contains a lot of information about this PDE. For an equation that possesses the Painlevé property the singular manifold method leads to the Bäcklund transformation, the Lax pair, and Miura transformations and makes connections to the Hirota bilinear method, Laplace-Darboux transformations [6]. Most nonlinear nonintegrable equations do not possess the Painlevé property; that is, they are not free from “movable” critical singularities. For some nonintegrable nonlinear equations it is still possible to obtain single-value expansions by putting a constraint on the arbitrary function in the Painlevé expansion. Such equations are said to be partially integrable, and Weiss [7] conjectured that these systems can be reduced to integrable equations. Another treatment of the partially integrable systems was offered by Hietarinta [8] by the generalization of the Hirota bilinear formalism for nonintegrable systems. He conjectured that all completely integrable PDEs can be put into a bilinear form. There are also nonintegrable equations that can be put into the bilinear form and then the partial integrability is associated with the levels of integrability defined by the number of solitons that can be combined to an N-soliton solution. Partial integrability then means that the equation allows a restricted number of multisoliton solutions. In [9] Berloff and Howard suggested joining these treatments of the partial nonintegrability and using the Painlevé expansion truncated before the “constant term” level as the transform for reducing a nonintegrable PDE to a multilinear equation.
The Bäcklund transformation is not only a useful tool to obtain exact solutions of some soliton equation from a trivial “seed” but also related to infinite conservation laws and inverse scattering method [1]. In [10–12], Wang Mingliang proposed the homogeneous balance method—an effective method solving nonlinear partial differential equations. Fan and Zhang extended the homogeneous balance method and proposed an approach to obtain Bäcklund transformation for the nonlinear evolution equations [13]. In a recent paper [14], Shang obtained the Bäcklund transformation, a Lax pair, and some new explicit exact solutions of Hirota-Satsuma SWW equation (2.3) by means of the Bäcklund transformations and the extension of the hyperbolic function method presented in [15].
In this paper we investigate a general nonintegrable nonlinear convection-diffusion equation
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 are arbitrary real constants. Equation (1.1) include many well-known nonlinear equations that are with applied background as special examples, such as Burgers equation, Kolmogorov-Petrovskii-Piskunov equation, FitzHugh-Nagumo equation, Burgers-Huxley equation, Chaffee-Infante reaction-diffusion equation, Newell-Whitehead equation, Fisher equation, Fisher-Burgers equation, and an isothermal autocatalytic system. The extended homogeneous balance method is applied for a reliable treatment of the nonintegrable nonlinear equation (1.1). Some Bäcklund transformations and abundant explicit exact particular solutions of the nonintegrable nonlinear equation (1.1) are obtained by means of the extended homogeneous balance method. Some explicit exact solutions obtained here have more general form than some known solutions, and some explicit exact solutions obtained here are entirely new solutions.
2. Bäcklund Transformations for the Nonintegrable Nonlinear Wave Equation
According to the extended homogeneous balance method, we suppose that the solution of (1.1) is of the form
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From (2.1), we have
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3. Exact Explicit Solutions to (1.1)
In this section we want to obtain abundant exact explicit particular solutions of (1.1) from the Bäcklund transformation (2.14) and a trivial solution of (1.1).
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 in (2.16) is of the form
	
 		
 			
				(
				3
				.
				1
				)
			
 		
	

	
		
			
				
				𝜙
				(
				𝑥
				,
				𝑡
				)
				=
				𝐴
				s
				i
				n
				h
				𝑘
				𝑥
				+
				𝜔
				𝑡
				+
				𝜉
			

			

				0
			

			
				
				
				+
				𝐵
				c
				o
				s
				h
				𝑘
				𝑥
				+
				𝜔
				𝑡
				+
				𝜉
			

			

				0
			

			
				
				+
				𝐶
			

		
	

					with 
	
		
			

				𝐴
			

		
	
, 
	
		
			

				𝐵
			

		
	
, 
	
		
			

				𝐶
			

		
	
, 
	
		
			

				𝑘
			

		
	
, 
	
		
			

				𝜔
			

		
	
, and 
	
		
			

				𝜉
			

			

				0
			

		
	
 constants to be determined. Substituting (3.1) into (2.16), one gets a set of nonlinear algebraic equation
	
 		
 			
				(
				3
				.
				2
				)
			
 		
	

	
		
			
				𝐴
				𝜔
				−
				𝛾
				𝜆
				𝐴
				𝑘
				−
				(
				3
				+
				𝛼
				𝜆
				)
				𝐵
				𝑘
			

			

				2
			

			
				=
				0
				,
				𝐵
				𝜔
				−
				𝛾
				𝜆
				𝐵
				𝑘
				−
				(
				3
				+
				𝛼
				𝜆
				)
				𝐴
				𝑘
			

			

				2
			

			
				=
				0
				,
				𝐴
				𝜔
				−
				𝐵
				𝑘
			

			

				2
			

			
				+
				𝛽
				𝐵
				=
				0
				,
				𝐵
				𝜔
				−
				𝐴
				𝑘
			

			

				2
			

			
				+
				𝛽
				𝐴
				=
				0
				,
				𝛽
				𝐶
				=
				𝐸
				.
			

		
	

					Solving (3.2), we have the following.
Case 1. 
	
		
			
				𝐴
				=
				𝐵
			

		
	
, 
	
		
			
				𝐶
				=
				𝐸
				/
				𝛽
			

		
	
, 
	
		
			
				𝜔
				=
				𝑘
			

			

				2
			

			
				−
				𝛽
			

		
	
, and 
	
		
			

				𝑘
			

		
	
 is a root of second-order algebraic equation 
	
		
			
				(
				2
				+
				𝛼
				𝜆
				)
				𝑘
			

			

				2
			

			
				+
				𝛾
				𝜆
				𝑘
				+
				𝛽
				=
				0
			

		
	
.
Case 2. 
	
		
			
				𝐴
				=
				−
				𝐵
			

		
	
, 
	
		
			
				𝐶
				=
				𝐸
				/
				𝛽
			

		
	
, 
	
		
			
				𝜔
				=
				𝛽
				−
				𝑘
			

			

				2
			

		
	
, and 
	
		
			

				𝑘
			

		
	
 is a root of second-order algebraic equation 
	
		
			
				(
				2
				+
				𝛼
				𝜆
				)
				𝑘
			

			

				2
			

			
				−
				𝛾
				𝜆
				𝑘
				+
				𝛽
				=
				0
			

		
	
.
Thus we obtain the following explicit exact solutions of (1.1) given by
	
 		
 			
				(
				3
				.
				3
				)
			
 		
	

	
		
			
				
				𝑢
				(
				𝑥
				,
				𝑡
				)
				=
				𝜆
				𝑘
				e
				x
				p
				𝑘
				𝑥
				+
				𝜔
				t
				+
				𝜉
			

			

				0
			

			

				
			

			
				
			
			
				
				e
				x
				p
				𝑘
				𝑥
				+
				𝜔
				𝑡
				+
				𝜉
			

			

				0
			

			
				
				,
				+
				𝐶
			

		
	

					where 
	
		
			
				√
				𝜆
				=
				(
				𝛼
				±
			

			
				
			
			

				𝛼
			

			

				2
			

			
				+
				8
				𝛿
				)
				/
				2
				𝛿
			

		
	
, 
	
		
			
				𝜔
				=
				𝑘
			

			

				2
			

			
				−
				𝛽
			

		
	
, 
	
		
			

				𝑘
			

		
	
 is a root of second-order algebraic equation 
	
		
			
				(
				2
				+
				𝛼
				𝜆
				)
				𝑘
			

			

				2
			

			
				+
				𝛾
				𝜆
				𝑘
				+
				𝛽
				=
				0
			

		
	
, 
	
		
			
				𝐶
				≠
				0
			

		
	
, and 
	
		
			

				𝜉
			

			

				0
			

		
	
 are arbitrary constants.
We can also obtain the following explicit exact solutions of (1.1) given by
	
 		
 			
				(
				3
				.
				4
				)
			
 		
	

	
		
			
				1
				𝑢
				(
				𝑥
				,
				𝑡
				)
				=
				𝜆
				𝑘
			

			
				
			
			
				
				𝐶
				e
				x
				p
				𝑘
				𝑥
				+
				𝜔
				𝑡
				+
				𝜉
			

			

				0
			

			
				
				,
				−
				1
			

		
	

					where 
	
		
			
				√
				𝜆
				=
				(
				𝛼
				±
			

			
				
			
			

				𝛼
			

			

				2
			

			
				+
				8
				𝛿
				)
				/
				2
				𝛿
			

		
	
, 
	
		
			
				𝜔
				=
				𝛽
				−
				𝑘
			

			

				2
			

		
	
, 
	
		
			

				𝑘
			

		
	
 is a root of second-order algebraic equation 
	
		
			
				(
				2
				+
				𝛼
				𝜆
				)
				𝑘
			

			

				2
			

			
				−
				𝛾
				𝜆
				𝑘
				+
				𝛽
				=
				0
			

		
	
, 
	
		
			
				𝐶
				≠
				0
			

		
	
, and 
	
		
			

				𝜉
			

			

				0
			

		
	
 are arbitrary constants.
By direct computation, we readily obtain the following two useful formulas:
	
 		
 			
				(
				3
				.
				5
				)
			
 			
				(
				3
				.
				6
				)
			
 		
	

	
		
			
				e
				x
				p
				(
				𝜉
				)
			

			
				
			
			
				=
				⎧
				⎪
				⎪
				⎨
				⎪
				⎪
				⎩
				1
				𝐶
				+
				e
				x
				p
				(
				𝜉
				)
				1
				,
				f
				o
				r
				𝐶
				=
				0
				,
			

			
				
			
			
				2
				
				1
				t
				a
				n
				h
			

			
				
			
			
				2
				
				1
				(
				𝜉
				−
				l
				n
				𝐶
				)
				+
				1
				,
				f
				o
				r
				𝐶
				>
				0
				,
			

			
				
			
			
				2
				
				1
				c
				o
				t
				h
			

			
				
			
			
				2
				
				1
				(
				𝜉
				−
				l
				n
				(
				−
				𝐶
				)
				)
				+
				1
				,
				f
				o
				r
				𝐶
				<
				0
				,
			

			
				
			
			
				=
				⎧
				⎪
				⎪
				⎨
				⎪
				⎪
				⎩
				1
				𝐶
				e
				x
				p
				(
				𝜉
				)
				−
				1
				−
				1
				,
				f
				o
				r
				𝐶
				=
				0
				,
			

			
				
			
			
				2
				
				1
				c
				o
				t
				h
			

			
				
			
			
				2
				
				1
				(
				𝜉
				+
				l
				n
				𝐶
				)
				−
				1
				,
				f
				o
				r
				𝐶
				>
				0
				,
			

			
				
			
			
				2
				
				1
				t
				a
				n
				h
			

			
				
			
			
				2
				
				(
				𝜉
				+
				l
				n
				(
				−
				𝐶
				)
				)
				−
				1
				,
				f
				o
				r
				𝐶
				<
				0
				,
			

		
	

					where 
	
		
			

				𝐶
			

		
	
 is arbitrary.
Thanks to the two formulas (3.5) and (3.6), we can assert.
The solutions (3.3) ((3.4), resp.) are soliton solutions of kink type in the case of 
	
		
			
				𝐶
				>
				0
			

		
	
 (
	
		
			
				𝐶
				<
				0
			

		
	
, resp.).
The solutions (3.3) ((3.4), resp.) are soliton-like solutions of singular type in the csae of 
	
		
			
				𝐶
				<
				0
			

		
	
 (
	
		
			
				𝐶
				>
				0
			

		
	
, resp.).
Analogously, we assume that 
	
		
			

				𝜙
			

		
	
 in (2.16) is of the form
	
 		
 			
				(
				3
				.
				7
				)
			
 		
	

	
		
			
				
				𝜙
				(
				𝑥
				,
				𝑡
				)
				=
				𝐴
				s
				i
				n
				𝑘
				𝑥
				+
				𝜔
				𝑡
				+
				𝜉
			

			

				0
			

			
				
				
				+
				𝐵
				c
				o
				s
				𝑘
				𝑥
				+
				𝜔
				𝑡
				+
				𝜉
			

			

				0
			

			
				
				+
				𝐶
			

		
	

					with 
	
		
			

				𝐴
			

		
	
, 
	
		
			

				𝐵
			

		
	
, 
	
		
			

				𝐶
			

		
	
, 
	
		
			

				𝑘
			

		
	
, 
	
		
			

				𝜔
			

		
	
, and 
	
		
			

				𝜉
			

			

				0
			

		
	
 constants to be determined. Substituting (3.7) into (2.16), one gets a set of nonlinear algebraic equation
	
 		
 			
				(
				3
				.
				8
				)
			
 		
	

	
		
			
				𝐴
				𝜔
				−
				𝛾
				𝜆
				𝐴
				𝑘
				+
				(
				3
				+
				𝛼
				𝜆
				)
				𝐵
				𝑘
			

			

				2
			

			
				=
				0
				,
				−
				𝐵
				𝜔
				+
				𝛾
				𝜆
				𝐵
				𝑘
				+
				(
				3
				+
				𝛼
				𝜆
				)
				𝐴
				𝑘
			

			

				2
			

			
				=
				0
				,
				𝐴
				𝜔
				+
				𝐵
				𝑘
			

			

				2
			

			
				+
				𝛽
				𝐵
				=
				0
				,
				−
				𝐵
				𝜔
				+
				𝐴
				𝑘
			

			

				2
			

			
				+
				𝛽
				𝐴
				=
				0
				,
				𝛽
				𝐶
				=
				𝐸
				.
			

		
	

					Solving (3.8), we have the following.
Case 1. 
	
		
			
				𝐴
				=
				𝐵
				𝑖
			

		
	
, 
	
		
			
				𝐶
				=
				𝐸
				/
				𝛽
			

		
	
, 
	
		
			
				𝜔
				=
				(
				𝑘
			

			

				2
			

			
				+
				𝛽
				)
				𝑖
			

		
	
, and 
	
		
			

				𝑘
			

		
	
 is a root of second order algebraic equation 
	
		
			
				(
				2
				+
				𝛼
				𝜆
				)
				𝑘
			

			

				2
			

			
				−
				𝛾
				𝜆
				𝑘
				𝑖
				−
				𝛽
				=
				0
			

		
	
, 
	
		
			
				√
				𝑖
				=
			

			
				
			
			
				−
				1
			

		
	
.
Case 2. 
	
		
			
				𝐴
				=
				−
				𝐵
				𝑖
			

		
	
, 
	
		
			
				𝐶
				=
				𝐸
				/
				𝛽
			

		
	
, 
	
		
			
				𝜔
				=
				−
				𝑖
				(
				𝑘
			

			

				2
			

			
				+
				𝛽
				)
			

		
	
, and 
	
		
			

				𝑘
			

		
	
 is a root of second order algebraic equation 
	
		
			
				(
				2
				+
				𝛼
				𝜆
				)
				𝑘
			

			

				2
			

			
				+
				𝛾
				𝜆
				𝑘
				𝑖
				−
				𝛽
				=
				0
			

		
	
, 
	
		
			
				√
				𝑖
				=
			

			
				
			
			
				−
				1
			

		
	
.
According to the result of Case 1, from (2.15) and (3.7), we obtain the exact explicit solutions of (1.1) given by
	
 		
 			
				(
				3
				.
				9
				)
			
 		
	

	
		
			
				𝑢
				(
				𝑥
				,
				𝑡
				)
				=
				𝜆
				𝑘
				𝑖
				e
				x
				p
				(
				𝑖
				𝜉
				)
			

			
				
			
			
				,
				e
				x
				p
				(
				𝑖
				𝜉
				)
				+
				𝐶
			

		
	

					where 
	
		
			
				√
				𝜆
				=
				(
				𝛼
				±
			

			
				
			
			

				𝛼
			

			

				2
			

			
				+
				8
				𝛿
				)
				/
				2
				𝛿
			

		
	
, 
	
		
			
				𝜉
				=
				𝑘
				𝑥
				+
				𝜔
				𝑡
				+
				𝜉
			

			

				0
			

		
	
, 
	
		
			
				𝜔
				=
				𝑖
				(
				𝑘
			

			

				2
			

			
				+
				𝛽
				)
			

		
	
, 
	
		
			

				𝑘
			

		
	
 is a root of second-order algebraic equation 
	
		
			
				(
				2
				+
				𝛼
				𝜆
				)
				𝑘
			

			

				2
			

			
				−
				𝛾
				𝜆
				𝑘
				𝑖
				−
				𝛽
				=
				0
			

		
	
, 
	
		
			
				√
				𝑖
				=
			

			
				
			
			
				−
				1
			

		
	
.
By the result of Case 2 and (2.15), (3.7), we can obtain the following exact explicit solutions of (1.1) given by
	
 		
 			
				(
				3
				.
				1
				0
				)
			
 		
	

	
		
			
				1
				𝑢
				(
				𝑥
				,
				𝑡
				)
				=
				(
				−
				𝜆
				𝑘
				𝑖
				)
			

			
				
			
			
				,
				1
				+
				𝐶
				e
				x
				p
				(
				𝑖
				𝜉
				)
			

		
	

					where 
	
		
			
				√
				𝜆
				=
				(
				𝛼
				±
			

			
				
			
			

				𝛼
			

			

				2
			

			
				+
				8
				𝛿
				)
				/
				2
				𝛿
			

		
	
, 
	
		
			
				𝜉
				=
				𝑘
				𝑥
				+
				𝜔
				𝑡
				+
				𝜉
			

			

				0
			

		
	
, 
	
		
			
				𝜔
				=
				(
				−
				𝑖
				)
				(
				𝑘
			

			

				2
			

			
				+
				𝛽
				)
			

		
	
, 
	
		
			

				𝑘
			

		
	
 is a root of second-order algebraic equation 
	
		
			
				(
				2
				+
				𝛼
				𝜆
				)
				𝑘
			

			

				2
			

			
				+
				𝛾
				𝜆
				𝑘
				𝑖
				−
				𝛽
				=
				0
			

		
	
, 
	
		
			
				√
				𝑖
				=
			

			
				
			
			
				−
				1
			

		
	
.
Analogously, we have the following two useful formulas:
	
 		
 			
				(
				3
				.
				1
				1
				)
			
 			
				(
				3
				.
				1
				2
				)
			
 		
	

	
		
			
				e
				x
				p
				𝑖
				(
				𝜉
				)
			

			
				
			
			
				=
				⎧
				⎪
				⎪
				⎨
				⎪
				⎪
				⎩
				1
				𝐶
				+
				e
				x
				p
				𝑖
				(
				𝜉
				)
				1
				,
				f
				o
				r
				𝐶
				=
				0
				,
			

			
				
			
			
				2
				
				1
				𝑖
				t
				a
				n
			

			
				
			
			
				2
				
				1
				(
				𝜉
				+
				𝑖
				l
				n
				𝐶
				)
				+
				1
				,
				f
				o
				r
				𝐶
				>
				0
				,
			

			
				
			
			
				2
				
				1
				−
				𝑖
				c
				o
				t
			

			
				
			
			
				2
				
				1
				(
				𝜉
				+
				𝑖
				l
				n
				(
				−
				𝐶
				)
				)
				+
				1
				,
				f
				o
				r
				𝐶
				<
				0
				,
			

			
				
			
			
				=
				⎧
				⎪
				⎪
				⎨
				⎪
				⎪
				⎩
				1
				𝐶
				e
				x
				p
				𝑖
				(
				𝜉
				)
				+
				1
				1
				,
				f
				o
				r
				𝐶
				=
				0
				,
			

			
				
			
			
				2
				
				1
				1
				−
				𝑖
				t
				a
				n
			

			
				
			
			
				2
				
				1
				(
				𝜉
				−
				𝑖
				l
				n
				𝐶
				)
				,
				f
				o
				r
				𝐶
				>
				0
				,
			

			
				
			
			
				2
				
				1
				1
				+
				𝑖
				c
				o
				t
			

			
				
			
			
				2
				
				(
				𝜉
				−
				𝑖
				l
				n
				(
				−
				𝐶
				)
				)
				,
				f
				o
				r
				𝐶
				<
				0
				.
			

		
	

Due to the formula (3.11), we have from(3.9)
	
 		
 			
				(
				3
				.
				1
				3
				)
			
 		
	

	
		
			
				⎧
				⎪
				⎨
				⎪
				⎩
				−
				𝑢
				(
				𝑥
				,
				𝑡
				)
				=
				𝜆
				𝑘
			

			
				
			
			
				2
				
				1
				t
				a
				n
			

			
				
			
			
				2
				
				𝑘
				𝑥
				+
				𝜔
				𝑡
				+
				𝜉
			

			

				0
			

			
				
				
				+
				+
				𝑖
				l
				n
				(
				𝐶
				)
				𝜆
				𝑘
				𝑖
			

			
				
			
			
				2
				,
				f
				o
				r
				𝐶
				>
				0
				,
				𝜆
				𝑘
			

			
				
			
			
				2
				
				1
				c
				o
				t
			

			
				
			
			
				2
				
				𝑘
				𝑥
				+
				𝜔
				𝑡
				+
				𝜉
			

			

				0
			

			
				
				
				+
				+
				𝑖
				l
				n
				(
				−
				𝐶
				)
				𝜆
				𝑘
				𝑖
			

			
				
			
			
				2
				,
				f
				o
				r
				𝐶
				<
				0
				,
			

		
	

					where 
	
		
			
				√
				𝜆
				=
				(
				𝛼
				±
			

			
				
			
			

				𝛼
			

			

				2
			

			
				+
				8
				𝛿
				)
				/
				2
				𝛿
			

		
	
, 
	
		
			
				𝜉
				=
				𝑘
				𝑥
				+
				𝜔
				𝑡
				+
				𝜉
			

			

				0
			

		
	
, 
	
		
			
				𝜔
				=
				𝑖
				(
				𝑘
			

			

				2
			

			
				+
				𝛽
				)
			

		
	
, 
	
		
			

				𝑘
			

		
	
 is a root of second-order algebraic equation 
	
		
			
				(
				2
				+
				𝛼
				𝜆
				)
				𝑘
			

			

				2
			

			
				−
				𝛾
				𝜆
				𝑘
				𝑖
				−
				𝛽
				=
				0
			

		
	
, 
	
		
			
				√
				𝑖
				=
			

			
				
			
			
				−
				1
			

		
	
.
Owing to the formula (3.12), we have from  (3.10)
	
 		
 			
				(
				3
				.
				1
				4
				)
			
 		
	

	
		
			
				⎧
				⎪
				⎨
				⎪
				⎩
				−
				𝑢
				(
				𝑥
				,
				𝑡
				)
				=
				𝜆
				𝑘
			

			
				
			
			
				2
				
				1
				t
				a
				n
			

			
				
			
			
				2
				
				𝑘
				𝑥
				+
				𝜔
				𝑡
				+
				𝜉
			

			

				0
			

			
				
				
				−
				−
				𝑖
				l
				n
				(
				𝐶
				)
				𝜆
				𝑘
				𝑖
			

			
				
			
			
				2
				,
				f
				o
				r
				𝐶
				>
				0
				,
				𝜆
				𝑘
			

			
				
			
			
				2
				
				1
				c
				o
				t
			

			
				
			
			
				2
				
				𝑘
				𝑥
				+
				𝜔
				𝑡
				+
				𝜉
			

			

				0
			

			
				
				
				−
				−
				𝑖
				l
				n
				(
				−
				𝐶
				)
				𝜆
				𝑘
				𝑖
			

			
				
			
			
				2
				,
				f
				o
				r
				𝐶
				<
				0
				,
			

		
	

					where 
	
		
			
				√
				𝜆
				=
				(
				𝛼
				±
			

			
				
			
			

				𝛼
			

			

				2
			

			
				+
				8
				𝛿
				)
				/
				2
				𝛿
			

		
	
, 
	
		
			
				𝜉
				=
				𝑘
				𝑥
				+
				𝜔
				𝑡
				+
				𝜉
			

			

				0
			

		
	
, 
	
		
			
				𝜔
				=
				(
				−
				𝑖
				)
				(
				𝑘
			

			

				2
			

			
				+
				𝛽
				)
			

		
	
, 
	
		
			

				𝑘
			

		
	
 is a root of second-order algebraic equation 
	
		
			
				(
				2
				+
				𝛼
				𝜆
				)
				𝑘
			

			

				2
			

			
				+
				𝛾
				𝜆
				𝑘
				𝑖
				−
				𝛽
				=
				0
			

		
	
, 
	
		
			
				√
				𝑖
				=
			

			
				
			
			
				−
				1
			

		
	
.
By virtue of the homogeneous property of (2.18), we can expect that 
	
		
			

				𝜙
			

		
	
 is of the linear function form
	
 		
 			
				(
				3
				.
				1
				5
				)
			
 		
	

	
		
			
				𝜙
				(
				𝑥
				,
				𝑡
				)
				=
				𝑘
				𝑥
				+
				𝜔
				𝑡
				+
				𝜉
			

			

				0
			

			

				,
			

		
	

					with 
	
		
			

				𝑘
			

		
	
 and 
	
		
			

				𝜔
			

		
	
, 
	
		
			

				𝜉
			

			

				0
			

		
	
 constants to be determined. Substituting (3.15) into (2.18), we find that (3.15) satisfies (2.18), provided that 
	
		
			

				𝑘
			

		
	
 and 
	
		
			

				𝜔
			

		
	
 satisfy the following algebraic equations:
	
 		
 			
				(
				3
				.
				1
				6
				)
			
 		
	

	
		
			
				
				𝜔
				+
				𝛼
				𝑢
			

			

				1
			

			
				−
				𝛾
				𝜆
				−
				3
				𝛿
				𝜆
				𝑢
			

			

				1
			

			
				
				𝑘
				=
				0
				,
				𝛽
				𝑘
				+
				2
				𝛾
				𝑘
				𝑢
			

			

				1
			

			
				+
				3
				𝛿
				𝑘
				𝑢
			

			
				2
				1
			

			
				=
				0
				,
			

		
	

					where 
	
		
			

				𝑢
			

			

				1
			

			
				√
				=
				(
				−
				𝛾
				±
			

			
				
			
			
				Δ
				)
				/
				2
				𝛿
			

		
	
, 
	
		
			
				√
				𝜆
				=
				(
				𝛼
				±
			

			
				
			
			

				𝛼
			

			

				2
			

			
				+
				8
				𝛿
				)
				/
				2
				𝛿
			

		
	
, 
	
		
			
				Δ
				=
				𝛾
			

			

				2
			

			
				−
				4
				𝛽
				𝛿
			

		
	
. Solving (3.16), we obtain that
	
 		
 			
				(
				3
				.
				1
				7
				)
			
 		
	

	
		
			
				√
				𝜔
				=
				𝛼
				∓
			

			
				
			
			

				𝛼
			

			

				2
			

			
				+
				8
				𝛿
			

			
				
			
			
				4
				𝛿
				𝛾
				𝑘
				,
				𝑘
				=
				a
				r
				b
				i
				t
				r
				a
				r
				y
				c
				o
				n
				s
				t
				a
				n
				t
				,
				𝑢
			

			

				1
			

			
				𝛾
				=
				−
			

			
				
			
			
				,
				2
				𝛿
			

		
	

					provided that coefficients 
	
		
			

				𝛽
			

		
	
, 
	
		
			

				𝛾
			

		
	
, and 
	
		
			

				𝛿
			

		
	
 of (1.1) satisfy condition 
	
		
			

				𝛾
			

			

				2
			

			
				=
				4
				𝛽
				𝛿
			

		
	
.
Substituting (3.15) with (3.17) into (2.17), we obtain the exact particular solutions of  (1.1)
	
 		
 			
				(
				3
				.
				1
				8
				)
			
 		
	

	
		
			
				𝛾
				𝑢
				(
				𝑥
				,
				𝑡
				)
				=
				−
			

			
				
			
			
				+
				√
				2
				𝛿
				𝛼
				±
			

			
				
			
			

				𝛼
			

			

				2
			

			
				+
				8
				𝛿
			

			
				
			
			
				1
				2
				𝛿
			

			
				
			
			
				√
				𝑥
				+
				
				
				𝛼
				∓
			

			
				
			
			

				𝛼
			

			

				2
			

			
				
				
				+
				8
				𝛿
				/
				4
				𝛿
				𝛾
				𝑡
				+
				𝜉
			

			

				0
			

			

				.
			

		
	

Now we suppose that (2.18) has solutions of the form (3.1) substituting (3.1) into (2.18), one gets a set of algebraic equations:
						
	
 		
 			
				(
				3
				.
				1
				9
				)
			
 		
	

	
		
			
				
				𝐴
				𝜔
				+
				𝛼
				𝑢
			

			

				1
			

			
				−
				𝛾
				𝜆
				−
				3
				𝛿
				𝜆
				𝑢
			

			

				1
			

			
				
				𝐴
				𝑘
				−
				(
				3
				+
				𝛼
				𝜆
				)
				𝐵
				𝑘
			

			

				2
			

			
				
				=
				0
				,
				𝐵
				𝜔
				+
				𝛼
				𝑢
			

			

				1
			

			
				−
				𝛾
				𝜆
				−
				3
				𝛿
				𝜆
				𝑢
			

			

				1
			

			
				
				𝐵
				𝑘
				−
				(
				3
				+
				𝛼
				𝜆
				)
				𝐴
				𝑘
			

			

				2
			

			
				=
				0
				,
				𝐴
				𝑘
				𝜔
				−
				𝐵
				𝑘
			

			

				3
			

			
				+
				𝛼
				𝐴
				𝑘
			

			

				2
			

			
				+
				𝛽
				𝐵
				𝑘
				+
				2
				𝛾
				𝑢
			

			

				1
			

			
				𝐵
				k
				+
				3
				𝛿
				𝑢
			

			
				2
				1
			

			
				𝐵
				𝑘
				=
				0
				,
				𝐵
				𝑘
				𝜔
				−
				𝐴
				𝑘
			

			

				3
			

			
				+
				𝛼
				𝐵
				𝑘
			

			

				2
			

			
				+
				𝛽
				𝐴
				𝑘
				+
				2
				𝛾
				𝑢
			

			

				1
			

			
				𝐴
				𝑘
				+
				3
				𝛿
				𝑢
			

			
				2
				1
			

			
				𝐴
				𝑘
				=
				0
				.
			

		
	

					In order to obtain nontrivial solutions of (1.1), we need to require that  
	
		
			

				𝑘
			

		
	
, 
	
		
			

				𝜔
			

		
	
 are all nonzero constants. Solving (3.19), one gets the following solutions.
Case 1. One has
							
	
 		
 			
				(
				3
				.
				2
				0
				)
			
 		
	

	
		
			
				𝐴
				=
				𝐵
				,
				𝐶
				=
				a
				r
				b
				i
				t
				r
				a
				r
				y
				c
				o
				n
				s
				t
				a
				n
				t
				,
				𝜔
				=
				𝑘
			

			

				2
			

			
				−
				𝛼
				𝑘
				−
				𝛽
				−
				2
				𝛾
				𝑢
			

			

				1
			

			
				−
				3
				𝛿
				𝑢
			

			
				2
				1
			

			
				,
				o
				r
				𝜔
				=
				(
				3
				+
				𝛼
				𝜆
				)
				𝑘
			

			

				2
			

			
				+
				
				𝛾
				𝜆
				+
				3
				𝛿
				𝜆
				𝑢
			

			

				1
			

			
				−
				𝛼
				𝑢
			

			

				1
			

			
				
				𝑘
				,
			

		
	

						where 
	
		
			

				𝑘
			

		
	
 is a root of second-order algebraic equation 
	
		
			
				(
				2
				+
				𝛼
				𝜆
				)
				𝑘
			

			

				2
			

			
				+
				(
				𝛾
				𝜆
				+
				3
				𝛿
				𝜆
				𝑢
			

			

				1
			

			
				+
				𝛼
				−
				𝛼
				𝑢
			

			

				1
			

			
				)
				𝑘
				+
				𝛽
				+
				2
				𝛾
				𝑢
			

			

				1
			

			
				+
				3
				𝛿
				𝑢
			

			
				2
				1
			

			
				=
				0
			

		
	
, 
	
		
			

				𝑢
			

			

				1
			

			
				√
				=
				(
				−
				𝛾
				±
			

			
				
			
			
				Δ
				)
				/
				2
				𝛿
			

		
	
, 
	
		
			
				√
				𝜆
				=
				(
				𝛼
				±
			

			
				
			
			

				𝛼
			

			

				2
			

			
				+
				8
				𝛿
				)
				/
				2
				𝛿
			

		
	
, 
	
		
			
				Δ
				=
				𝛾
			

			

				2
			

			
				−
				4
				𝛽
				𝛿
			

		
	
.
Case 2. One has
							
	
 		
 			
				(
				3
				.
				2
				1
				)
			
 		
	

	
		
			
				𝐴
				=
				−
				𝐵
				,
				𝐶
				=
				a
				r
				b
				i
				t
				r
				a
				r
				y
				c
				o
				n
				s
				t
				a
				n
				t
				,
				𝜔
				=
				𝛽
				+
				2
				𝛾
				𝑢
			

			

				1
			

			
				+
				3
				𝛿
				𝑢
			

			
				2
				1
			

			
				−
				𝑘
			

			

				2
			

			
				
				−
				𝛼
				𝑘
				,
				o
				r
				𝜔
				=
				𝛾
				𝜆
				+
				3
				𝛿
				𝜆
				𝑢
			

			

				1
			

			
				−
				𝛼
				𝑢
			

			

				1
			

			
				
				𝑘
				−
				(
				3
				+
				𝛼
				𝜆
				)
				𝑘
			

			

				2
			

			

				,
			

		
	

						where 
	
		
			

				𝑘
			

		
	
 is a root of second-order algebraic equation 
	
		
			
				(
				2
				+
				𝛼
				𝜆
				)
				𝑘
			

			

				2
			

			
				+
				(
				𝛼
				𝑢
			

			

				1
			

			
				−
				𝛾
				𝜆
				−
				3
				𝛿
				𝜆
				𝑢
			

			

				1
			

			
				−
				𝛼
				)
				𝑘
				+
				𝛽
				+
				2
				𝛾
				𝑢
			

			

				1
			

			
				+
				3
				𝛿
				𝑢
			

			
				2
				1
			

			
				=
				0
			

		
	
, 
	
		
			

				𝑢
			

			

				1
			

			
				√
				=
				(
				−
				𝛾
				±
			

			
				
			
			
				Δ
				)
				/
				2
				𝛿
			

		
	
, 
	
		
			
				√
				𝜆
				=
				(
				𝛼
				±
			

			
				
			
			

				𝛼
			

			

				2
			

			
				+
				8
				𝛿
				)
				/
				2
				𝛿
			

		
	
, 
	
		
			
				Δ
				=
				𝛾
			

			

				2
			

			
				−
				4
				𝛽
				𝛿
			

		
	
.
By Case 1, we obtain the exact solutions of the (1.1) from (2.17),  (3.1)
	
 		
 			
				(
				3
				.
				2
				2
				)
			
 		
	

	
		
			
				√
				𝑢
				(
				𝑥
				,
				𝑡
				)
				=
				−
				𝛾
				±
			

			
				
			
			

				Δ
			

			
				
			
			
				
				2
				𝛿
				+
				𝜆
				𝑘
				e
				x
				p
				𝑘
				𝑥
				+
				𝜔
				𝑡
				+
				𝜉
			

			

				0
			

			

				
			

			
				
			
			
				
				e
				x
				p
				𝑘
				𝑥
				+
				𝜔
				𝑡
				+
				𝜉
			

			

				0
			

			
				
				,
				+
				𝐶
			

		
	

					where 
	
		
			
				√
				𝜆
				=
				(
				𝛼
				±
			

			
				
			
			

				𝛼
			

			

				2
			

			
				+
				8
				𝛿
				)
				/
				2
				𝛿
			

		
	
, 
	
		
			
				Δ
				=
				𝛾
			

			

				2
			

			
				−
				4
				𝛽
				𝛿
			

		
	
, 
	
		
			
				𝜔
				=
				𝑘
			

			

				2
			

			
				−
				𝛼
				𝑘
				−
				𝛽
				−
				2
				𝛾
				𝑢
			

			

				1
			

			
				−
				3
				𝛿
				𝑢
			

			
				2
				1
			

		
	
, 
	
		
			

				𝑘
			

		
	
 is a root of second-order algebraic equation 
	
		
			
				(
				2
				+
				𝛼
				𝜆
				)
				𝑘
			

			

				2
			

			
				+
				(
				𝛾
				𝜆
				+
				3
				𝛿
				𝜆
				𝑢
			

			

				1
			

			
				+
				𝛼
				−
				𝛼
				𝑢
			

			

				1
			

			
				)
				𝑘
				+
				𝛽
				+
				2
				𝛾
				𝑢
			

			

				1
			

			
				+
				3
				𝛿
				𝑢
			

			
				2
				1
			

			
				=
				0
			

		
	
, 
	
		
			

				𝑢
			

			

				1
			

			
				√
				=
				(
				−
				𝛾
				±
			

			
				
			
			
				Δ
				)
				/
				2
				𝛿
			

		
	
, 
	
		
			

				𝜉
			

			

				0
			

		
	
, 
	
		
			
				𝐶
				≠
				0
			

		
	
 are arbitrary constants.
According to the result of Case 2 and (2.17), (3.1), one obtain the other exact solutions
	
 		
 			
				(
				3
				.
				2
				3
				)
			
 		
	

	
		
			
				√
				𝑢
				(
				𝑥
				,
				𝑡
				)
				=
				−
				𝛾
				±
			

			
				
			
			

				Δ
			

			
				
			
			
				
				2
				𝛿
				+
				𝜆
				𝑘
				e
				x
				p
				𝑘
				𝑥
				+
				𝜔
				𝑡
				+
				𝜉
			

			

				0
			

			

				
			

			
				
			
			
				
				𝐶
				e
				x
				p
				𝑘
				𝑥
				+
				𝜔
				𝑡
				+
				𝜉
			

			

				0
			

			
				
				,
				−
				1
			

		
	

					where 
	
		
			
				√
				𝜆
				=
				(
				𝛼
				±
			

			
				
			
			

				𝛼
			

			

				2
			

			
				+
				8
				𝛿
				)
				/
				2
				𝛿
			

		
	
, 
	
		
			
				Δ
				=
				𝛾
			

			

				2
			

			
				−
				4
				𝛽
				𝛿
			

		
	
, 
	
		
			
				𝜔
				=
				𝛽
				+
				2
				𝛾
				𝑢
			

			

				1
			

			
				+
				3
				𝛿
				𝑢
			

			
				2
				1
			

			
				−
				𝑘
			

			

				2
			

			
				−
				𝛼
				𝑘
			

		
	
, 
	
		
			

				𝑘
			

		
	
 is a root of second-order algebraic equation 
	
		
			
				(
				2
				+
				𝛼
				𝜆
				)
				𝑘
			

			

				2
			

			
				+
				(
				𝛼
				𝑢
			

			

				1
			

			
				−
				𝛾
				𝜆
				−
				3
				𝛿
				𝜆
				𝑢
			

			

				1
			

			
				−
				𝛼
				)
				𝑘
				+
				𝛽
				+
				2
				𝛾
				𝑢
			

			

				1
			

			
				+
				3
				𝛿
				𝑢
			

			
				2
				1
			

			
				=
				0
			

		
	
, 
	
		
			

				𝑢
			

			

				1
			

			
				√
				=
				(
				−
				𝛾
				±
			

			
				
			
			
				Δ
				)
				/
				2
				𝛿
			

		
	
, 
	
		
			

				𝜉
			

			

				0
			

		
	
, 
	
		
			
				𝐶
				≠
				0
			

		
	
 are arbitrary constants.
According to formulas (3.5), (3.6), we can get multiple new soliton solutions of kink type and multiple new soliton-like solutions of singular type from (3.22) and (3.23).
Analogously, we assume that (2.18) has solutions of the form (3.7); substituting (3.7) into (2.18), one gets a set of algebraic equations
	
 		
 			
				(
				3
				.
				2
				4
				)
			
 		
	

	
		
			
				
				𝐴
				𝜔
				+
				𝛼
				𝑢
			

			

				1
			

			
				−
				𝛾
				𝜆
				−
				3
				𝛿
				𝜆
				𝑢
			

			

				1
			

			
				
				𝐴
				𝑘
				+
				(
				3
				+
				𝛼
				𝜆
				)
				𝐵
				𝑘
			

			

				2
			

			
				
				=
				0
				,
				−
				𝐵
				𝜔
				−
				𝛼
				𝑢
			

			

				1
			

			
				−
				𝛾
				𝜆
				−
				3
				𝛿
				𝜆
				𝑢
			

			

				1
			

			
				
				𝐵
				𝑘
				+
				(
				3
				+
				𝛼
				𝜆
				)
				𝐴
				𝑘
			

			

				2
			

			
				=
				0
				,
				−
				𝐴
				𝑘
				𝜔
				−
				𝐵
				𝑘
			

			

				3
			

			
				−
				𝛼
				𝐴
				𝑘
			

			

				2
			

			
				−
				𝛽
				𝐵
				𝑘
				−
				2
				𝛾
				𝑢
			

			

				1
			

			
				𝐵
				𝑘
				−
				3
				𝛿
				𝑢
			

			
				2
				1
			

			
				𝐵
				𝑘
				=
				0
				,
				−
				𝐵
				𝑘
				𝜔
				+
				𝐴
				𝑘
			

			

				3
			

			
				−
				𝛼
				𝐵
				𝑘
			

			

				2
			

			
				+
				𝛽
				𝐴
				𝑘
				+
				2
				𝛾
				𝑢
			

			

				1
			

			
				𝐴
				𝑘
				+
				3
				𝛿
				𝑢
			

			
				2
				1
			

			
				𝐴
				𝑘
				=
				0
				.
			

		
	

					In order to obtain a nontrivial solution of (1.1), we also need to assume that 
	
		
			
				𝑘
				,
				𝜔
			

		
	
 are all nonzero constants. Solving (3.24), we obtain the following.
Case 1. One has
							
	
 		
 			
				(
				3
				.
				2
				5
				)
			
 		
	

	
		
			
				𝐴
				=
				𝐵
				𝑖
				,
				𝐶
				=
				a
				r
				b
				i
				t
				r
				a
				r
				y
				c
				o
				n
				s
				t
				a
				n
				t
				,
				𝜔
				=
				𝑖
				𝑘
			

			

				2
			

			
				
				−
				𝛼
				𝑘
				+
				𝑖
				𝛽
				+
				2
				𝛾
				𝑢
			

			

				1
			

			
				+
				3
				𝛿
				𝑢
			

			
				2
				1
			

			
				
				,
				o
				r
				𝜔
				=
				(
				3
				+
				𝛼
				𝜆
				)
				𝑖
				𝑘
			

			

				2
			

			
				+
				
				𝛾
				𝜆
				+
				3
				𝛿
				𝜆
				𝑢
			

			

				1
			

			
				−
				𝛼
				𝑢
			

			

				1
			

			
				
				𝑘
				,
			

		
	

						where 
	
		
			

				𝑘
			

		
	
 is a root of second-order algebraic equation 
	
		
			
				(
				2
				+
				𝛼
				𝜆
				)
				𝑖
				𝑘
			

			

				2
			

			
				+
				(
				𝛾
				𝜆
				+
				3
				𝛿
				𝜆
				𝑢
			

			

				1
			

			
				+
				𝛼
				−
				𝛼
				𝑢
			

			

				1
			

			
				)
				𝑘
				−
				𝑖
				(
				𝛽
				+
				2
				𝛾
				𝑢
			

			

				1
			

			
				+
				3
				𝛿
				𝑢
			

			
				2
				1
			

			
				)
				=
				0
			

		
	
, 
	
		
			

				𝑢
			

			

				1
			

			
				√
				=
				(
				−
				𝛾
				±
			

			
				
			
			
				Δ
				)
				/
				2
				𝛿
			

		
	
, 
	
		
			
				√
				𝜆
				=
				(
				𝛼
				±
			

			
				
			
			

				𝛼
			

			

				2
			

			
				+
				8
				𝛿
				)
				/
				2
				𝛿
			

		
	
, 
	
		
			
				Δ
				=
				𝛾
			

			

				2
			

			
				−
				4
				𝛽
				𝛿
			

		
	
.
Case 2. One has
							
	
 		
 			
				(
				3
				.
				2
				6
				)
			
 		
	

	
		
			
				𝐴
				=
				−
				𝐵
				𝑖
				,
				𝐶
				=
				a
				r
				b
				i
				t
				r
				a
				r
				y
				c
				o
				n
				s
				t
				a
				n
				t
				,
				𝜔
				=
				−
				𝑖
				𝑘
			

			

				2
			

			
				
				−
				𝛼
				𝑘
				−
				𝑖
				𝛽
				+
				2
				𝛾
				𝑢
			

			

				1
			

			
				+
				3
				𝛿
				𝑢
			

			
				2
				1
			

			
				
				,
				o
				r
				𝜔
				=
				−
				(
				3
				+
				𝛼
				𝜆
				)
				𝑖
				𝑘
			

			

				2
			

			
				+
				
				𝛾
				𝜆
				+
				3
				𝛿
				𝜆
				𝑢
			

			

				1
			

			
				−
				𝛼
				𝑢
			

			

				1
			

			
				
				𝑘
				,
			

		
	

						where 
	
		
			

				𝑘
			

		
	
 is a root of second-order algebraic equation 
	
		
			
				(
				2
				+
				𝛼
				𝜆
				)
				𝑖
				𝑘
			

			

				2
			

			
				−
				(
				𝛾
				𝜆
				+
				3
				𝛿
				𝜆
				𝑢
			

			

				1
			

			
				+
				𝛼
				−
				𝛼
				𝑢
			

			

				1
			

			
				)
				𝑘
				−
				𝑖
				(
				𝛽
				+
				2
				𝛾
				𝑢
			

			

				1
			

			
				+
				3
				𝛿
				𝑢
			

			
				2
				1
			

			
				)
				=
				0
			

		
	
, 
	
		
			

				𝑢
			

			

				1
			

			
				√
				=
				(
				−
				𝛾
				±
			

			
				
			
			
				Δ
				)
				/
				2
				𝛿
			

		
	
, 
	
		
			
				√
				𝜆
				=
				(
				𝛼
				±
			

			
				
			
			

				𝛼
			

			

				2
			

			
				+
				8
				𝛿
				)
				/
				2
				𝛿
			

		
	
, 
	
		
			
				Δ
				=
				𝛾
			

			

				2
			

			
				−
				4
				𝛽
				𝛿
			

		
	
.
Collecting (2.17), (3.7), (3.25), and (3.26), we obtain the following explicit exact periodic traveling wave solutions
	
 		
 			
				(
				3
				.
				2
				7
				)
			
 		
	

	
		
			
				√
				𝑢
				(
				𝑥
				,
				𝑡
				)
				=
				−
				𝛾
				±
			

			
				
			
			

				Δ
			

			
				
			
			
				2
				𝛿
				+
				𝑖
				𝜆
				𝑘
				e
				x
				p
				(
				𝑖
				𝜉
				)
			

			
				
			
			
				,
				e
				x
				p
				(
				𝑖
				𝜉
				)
				+
				𝐶
			

		
	

					where 
	
		
			
				√
				𝜆
				=
				(
				𝛼
				±
			

			
				
			
			

				𝛼
			

			

				2
			

			
				+
				8
				𝛿
				)
				/
				2
				𝛿
			

		
	
, 
	
		
			
				Δ
				=
				𝛾
			

			

				2
			

			
				−
				4
				𝛽
				𝛿
			

		
	
, 
	
		
			
				𝜉
				=
				𝑘
				𝑥
				+
				𝜔
				𝑡
				+
				𝜉
			

			

				0
			

		
	
, 
	
		
			
				𝜔
				=
				𝑖
				𝑘
			

			

				2
			

			
				−
				𝛼
				𝑘
				+
				𝑖
				(
				𝛽
				+
				2
				𝛾
				𝑢
			

			

				1
			

			
				+
				3
				𝛿
				𝑢
			

			
				2
				1
			

			

				)
			

		
	
, 
	
		
			

				𝑘
			

		
	
 is a root of second-order algebraic equation 
	
		
			
				(
				2
				+
				𝛼
				𝜆
				)
				𝑖
				𝑘
			

			

				2
			

		
	
 + 
	
		
			
				(
				𝛾
				𝜆
				+
				3
				𝛿
				𝜆
				𝑢
			

			

				1
			

		
	
 + 
	
		
			
				𝛼
				−
				𝛼
				𝑢
			

			

				1
			

			
				)
				𝑘
				−
				𝑖
				(
				𝛽
				+
				2
				𝛾
				𝑢
			

			

				1
			

		
	
 + 
	
		
			
				3
				𝛿
				𝑢
			

			
				2
				1
			

			
				)
				=
				0
			

		
	
, 
	
		
			

				𝑢
			

			

				1
			

			
				√
				=
				(
				−
				𝛾
				±
			

			
				
			
			
				Δ
				)
				/
				2
				𝛿
			

		
	
, 
	
		
			

				𝜉
			

			

				0
			

		
	
, 
	
		
			
				𝐶
				≠
				0
			

		
	
 are arbitrary constants,
	
 		
 			
				(
				3
				.
				2
				8
				)
			
 		
	

	
		
			
				√
				𝑢
				(
				𝑥
				,
				𝑡
				)
				=
				−
				𝛾
				±
			

			
				
			
			

				Δ
			

			
				
			
			
				2
				𝛿
				−
				𝑖
				𝜆
				𝑘
				𝐶
				e
				x
				p
				(
				𝑖
				𝜉
				)
			

			
				
			
			
				,
				e
				x
				p
				(
				𝑖
				𝜉
				)
				+
				1
			

		
	

					where 
	
		
			
				√
				𝜆
				=
				(
				𝛼
				±
			

			
				
			
			

				𝛼
			

			

				2
			

			
				+
				8
				𝛿
				)
				/
				2
				𝛿
			

		
	
, 
	
		
			
				Δ
				=
				𝛾
			

			

				2
			

			
				−
				4
				𝛽
				𝛿
			

		
	
, 
	
		
			
				𝜉
				=
				𝑘
				𝑥
				+
				𝜔
				𝑡
				+
				𝜉
			

			

				0
			

		
	
, 
	
		
			
				𝜔
				=
				−
				𝑖
				𝑘
			

			

				2
			

			
				−
				𝛼
				𝑘
				−
				𝑖
				(
				𝛽
				+
				2
				𝛾
				𝑢
			

			

				1
			

			
				+
				3
				𝛿
				𝑢
			

			
				2
				1
			

			

				)
			

		
	
, 
	
		
			

				𝑘
			

		
	
 is a root of second order algebraic equation 
	
		
			
				(
				2
				+
				𝛼
				𝜆
				)
				𝑖
				𝑘
			

			

				2
			

			
				−
				(
				𝛾
				𝜆
				+
				3
				𝛿
				𝜆
				𝑢
			

			

				1
			

			
				+
				𝛼
				−
				𝛼
				𝑢
			

			

				1
			

			
				)
				𝑘
				−
				𝑖
				(
				𝛽
				+
				2
				𝛾
				𝑢
			

			

				1
			

			
				+
				3
				𝛿
				𝑢
			

			
				2
				1
			

			
				)
				=
				0
			

		
	
, 
	
		
			

				𝑢
			

			

				1
			

			
				√
				=
				(
				−
				𝛾
				±
			

			
				
			
			
				Δ
				)
				/
				2
				𝛿
			

		
	
, 
	
		
			

				𝜉
			

			

				0
			

		
	
, 
	
		
			
				𝐶
				≠
				0
			

		
	
 are arbitrary constants.
By using of formulas (3.11) and (3.12), we can obtain multiple new periodic wave solutions in form 
	
		
			
				t
				a
				n
				𝜉
			

		
	
 and 
	
		
			
				c
				o
				t
				𝜉
			

		
	
.
Choosing the solutions (3.3) ((3.4), (3.13), (3.14), (3.18), (3.22), (3.23), (3.27) and (3.28), resp.) as a new “seed” solution 
	
		
			

				𝑢
			

			

				1
			

			
				(
				𝑥
				,
				𝑡
				)
			

		
	
 and solving the linear PDEs (2.11), (2.12), one gets a quasisolution 
	
		
			
				𝜙
				(
				𝑥
				,
				𝑡
				)
			

		
	
. Then substituting the quasisolution 
	
		
			
				𝜙
				(
				𝑥
				,
				𝑡
				)
			

		
	
 and 
	
		
			

				𝑢
			

			

				1
			

			
				(
				𝑥
				,
				𝑡
				)
			

		
	
 chosen above into (2.14), we can obtain more and more new exact particular solutions of (1.1). Taking 
	
		
			
				𝐶
				=
				1
			

		
	
 in solutions (3.3), (3.4), (3.22), and (3.23), we can obtain shock wave solutions and singular traveling wave solutions of (1.1). Putting 
	
		
			
				𝐶
				=
				1
			

		
	
 in solutions (3.9), (3.10), (3.27), and (3.28), we can obtain periodic wave solutions in form 
	
		
			
				t
				a
				n
				𝜉
			

		
	
 and 
	
		
			
				c
				o
				t
				𝜉
			

		
	
.
4. Conclusion
It is worthwhile pointing out that the exact solutions obtained in this paper have more general form than some known solutions in previous studies. In addition to rederiving all known solutions in a systematic way, several entirely new exact solutions can also be obtained. Specially, choosing 
	
		
			
				𝛼
				=
				0
			

		
	
 in the all solutions above, one can obtain abundant explicit and exact solutions to the Kolmogorov-Petrovskii-Piskunov equation [16]. Setting 
	
		
			
				𝛼
				=
				0
			

		
	
, 
	
		
			
				𝛾
				=
				0
			

		
	
, 
	
		
			
				𝛽
				=
				−
				𝛿
			

		
	
 in the all solutions above, one can get abundant explicit and exact solutions to the Chaffee-Infante reaction diffusion equation [17]. We can also obtain abundant explicit and exact solutions to the Burgers-Huxley equation [18] by taking 
	
		
			
				𝛼
				≠
				0
			

		
	
, 
	
		
			
				𝛽
				=
				𝛿
				𝜂
			

		
	
, 
	
		
			
				𝛾
				=
				−
				(
				1
				+
				𝜂
				)
				𝛿
			

		
	
, 
	
		
			

				𝜂
			

		
	
 arbitrary in the all solutions above. Go a step further, taking 
	
		
			
				𝛼
				=
				0
			

		
	
, 
	
		
			
				𝛽
				=
				𝜂
			

		
	
, 
	
		
			
				𝛾
				=
				−
				(
				1
				+
				𝜂
				)
			

		
	
, 
	
		
			

				𝜂
			

		
	
 arbitrary in the all solutions above, we also obtain abundant explicit and exact solutions to the FitzHugh-Nagumo equation [19]. We can obtain abundant explicit exact solutions to the Newell-Whitehead equation when taking 
	
		
			
				𝛼
				=
				0
			

		
	
, 
	
		
			
				𝛽
				=
				−
				1
			

		
	
, 
	
		
			
				𝛾
				=
				0
			

		
	
, 
	
		
			
				𝛿
				=
				1
			

		
	
 in the all solutions above [17]. Putting 
	
		
			
				𝛼
				=
				0
			

		
	
, 
	
		
			
				𝛽
				=
				1
				−
				(
				3
				𝜂
				/
				2
				)
			

		
	
, 
	
		
			
				𝛾
				=
				(
				5
				𝜂
				/
				2
				)
				−
				2
			

		
	
, 
	
		
			
				𝛿
				=
				1
				−
				𝜂
			

		
	
 in the all solutions above, we can obtain abundant explicit and exact solutions to an isothermal autocatalytic system [20].
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