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Abstract. 
We will prove a theorem providing sufficient condition for the divisibility of class numbers of certain imaginary quadratic fields by 2
	
		
			

				𝑔
			

		
	
, where 
	
		
			
				𝑔
				>
				1
			

		
	
 is an integer and the discriminant of such fields has only two prime divisors.


1. Introduction
Let 
	
		
			
				√
				𝐾
				=
				𝑄
				(
			

			
				
			
			
				𝐷
				)
			

		
	
 be the quadratic fields with discriminant 
	
		
			

				𝐷
			

		
	
 and 
	
		
			
				ℎ
				=
				ℎ
				(
				𝐷
				)
			

		
	
 its class number. In the narrow sense, the class number of 
	
		
			

				𝐾
			

		
	
 is denoted by 
	
		
			

				ℎ
			

			

				+
			

			
				(
				𝐷
				)
			

		
	
, where, if 
	
		
			
				𝐷
				>
				0
			

		
	
, then 
	
		
			

				ℎ
			

			

				+
			

			
				(
				𝐷
				)
				=
				2
				ℎ
				(
				𝐷
				)
			

		
	
 and the fundamental unit 
	
		
			

				𝜀
			

			

				𝐷
			

		
	
 has norm 
	
		
			

				1
			

		
	
, otherwise 
	
		
			

				ℎ
			

			

				+
			

			
				(
				𝐷
				)
				=
				ℎ
				(
				𝐷
				)
			

		
	
. If the discriminant of 
	
		
			
				|
				𝐷
				|
			

		
	
 has two distinct prime divisors, then by the genus theory of Gauss the 2-class group of 
	
		
			

				𝐾
			

		
	
 is cyclic. The problem of the divisibility of class numbers for number fields has been studied by many authors. There are Hartung [1], Honda [2], Murty [3], Nagel [4], Soundararajan [5], Weinberger [6], Yamamoto [7], among them. Ankeny and Chowla [8] proved that there exists infinitely many imaginary quadratic fields each with class numbers divisible by 
	
		
			

				𝑔
			

		
	
 where 
	
		
			

				𝑔
			

		
	
 is any given rational integer. Later, Belabas and Fouvry [9] proved that there are infinitely many primes 
	
		
			

				𝑝
			

		
	
 such that the class number of the real quadratic field 
	
		
			
				√
				𝐾
				=
				𝑄
				(
			

			
				
			
			
				𝑝
				)
			

		
	
 is not divisible by 3. Furthermore, many authors [7, 10–13] have studied the conditions for 
	
		
			

				ℎ
			

			

				+
			

			
				(
				𝐷
				)
			

		
	
 to be divisible by 
	
		
			

				2
			

			

				𝑛
			

		
	
 when the 2-class group of 
	
		
			

				𝐾
			

		
	
 is cyclic. However the criterion for 
	
		
			

				ℎ
			

			

				+
			

			
				(
				𝐷
				)
			

		
	
 to be divisible by 
	
		
			

				2
			

			

				𝑛
			

		
	
 is known for only 
	
		
			
				𝑛
				≤
				4
			

		
	
 and the existence of quadratic fields with arbitrarily large cyclic 2-class groups is not known yet. Recently, Byeon and Lee [14] proved that there are infinitely many imaginary quadratic fields whose ideal class group has an element of order 
	
		
			
				2
				𝑔
			

		
	
 and whose discriminant has only two prime divisors. In this paper, we will prove a theorem that the order of the ideal class group of certain imaginary quadratic field is divisible by 
	
		
			
				2
				𝑔
			

		
	
. Moreover, we notice that the discriminant of these fields has only different two prime divisors. Finally, we will give a table as an application to our main theorem.
2. Main Theorem
Our main theorem is the following.
Theorem 2.1.  Let 
	
		
			
				𝐷
				=
				𝑝
				𝑞
			

		
	
 be square-free integer with primes 
	
		
			
				𝑝
				≡
				𝑞
				≡
				1
				(
				m
				o
				d
				4
				)
			

		
	
. If there is a prime 
	
		
			
				𝑟
				≡
				1
				(
				m
				o
				d
				8
				)
			

		
	
 satisfying 
	
		
			
				(
				𝐷
				/
				𝑟
				)
				=
				1
			

		
	
, then 
	
		
			
				𝑡
				∣
				ℎ
				(
				𝐷
				)
			

		
	
 for at least positive integer 
	
		
			

				𝑡
			

		
	
 where 
	
		
			
				𝑡
				≥
				2
			

		
	
.
In order to prove this theorem we need the following fundamental lemma and some theorems.
Lemma 2.2.  If 
	
		
			

				𝐷
			

		
	
 is of the form 
	
		
			
				𝑝
				⋅
				𝑞
			

		
	
 where 
	
		
			

				𝑝
			

		
	
 and 
	
		
			

				𝑞
			

		
	
 are primes 
	
		
			
				𝑝
				≡
				𝑞
				≡
				1
				(
				m
				o
				d
				4
				)
			

		
	
, then there is a prime 
	
		
			
				𝑟
				≡
				1
				(
				m
				o
				d
				8
				)
			

		
	
 such that 
	
		
			
				(
				𝐷
				/
				𝑟
				)
				=
				1
			

		
	
.
Proof. Let 
	
		
			

				𝑎
			

		
	
 and 
	
		
			

				𝑏
			

		
	
 be quadratic nonresidues for 
	
		
			

				𝑝
			

		
	
 and 
	
		
			

				𝑞
			

		
	
 are primes such that 
	
		
			
				(
				𝑎
				/
				𝑝
				)
				=
				−
				1
			

		
	
, 
	
		
			
				(
				𝑏
				/
				𝑞
				)
				=
				−
				1
			

		
	
, where 
	
		
			
				(
				)
			

		
	
 denotes Legendre symbol and 
	
		
			
				g
				⋅
				c
				⋅
				d
				(
				𝑝
				,
				𝑞
				)
				=
				1
			

		
	
. Therefore, by Chinese Remainder Theorem, we can write 
	
		
			
				𝑤
				≡
				𝑎
				(
				m
				o
				d
				𝑝
				)
			

		
	
, 
	
		
			
				𝑤
				≡
				𝑏
				(
				m
				o
				d
				𝑞
				)
			

		
	
 for a positive integer 
	
		
			

				𝑤
			

		
	
. Now, we consider the numbers of the form 
	
		
			
				𝑝
				𝑞
				𝑘
				+
				𝑤
			

		
	
 such that 
	
		
			
				𝑝
				𝑞
				𝑘
			

			

				0
			

			
				+
				𝑤
				≡
				1
				(
				m
				o
				d
				8
				)
			

		
	
 for some 
	
		
			
				1
				≤
				𝑘
			

			

				0
			

			
				≤
				8
			

		
	
. Since 
	
		
			
				𝑝
				𝑞
				𝑘
			

			

				0
			

			
				+
				𝑤
			

		
	
 are distinct residues 
	
		
			
				m
				o
				d
				(
				8
				)
			

		
	
 for some 
	
		
			
				1
				≤
				𝑘
			

			

				0
			

			
				≤
				8
			

		
	
, then we get 
	
		
			
				𝑝
				𝑞
				(
				8
				𝑛
				+
				𝑘
			

			

				0
			

			
				)
				+
				𝑤
				=
				8
				𝑝
				𝑞
				𝑛
				+
				𝑝
				𝑞
				𝑘
			

			

				0
			

			
				+
				𝑤
			

		
	
, 
	
		
			
				𝑛
				≥
				0
			

		
	
. We assert that 
	
		
			
				g
				⋅
				c
				⋅
				d
				(
				8
				𝑝
				𝑞
				,
				𝑝
				𝑞
				𝑘
			

			

				0
			

			
				+
				𝑤
				)
				=
				1
			

		
	
. Really, we suppose that 
	
		
			
				g
				⋅
				c
				⋅
				d
				(
				8
				𝑝
				𝑞
				,
				𝑝
				𝑞
				𝑘
			

			

				0
			

			
				+
				𝑤
				)
				=
				𝑚
				>
				1
			

		
	
, then there is a prime 
	
		
			

				𝑠
			

		
	
 such that 
	
		
			
				𝑠
				∣
				𝑚
			

		
	
, and so we have 
	
		
			
				𝑠
				∣
				8
				𝑝
				𝑞
			

		
	
, 
	
		
			
				𝑠
				∣
				𝑝
				𝑞
				𝑘
			

			

				0
			

			
				+
				𝑤
			

		
	
. Thereby this follows that 
	
		
			
				𝑠
				=
				2
			

		
	
, 
	
		
			

				𝑝
			

		
	
 or 
	
		
			

				𝑞
			

		
	
. But since 
	
		
			
				𝑝
				𝑞
				𝑘
			

			

				0
			

			
				+
				𝑤
				≡
				1
				(
				m
				o
				d
				8
				)
			

		
	
, then 
	
		
			
				𝑠
				≠
				2
			

		
	
 and 
	
		
			
				𝑠
				∣
				𝑚
			

		
	
; this is in contradiction with 
	
		
			
				𝑤
				≡
				𝑎
				(
				m
				o
				d
				𝑝
				)
			

		
	
, 
	
		
			
				𝑤
				≡
				𝑏
				(
				m
				o
				d
				𝑞
				)
			

		
	
. Therefore, 
	
		
			
				g
				⋅
				c
				⋅
				d
				(
				8
				𝑝
				𝑞
				,
				𝑝
				𝑞
				𝑘
			

			

				0
			

			
				+
				𝑤
				)
				=
				1
			

		
	
 holds. Thus, by the Dirichlet theorem on primes, there is a prime 
	
		
			

				𝑟
			

		
	
 satisfying 
	
		
			
				𝑟
				=
				𝑝
				𝑞
				(
				8
				𝑛
				+
				𝑘
			

			

				0
			

			
				)
				+
				𝑤
				=
				8
				𝑝
				𝑞
				𝑛
				+
				𝑝
				𝑞
				𝑘
			

			

				0
			

			
				+
				𝑤
			

		
	
. Hence, it is seen that 
	
		
			
				𝑟
				≡
				1
				(
				m
				o
				d
				8
				)
			

		
	
.
The following theorem is generalized by Cowles [15].
Theorem 2.3.  Let 
	
		
			

				𝑟
			

		
	
, 
	
		
			

				𝑚
			

		
	
, 
	
		
			

				𝑡
			

		
	
 be positive integers with 
	
		
			
				𝑚
				>
				1
			

		
	
 and 
	
		
			
				𝑡
				>
				1
			

		
	
, and let 
	
		
			
				𝑛
				=
				𝑟
			

			

				2
			

			
				−
				4
				𝑚
			

			

				𝑡
			

		
	
 be square-free and negative. If 
	
		
			

				𝑚
			

			

				𝑐
			

		
	
 is not the norm of a primitive element of 
	
		
			

				𝑂
			

			

				𝐾
			

		
	
 whenever 
	
		
			

				𝑐
			

		
	
 properly divides 
	
		
			

				𝑡
			

		
	
, then 
	
		
			
				𝑡
				∣
				ℎ
				(
				𝑛
				)
			

		
	
.
Cowles proved this theorem by using the decomposition of the prime divisors in 
	
		
			

				𝑂
			

			

				𝐾
			

		
	
. But Mollin has emphasized in [16] that it contains some misprints and then he has provided the following theorem which is more useful in practise than Theorem 2.4.
Theorem 2.4.  Let 
	
		
			

				𝑛
			

		
	
 be a square-free integer of the form 
	
		
			
				𝑛
				=
				𝑟
			

			

				2
			

			
				−
				4
				𝑚
			

			

				𝑡
			

		
	
 where 
	
		
			

				𝑟
			

		
	
, 
	
		
			

				𝑚
			

		
	
, and 
	
		
			

				𝑡
			

		
	
 are positive integers such that 
	
		
			
				𝑚
				>
				1
			

		
	
 and 
	
		
			
				𝑡
				>
				1
			

		
	
. If 
	
		
			

				𝑟
			

			

				2
			

			
				≤
				4
				𝑚
			

			
				𝑡
				−
				1
			

			
				(
				𝑚
				−
				1
				)
			

		
	
, then 
	
		
			
				𝑡
				∣
				ℎ
				(
				𝑛
				)
			

		
	
.
Theorem 2.5.  Let 
	
		
			

				𝑛
			

		
	
 be a square-free integer, and let 
	
		
			
				𝑚
				>
				1
			

		
	
, 
	
		
			
				𝑡
				>
				1
			

		
	
 be integers such that (i)
	
		
			
				∓
				𝑚
			

			

				𝑡
			

		
	
 is the norm of a primitive element from 
	
		
			
				√
				𝐾
				=
				𝑄
				(
			

			
				
			
			
				𝑛
				)
			

		
	
,(ii)
	
		
			
				∓
				𝑚
			

			

				𝑐
			

		
	
 is not the norm of a primitive element from 
	
		
			

				𝐾
			

		
	
 for all 
	
		
			

				𝑐
			

		
	
 properly dividing 
	
		
			

				𝑡
			

		
	
,(iii)if 
	
		
			
				𝑡
				=
				|
				𝑚
				|
			

			

				2
			

		
	
, then 
	
		
			
				𝑛
				≡
				1
				(
				m
				o
				d
				8
				)
			

		
	
. Then 
	
		
			

				𝑡
			

		
	
 divides the exponent of 
	
		
			

				𝜓
			

			

				𝐾
			

		
	
, where 
	
		
			

				𝜓
			

			

				𝐾
			

		
	
 is the class group of 
	
		
			

				𝐾
			

		
	
.
3. Proof of Main Theorem
Now we will provide a proof for the fundamental theorem which is more practical than all of the works above mentioned.
Proof. From the assumption of Lemma 2.2, it follows that there is suitable prime 
	
		
			

				𝑟
			

		
	
 with 
	
		
			
				𝑟
				≡
				1
				(
				m
				o
				d
				8
				)
			

		
	
 such that 
	
		
			
				(
				𝐷
				/
				𝑟
				)
				=
				1
			

		
	
. However, from the properties of the Legendre symbol, we can write 
	
		
			
				(
				𝐷
				𝑦
			

			

				2
			

			
				/
				𝑟
			

			

				2
			

			
				)
				=
				1
			

		
	
 for any integer 
	
		
			

				𝑦
			

		
	
. Since 
	
		
			
				(
				2
				,
				𝑟
				)
				=
				1
			

		
	
, then we have 
	
		
			
				(
				𝐷
				𝑦
			

			

				2
			

			
				/
				𝑟
			

			

				𝑡
			

			
				)
				=
				1
			

		
	
. Therefore, there are integers 
	
		
			
				𝑥
				=
				𝑎
				/
				2
				,
				𝑦
				=
				𝑏
				/
				2
			

		
	
 such that the equation 
	
		
			

				𝑥
			

			

				2
			

			
				−
				𝐷
				𝑦
			

			

				2
			

			
				=
				∓
				𝑟
			

			

				𝑡
			

		
	
 has a solution in integers. Hence, we can write 
	
		
			

				𝑎
			

			

				2
			

			
				−
				𝐷
				𝑏
			

			

				2
			

			
				=
				∓
				4
				𝑟
			

			

				𝑡
			

		
	
, where 
	
		
			
				𝑎
				≡
				𝑏
				(
				m
				o
				d
				2
				)
			

		
	
. From this equation, it is seen that 
	
		
			

				𝑟
			

			

				𝑡
			

		
	
 is the norm of a primitive element of 
	
		
			

				𝑂
			

			

				𝐾
			

		
	
, and, then by Theorem 2.5, 
	
		
			

				𝑡
			

		
	
 divides 
	
		
			
				ℎ
				(
				𝑛
				)
			

		
	
.
We have the following results.

Corollary 3.1.  Let 
	
		
			

				𝐷
			

		
	
 be a square-free and negative integer in the form of 
	
		
			
				𝐷
				=
				𝑛
			

			

				2
			

			
				−
				4
				𝑟
			

			
				2
				𝑔
			

			
				=
				𝑝
				⋅
				𝑞
			

		
	
 with 
	
		
			
				𝑛
				>
				1
			

		
	
, 
	
		
			
				𝑔
				>
				1
			

		
	
 are positive integers and 
	
		
			

				𝑝
			

		
	
, 
	
		
			

				𝑞
			

		
	
, 
	
		
			

				𝑟
			

		
	
 are primes such that 
	
		
			
				𝑝
				≡
				𝑞
				≡
				1
				(
				m
				o
				d
				4
				)
			

		
	
, 
	
		
			
				𝑟
				≡
				1
				(
				m
				o
				d
				8
				)
			

		
	
. If 
	
		
			

				𝑟
			

			
				2
				𝑔
			

		
	
 is the norm of a primitive element of 
	
		
			

				𝑂
			

			

				𝐾
			

		
	
, then the order of the ideal class group of 
	
		
			
				√
				𝐾
				=
				𝑄
				(
			

			
				
			
			
				𝐷
				)
			

		
	
 is 
	
		
			
				2
				𝑔
			

		
	
.
Corollary 3.2.  Let 
	
		
			

				𝐷
			

		
	
 be a square-free and negative integer in the form of 
	
		
			
				𝐷
				=
				𝑝
				⋅
				𝑞
			

		
	
, then there exists exactly 34433 imaginary quadratic fields satisfying assertion of the main theorem.
4. Table
The above-mentioned imaginary quadratic fields 
	
		
			
				√
				𝐾
				=
				𝑄
				(
			

			
				
			
			
				𝐷
				)
			

		
	
 correspond to some values of 
	
		
			
				𝐷
				(
				5
				≤
				𝐷
				≤
				1
				0
			

			

				6
			

			

				)
			

		
	
 which are given in Table 1. We have provided a table of the examples to illustrate the results above, using C programming language. Moreover, it is easily seen that the class numbers of imaginary quadratic fields of 
	
		
			
				√
				𝐾
				=
				(
				𝑄
			

			
				
			
			
				𝐷
				)
			

		
	
 are divisible by 
	
		
			
				2
				𝑔
			

		
	
 from Table 1.
Table 1
	

	
	
		
			

				𝐷
			

		
	
	
	
		
			

				𝑝
			

		
	
	
	
		
			

				𝑞
			

		
	
	
	
		
			

				𝑟
			

		
	
	
	
		
			
				ℎ
				(
				𝐷
				)
			

		
	

	

	65 	5 	13 	17 	8 
	1165 	5 	233 	41 	20 
	3341 	13 	257 	41 	72 
	10685 	5 	2137 	73 	116 
	30769 	29 	1061 	41 	112 
	45349 	101 	449 	17 	168 
	95509 	149 	641 	17 	176 
	97309 	73 	1333 	89 	216 
	102689 	29 	3541 	73 	496 
	125009 	41 	3049 	17 	504 
	18497 	53 	349 	41 	168 
	20453 	113 	181 	17 	116 
	223721 	137 	1633 	97 	496 
	378905 	5 	75781 	41 	592 
	567137 	17 	333613 	89 	640 
	650117 	13 	50009 	17 	848 
	735929 	373 	1973 	41 	1664 
	847085 	5 	169417 	73 	936 
	874589 	241 	3629 	17 	1160 
	875705 	5 	175141 	41 	1328 
	876461 	53 	16537 	73 	1584 
	971081 	109 	8909 	17 	1464 
	971413 	29 	33497 	73 	336 
	978809 	13 	75293 	89 	1728 
	987169 	97 	10177 	17 	624 
	999997 	757 	1321 	17 	380 
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