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Abstract. 
We study the existence of periodic solutions of some second-order Hamiltonian systems with impulses. We obtain some new existence theorems by variational methods.


1. Introduction
 Consider the following systems: 
						
	
 		
 			
				(
				1
				.
				1
				)
			
 		
	

	
		
			
				[
				]
				,
				
				𝑡
				̈
				𝑢
				(
				𝑡
				)
				=
				𝑓
				(
				𝑡
				,
				𝑢
				(
				𝑡
				)
				)
				,
				a
				.
				e
				.
				𝑡
				∈
				0
				,
				𝑇
				Δ
				̇
				𝑢
			

			

				𝑘
			

			
				
				=
				𝑔
			

			

				𝑘
			

			
				
				𝑢
				
				𝑡
			

			
				−
				𝑘
			

			
				
				
				,
				𝑘
				=
				1
				,
				2
				,
				…
				,
				𝑚
				,
				𝑢
				(
				𝑇
				)
				−
				𝑢
				(
				0
				)
				=
				̇
				𝑢
				(
				𝑇
				)
				−
				̇
				𝑢
				(
				0
				)
				=
				0
				,
			

		
	

					where 
	
		
			
				𝑘
				∈
				ℤ
				,
				𝑢
				∈
				ℝ
			

			

				𝑛
			

			
				,
				Δ
				̇
				𝑢
				(
				𝑡
			

			

				𝑘
			

			
				)
				=
				̇
				𝑢
				(
				𝑡
			

			
				+
				𝑘
			

			
				)
				−
				̇
				𝑢
				(
				𝑡
			

			
				−
				𝑘
			

			

				)
			

		
	
 with 
	
		
			
				̇
				𝑢
				(
				𝑡
			

			
				±
				𝑘
			

			
				)
				=
				l
				i
				m
			

			
				𝑡
				→
				𝑡
			

			
				±
				𝑘
			

			
				̇
				𝑢
				(
				𝑡
				)
				,
				𝑔
			

			

				𝑘
			

			
				(
				𝑢
				)
				=
				g
				r
				a
				d
			

			

				𝑢
			

			

				𝐺
			

			

				𝑘
			

			
				(
				𝑢
				)
				,
				𝐺
			

			

				𝑘
			

			
				∈
				𝐶
			

			

				1
			

			
				(
				ℝ
			

			

				𝑛
			

			
				,
				ℝ
			

			

				𝑛
			

			

				)
			

		
	
 for each 
	
		
			
				𝑘
				∈
				ℤ
			

		
	
, there exists an 
	
		
			
				𝑚
				∈
				ℤ
			

		
	
 such that 
	
		
			
				0
				=
				𝑡
			

			

				0
			

			
				<
				𝑡
			

			

				1
			

			
				<
				⋯
				<
				𝑡
			

			

				𝑚
			

			
				<
				𝑡
			

			
				𝑚
				+
				1
			

			
				=
				𝑇
			

		
	
, and we suppose that 
	
		
			
				𝑓
				(
				𝑡
				,
				𝑢
				)
				=
				g
				r
				a
				d
			

			

				𝑢
			

			
				𝐹
				(
				𝑡
				,
				𝑢
				)
			

		
	
 satisfies the following assumption.  
	
		
			
				(
				𝐴
				)
				𝐹
				(
				𝑡
				,
				𝑥
				)
			

		
	
 is measurable in 
	
		
			

				𝑡
			

		
	
 for 
	
		
			
				𝑥
				∈
				ℝ
			

			

				𝑛
			

		
	
 and continuously differentiable in 
	
		
			

				𝑥
			

		
	
 for a.e. 
	
		
			
				𝑡
				∈
				[
				0
				,
				𝑇
				]
			

		
	
, and there exist 
	
		
			
				𝑎
				∈
				𝐶
				(
				ℝ
			

			

				+
			

			
				,
				ℝ
			

			

				+
			

			
				)
				,
				𝑏
				∈
				𝐿
			

			

				1
			

			
				(
				0
				,
				𝑇
				;
				ℝ
			

			

				+
			

			

				)
			

		
	
 such that 
									
	
 		
 			
				(
				1
				.
				2
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				+
				|
				|
				|
				|
				𝐹
				(
				𝑡
				,
				𝑥
				)
				𝑓
				(
				𝑡
				,
				𝑥
				)
				≤
				𝑎
				(
				|
				𝑥
				|
				)
				𝑏
				(
				𝑡
				)
				,
			

		
	
 for all 
	
		
			
				𝑥
				∈
				ℝ
			

			

				𝑛
			

		
	
 and 
	
		
			
				𝑡
				∈
				[
				0
				,
				𝑇
				]
			

		
	
. 
 Many solvability conditions for problem (1.1) without impulsive effect are obtained, such as, the coercivity condition, the convexity conditions (see [1–4] and their references), the sublinear nonlinearity conditions, and the superlinear potential conditions. Recently, by using variational methods, many authors studied the existence of solutions of some second-order differential equations with impulses. More precisely, Nieto in [5, 6] considers linear conditions, [7–10] the sublinear conditions, and [11–16] the sublinear conditions and the other conditions. But to the best of our knowledge, except [7] there is no result about convexity conditions with impulsive effects. By using different techniques, we obtain different results from [7].
We recall some basic facts which will be used in the proofs of our main results. Let 
						
	
 		
 			
				(
				1
				.
				3
				)
			
 		
	

	
		
			

				𝐻
			

			
				1
				𝑇
			

			
				=
				
				[
				]
				𝑢
				∶
				0
				,
				𝑇
				→
				ℝ
			

			

				𝑛
			

			
				a
				b
				s
				o
				l
				u
				t
				e
				l
				y
				c
				o
				n
				t
				i
				n
				u
				o
				u
				s
				;
				𝑢
				(
				0
				)
				=
				𝑢
				(
				𝑇
				)
				,
				̇
				𝑢
				(
				𝑡
				)
				∈
				𝐿
			

			

				2
			

			
				(
				0
				,
				𝑇
				;
				ℝ
			

			

				𝑛
			

			
				)
				
				,
			

		
	

					with the inner product 
						
	
 		
 			
				(
				1
				.
				4
				)
			
 		
	

	
		
			
				
				⟨
				𝑢
				,
				𝑣
				⟩
				=
			

			
				𝑇
				0
			

			
				
				(
				𝑢
				(
				𝑡
				)
				,
				𝑣
				(
				𝑡
				)
				)
				𝑑
				𝑡
				+
			

			
				𝑇
				0
			

			
				̇
				(
				̇
				𝑢
				(
				𝑡
				)
				,
				𝑣
				(
				𝑡
				)
				)
				𝑑
				𝑡
				,
				∀
				𝑢
				,
				𝑣
				∈
				𝐻
			

			
				1
				𝑇
			

			

				,
			

		
	

					where 
	
		
			
				(
				⋅
				,
				⋅
				)
			

		
	
 denotes the inner product in 
	
		
			

				ℝ
			

			

				𝑛
			

		
	
. The corresponding norm is defined by 
						
	
 		
 			
				(
				1
				.
				5
				)
			
 		
	

	
		
			
				‖
				
				
				𝑢
				‖
				=
			

			
				𝑇
				0
			

			
				
				(
				𝑢
				(
				𝑡
				)
				,
				𝑢
				(
				𝑡
				)
				)
				𝑑
				𝑡
				+
			

			
				𝑇
				0
			

			
				
				(
				̇
				𝑢
				(
				𝑡
				)
				,
				̇
				𝑢
				(
				𝑡
				)
				)
				𝑑
				𝑡
			

			
				1
				/
				2
			

			
				,
				∀
				𝑢
				∈
				𝐻
			

			
				1
				𝑇
			

			

				.
			

		
	

The space 
	
		
			

				𝐻
			

			
				1
				𝑇
			

		
	
 has some important properties. For 
	
		
			
				𝑢
				∈
				𝐻
			

			
				1
				𝑇
			

		
	
, let 
	
		
			
				
			
			
				∫
				𝑢
				=
				(
				1
				/
				2
				𝑇
				)
			

			
				𝑇
				0
			

			
				𝑢
				(
				𝑡
				)
				𝑑
				𝑡
			

		
	
, and 
	
		
			
				̃
				𝑢
				=
				𝑢
				(
				𝑡
				)
				−
			

			
				
			
			

				𝑢
			

		
	
. Then one has Sobolev's inequality (see Proposition 
	
		
			
				1
				.
				3
			

		
	
 in [1]): 
						
	
 		
 			
				(
				1
				.
				6
				)
			
 		
	

	
		
			
				‖
				̃
				𝑢
				‖
			

			
				2
				∞
			

			
				≤
				𝑇
			

			
				
			
			
				
				1
				2
			

			
				𝑇
				0
			

			
				|
				|
				|
				|
				̇
				𝑢
				(
				𝑡
				)
			

			

				2
			

			
				𝑑
				𝑡
				.
			

		
	

Consider the corresponding functional 
	
		
			

				𝜑
			

		
	
 on 
	
		
			

				𝐻
			

			
				1
				𝑇
			

		
	
 given by 
						
	
 		
 			
				(
				1
				.
				7
				)
			
 		
	

	
		
			
				1
				𝜑
				(
				𝑢
				)
				=
			

			
				
			
			
				2
				
			

			
				𝑇
				0
			

			
				|
				|
				|
				|
				̇
				𝑢
				(
				𝑡
				)
			

			

				2
			

			
				
				𝑑
				𝑡
				+
			

			
				𝑇
				0
			

			
				𝐹
				(
				𝑡
				,
				𝑢
				(
				𝑡
				)
				)
				𝑑
				𝑡
				+
			

			

				𝑚
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝐺
			

			

				𝑘
			

			
				
				𝑢
				
				𝑡
			

			

				𝑘
			

			
				.
				
				
			

		
	

It follows from assumption 
	
		
			
				(
				𝐴
				)
			

		
	
 and the continuity of 
	
		
			

				𝑔
			

			

				𝑘
			

		
	
 one has that 
	
		
			

				𝜑
			

		
	
 is continuously differentiable and weakly lower semicontinuous on 
	
		
			

				𝐻
			

			
				1
				𝑇
			

		
	
. Moreover, we have 
						
	
 		
 			
				(
				1
				.
				8
				)
			
 		
	

	
		
			
				
				⟨
				𝜑
				′
				(
				𝑢
				)
				,
				𝑣
				⟩
				=
			

			
				𝑇
				0
			

			
				̇
				
				(
				̇
				𝑢
				(
				𝑡
				)
				,
				𝑣
				(
				𝑡
				)
				)
				𝑑
				𝑡
				+
			

			
				𝑇
				0
			

			
				(
				𝑓
				(
				𝑡
				,
				𝑢
				(
				𝑡
				)
				)
				,
				𝑣
				(
				𝑡
				)
				)
				𝑑
				𝑡
				+
			

			

				𝑚
			

			

				
			

			
				𝑘
				=
				1
			

			
				
				𝑔
			

			

				𝑘
			

			
				
				𝑢
				
				𝑡
			

			

				𝑘
			

			
				
				𝑡
				
				
				,
				𝑣
			

			

				𝑘
			

			
				,
				
				
			

		
	

					for 
	
		
			
				𝑢
				,
				𝑣
				∈
				𝐻
			

			
				1
				𝑇
			

		
	
 and 
	
		
			
				𝜑
				′
			

		
	
 is weakly continuous and the weak solutions of problem (1.1) correspond to the critical points of 
	
		
			

				𝜑
			

		
	
 (see [8]).  
Theorem 1.1 ([2, Theorem  1.1]).   Suppose that 
	
		
			

				𝑉
			

		
	
 and 
	
		
			

				𝑊
			

		
	
 are reflexive Banach spaces, 
	
		
			
				𝜑
				∈
				𝐶
			

			

				1
			

			
				(
				𝑉
				×
				𝑊
				,
				𝑅
				)
			

		
	
, 
	
		
			
				𝜑
				(
				𝑣
				,
				⋅
				)
			

		
	
 is weakly upper semi-continuous for all 
	
		
			
				𝑣
				∈
				𝑉
			

		
	
, and 
	
		
			
				𝜑
				(
				⋅
				,
				𝑤
				)
				∶
				𝑉
				→
				𝑅
			

		
	
 is convex for all 
	
		
			
				𝑤
				∈
				𝑊
			

		
	
 and 
	
		
			
				𝜑
				′
			

		
	
 is weakly continuous. Assume that 
							
	
 		
 			
				(
				1
				.
				9
				)
			
 		
	

	
		
			
				𝜑
				(
				0
				,
				𝑤
				)
				→
				−
				∞
			

		
	

						as 
	
		
			
				‖
				𝑤
				‖
				→
				∞
			

		
	
 and for every 
	
		
			
				𝑀
				>
				0
			

		
	
, 
							
	
 		
 			
				(
				1
				.
				1
				0
				)
			
 		
	

	
		
			
				𝜑
				(
				𝑣
				,
				𝑤
				)
				→
				+
				∞
				,
			

		
	

						as 
	
		
			
				‖
				𝑣
				‖
				→
				∞
			

		
	
 uniformly for 
	
		
			
				‖
				𝑤
				‖
				≤
				𝑀
			

		
	
. Then 
	
		
			

				𝜑
			

		
	
 has at least one critical point.  
2. Main Results  
Theorem 2.1.  Assume that assumption 
	
		
			
				(
				𝐴
				)
			

		
	
 holds. If further 
	
		
			
				(
				𝐻
			

			

				1
			

			

				)
			

		
	

	
		
			
				𝐹
				(
				𝑡
				,
				⋅
				)
			

		
	
 is convex for a.e. 
	
		
			
				𝑡
				∈
				[
				0
				,
				𝑇
				]
			

		
	
, and
	
		
			
				(
				𝐻
			

			

				2
			

			

				)
			

		
	
 there exist 
	
		
			

				𝜂
			

		
	
, 
	
		
			
				𝜃
				>
				0
			

		
	
 such that 
	
		
			

				𝐺
			

			

				𝑘
			

			
				(
				𝑥
				)
				≥
				𝜂
				|
				𝑥
				|
				+
				𝜃
			

		
	
, for all 
	
		
			
				𝑥
				∈
				ℝ
			

			

				𝑛
			

		
	
, then (1.1) possesses at least one solution in 
	
		
			

				𝐻
			

			
				1
				𝑇
			

		
	
.
Remark 2.2. 
	
		
			
				(
				𝐻
			

			

				1
			

			

				)
			

		
	
 implies there exists a point 
	
		
			
				
			
			

				𝑥
			

		
	
 for which 
							
	
 		
 			
				(
				2
				.
				1
				)
			
 		
	

	
		
			

				
			

			
				𝑇
				0
			

			
				
				∇
				𝐹
				𝑡
				,
			

			
				
			
			
				𝑥
				
				𝑑
				𝑡
				=
				0
				.
			

		
	

 Proof of Theorem 2.1. It follows Remark 2.2, (1.6), and 
	
		
			
				(
				𝐻
			

			

				2
			

			

				)
			

		
	
 that 
							
	
 		
 			
				(
				2
				.
				2
				)
			
 		
	

	
		
			
				1
				𝜑
				(
				𝑢
				)
				=
			

			
				
			
			
				2
				
			

			
				𝑇
				0
			

			
				|
				|
				|
				|
				̇
				𝑢
				(
				𝑡
				)
			

			

				2
			

			
				
				𝑑
				𝑡
				+
			

			
				𝑇
				0
			

			
				
				
				𝐹
				(
				𝑡
				,
				𝑢
				(
				𝑡
				)
				)
				−
				𝐹
				𝑡
				,
			

			
				
			
			
				𝑥
				
				
				
				𝑑
				𝑡
				+
			

			
				𝑇
				0
			

			
				𝐹
				
				𝑡
				,
			

			
				
			
			
				𝑥
				
				𝑑
				𝑡
				+
			

			

				𝑚
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝐺
			

			

				𝑘
			

			
				
				𝑢
				
				𝑡
			

			

				𝑘
			

			
				=
				1
				
				
			

			
				
			
			
				2
				
			

			
				𝑇
				0
			

			
				|
				|
				|
				|
				̇
				𝑢
				(
				𝑡
				)
			

			

				2
			

			
				
				𝑑
				𝑡
				+
			

			
				𝑇
				0
			

			
				𝐹
				
				𝑡
				,
			

			
				
			
			
				𝑥
				
				
				𝑑
				𝑡
				+
			

			
				𝑇
				0
			

			
				
				𝑓
				
				𝑡
				,
			

			
				
			
			
				𝑥
				
				,
				𝑢
				(
				𝑡
				)
				−
			

			
				
			
			
				𝑥
				
				𝑑
				𝑡
				+
			

			

				𝑚
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝐺
			

			

				𝑘
			

			
				
				𝑢
				
				𝑡
			

			

				𝑘
			

			
				≥
				1
				
				
			

			
				
			
			
				2
				
			

			
				𝑇
				0
			

			
				|
				|
				|
				|
				̇
				𝑢
				(
				𝑡
				)
			

			

				2
			

			
				
				𝑑
				𝑡
				+
			

			
				𝑇
				0
			

			
				𝐹
				
				𝑡
				,
			

			
				
			
			
				𝑥
				
				
				𝑑
				𝑡
				+
			

			
				𝑇
				0
			

			
				
				𝑓
				
				𝑡
				,
			

			
				
			
			
				𝑥
				
				
				,
				̃
				𝑢
				𝑑
				𝑡
				+
			

			

				𝑚
			

			

				
			

			
				𝑘
				=
				1
			

			
				𝜂
				|
				|
				̃
				𝑢
				+
			

			
				
			
			
				𝑢
				|
				|
				≥
				1
				+
				𝑚
				𝜃
			

			
				
			
			
				2
				
			

			
				𝑇
				0
			

			
				|
				|
				|
				|
				̇
				𝑢
				(
				𝑡
				)
			

			

				2
			

			
				
				
				𝑑
				𝑡
				−
			

			
				𝑇
				0
			

			
				|
				|
				𝑓
				
				𝑡
				,
			

			
				
			
			
				𝑥
				
				|
				|
				
				𝑑
				𝑡
				‖
				̃
				𝑢
				‖
			

			

				∞
			

			
				|
				|
				+
				𝑚
				𝜂
			

			
				
			
			
				𝑢
				|
				|
				−
				𝑚
				𝜂
				‖
				̃
				𝑢
				‖
			

			

				∞
			

			
				≥
				1
				+
				𝑚
				𝜃
			

			
				
			
			
				2
				
			

			
				𝑇
				0
			

			
				|
				|
				|
				|
				̇
				𝑢
				(
				𝑡
				)
			

			

				2
			

			
				𝑑
				𝑡
				−
				𝐶
			

			

				0
			

			
				
				
			

			
				𝑇
				0
			

			
				|
				|
				|
				|
				̇
				𝑢
				(
				𝑡
				)
			

			

				2
			

			
				
				𝑑
				𝑡
			

			
				1
				/
				2
			

			
				|
				|
				+
				𝑚
				𝜂
			

			
				
			
			
				𝑢
				|
				|
				+
				𝑚
				𝜃
				,
			

		
	

						for all 
	
		
			
				𝑢
				∈
				𝐻
			

			
				1
				𝑇
			

		
	
 and some positive constant 
	
		
			

				𝐶
			

			

				0
			

		
	
. As 
	
		
			
				‖
				𝑢
				‖
				→
				∞
			

		
	
 if and only if 
	
		
			
				(
				|
				𝑢
				|
			

			

				2
			

			
				+
				‖
				̇
				𝑢
				‖
			

			
				2
				2
			

			

				)
			

			
				1
				/
				2
			

			
				→
				∞
			

		
	
, we have 
	
		
			
				𝜑
				(
				𝑢
				)
				→
				+
				∞
			

		
	
 as 
	
		
			
				‖
				𝑢
				‖
				→
				∞
			

		
	
. By Theorem 1.1 and Corollary 1.1 in [1], 
	
		
			

				𝜑
			

		
	
 has a minimum point in 
	
		
			

				𝐻
			

			
				1
				𝑇
			

		
	
, which is a critical point of 
	
		
			

				𝜑
			

		
	
. Hence, problem (1.1) has at least one weak solution.  
Theorem 2.3.  Assume that assumption 
	
		
			
				(
				𝐴
				)
			

		
	
 and 
	
		
			
				(
				𝐻
			

			

				1
			

			

				)
			

		
	
 hold. If further 
	
		
			
				(
				𝐻
			

			

				3
			

			

				)
			

		
	
 there exist 
	
		
			

				𝜂
			

		
	
, 
	
		
			
				𝜃
				>
				0
			

		
	
 and 
	
		
			
				𝛼
				∈
				(
				0
				,
				2
				)
			

		
	
 such that 
	
		
			

				𝐺
			

			

				𝑘
			

			
				(
				𝑥
				)
				≤
				𝜂
				|
				𝑥
				|
			

			

				𝛼
			

			
				+
				𝜃
			

		
	
 for all 
	
		
			
				𝑥
				∈
				ℝ
			

			

				𝑛
			

		
	
 and 
	
		
			
				(
				𝐻
			

			

				4
			

			

				)
			

		
	
 there exist some 
	
		
			
				𝛽
				>
				𝛼
			

		
	
 and 
	
		
			
				𝛾
				>
				0
			

		
	
 such that 
										
	
 		
 			
				(
				2
				.
				3
				)
			
 		
	

	
		
			
				|
				𝑥
				|
			

			
				−
				𝛽
			

			

				
			

			
				𝑇
				0
			

			
				𝐹
				(
				𝑡
				,
				𝑥
				)
				𝑑
				𝑡
				≤
				−
				𝛾
				,
			

		
	
for 
	
		
			
				|
				𝑥
				|
				≥
				𝑀
			

		
	
 and 
	
		
			
				𝑡
				∈
				[
				0
				,
				𝑇
				]
			

		
	
, where 
	
		
			

				𝑀
			

		
	
 is a constant, then (1.1) possesses at least one solution in 
	
		
			

				𝐻
			

			
				1
				𝑇
			

		
	
. 
Remark 2.4. We can find that our condition 
	
		
			
				(
				𝐻
			

			

				4
			

			

				)
			

		
	
 is very different from condition (vii) in [7] since we prove this by the saddle point theorem substituted for the least action principle.  
 Proof of Theorem 2.3. We prove 
	
		
			

				𝜑
			

		
	
 satisfies the (PS) condition at first. Suppose 
	
		
			
				{
				𝑢
			

			

				𝑛
			

			

				}
			

		
	
 is such an sequence that 
	
		
			
				{
				𝜑
				(
				𝑢
			

			

				𝑛
			

			
				)
				}
			

		
	
 is bounded and 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝜑
			

			

				
			

			
				(
				𝑢
			

			

				𝑛
			

			

				)
			

		
	
 
	
		
			
				=
				0
			

		
	
. We will prove it has a convergent subsequence. By 
	
		
			
				(
				𝐻
			

			

				3
			

			

				)
			

		
	
 and (1.6), we have 
							
	
 		
 			
				(
				2
				.
				4
				)
			
 		
	

	
		
			

				𝑚
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝐺
			

			

				𝑘
			

			
				
				𝑢
				
				𝑡
			

			

				𝑘
			

			
				≤
				
				
			

			

				𝑚
			

			

				
			

			
				𝑘
				=
				1
			

			
				𝜂
				|
				|
				
				𝑡
				̃
				𝑢
			

			

				𝑘
			

			
				
				+
			

			
				
			
			
				𝑢
				|
				|
			

			

				𝛼
			

			
				
				|
				|
				
				𝑡
				+
				𝑚
				𝜃
				≤
				4
				𝑚
				𝜂
				̃
				𝑢
			

			

				𝑘
			

			
				
				|
				|
			

			

				𝛼
			

			
				+
				|
				|
			

			
				
			
			
				𝑢
				|
				|
			

			

				𝛼
			

			
				
				+
				𝑚
				𝜃
				≤
				𝐶
			

			

				1
			

			
				‖
				̇
				𝑢
				‖
			

			
				𝛼
				2
			

			
				+
				𝐶
			

			

				2
			

			
				|
				|
			

			
				
			
			
				𝑢
				|
				|
			

			

				𝛼
			

			
				+
				𝐶
			

			

				3
			

			

				,
			

		
	

						for some positive constants 
	
		
			

				𝐶
			

			

				1
			

		
	
, 
	
		
			

				𝐶
			

			

				2
			

		
	
, 
	
		
			

				𝐶
			

			

				3
			

		
	
. By Remark 2.2, (1.6), and (2.4), we have 
							
	
 		
 			
				(
				2
				.
				5
				)
			
 		
	

	
		
			
				𝜑
				
				𝑢
			

			

				𝑛
			

			
				
				=
				1
			

			
				
			
			
				2
				
			

			
				𝑇
				0
			

			
				|
				|
				̇
				𝑢
			

			

				𝑛
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				
				𝑑
				𝑡
				+
			

			
				𝑇
				0
			

			
				
				𝐹
				
				𝑡
				,
				𝑢
			

			

				𝑛
			

			
				
				
				(
				𝑡
				)
				−
				𝐹
				𝑡
				,
			

			
				
			
			
				𝑥
				
				
				
				𝑑
				𝑡
				+
			

			
				𝑇
				0
			

			
				𝐹
				
				𝑡
				,
			

			
				
			
			
				𝑥
				
				𝑑
				𝑡
				+
			

			

				𝑚
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝐺
			

			

				𝑘
			

			
				
				𝑢
			

			

				𝑛
			

			
				
				𝑡
			

			

				𝑘
			

			
				=
				1
				
				
			

			
				
			
			
				2
				
			

			
				𝑇
				0
			

			
				|
				|
				̇
				𝑢
			

			

				𝑛
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				
				𝑑
				𝑡
				+
			

			
				𝑇
				0
			

			
				𝐹
				
				𝑡
				,
			

			
				
			
			
				𝑥
				
				
				𝑑
				𝑡
				+
			

			
				𝑇
				0
			

			
				
				𝑓
				
				𝑡
				,
			

			
				
			
			
				𝑥
				
				,
				𝑢
			

			

				𝑛
			

			
				(
				𝑡
				)
				−
			

			
				
			
			
				𝑥
				
				𝑑
				𝑡
				+
			

			

				𝑚
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝐺
			

			

				𝑘
			

			
				
				𝑢
			

			

				𝑛
			

			
				
				𝑡
			

			

				𝑘
			

			
				=
				1
				
				
			

			
				
			
			
				2
				
			

			
				𝑇
				0
			

			
				|
				|
				̇
				𝑢
			

			

				𝑛
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				
				𝑑
				𝑡
				+
			

			
				𝑇
				0
			

			
				𝐹
				
				𝑡
				,
			

			
				
			
			
				𝑥
				
				
				𝑑
				𝑡
				+
			

			
				𝑇
				0
			

			
				
				𝑓
				
				𝑡
				,
			

			
				
			
			
				𝑥
				
				,
				̃
				𝑢
			

			

				𝑛
			

			
				
				𝑑
				𝑡
				+
			

			

				𝑚
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝐺
			

			

				𝑘
			

			
				
				𝑢
			

			

				𝑛
			

			
				
				𝑡
			

			

				𝑘
			

			
				≥
				1
				
				
			

			
				
			
			
				2
				
			

			
				𝑇
				0
			

			
				|
				|
				̇
				𝑢
			

			

				𝑛
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				
				
				𝑑
				𝑡
				−
			

			
				𝑇
				0
			

			
				|
				|
				𝑓
				
				𝑡
				,
			

			
				
			
			
				𝑥
				
				|
				|
				
				‖
				‖
				𝑑
				𝑡
				̃
				𝑢
			

			

				𝑛
			

			
				‖
				‖
			

			

				∞
			

			
				−
				𝐶
			

			

				1
			

			
				‖
				‖
				̇
				𝑢
			

			

				𝑛
			

			
				‖
				‖
			

			
				𝛼
				2
			

			
				−
				𝐶
			

			

				2
			

			
				|
				|
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				|
				|
			

			

				𝛼
			

			
				−
				𝐶
			

			

				4
			

			
				≥
				1
			

			
				
			
			
				2
				
			

			
				𝑇
				0
			

			
				|
				|
				̇
				𝑢
			

			

				𝑛
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				𝑑
				𝑡
				−
				𝐶
			

			

				5
			

			
				
				
			

			
				𝑇
				0
			

			
				|
				|
				̇
				𝑢
			

			

				𝑛
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				
				𝑑
				𝑡
			

			
				1
				/
				2
			

			
				−
				𝐶
			

			

				1
			

			
				‖
				‖
				̇
				𝑢
			

			

				𝑛
			

			
				‖
				‖
			

			
				𝛼
				2
			

			
				−
				𝐶
			

			

				2
			

			
				|
				|
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				|
				|
			

			

				𝛼
			

			
				−
				𝐶
			

			

				4
			

			

				,
			

		
	

						for some positive constants 
	
		
			

				𝐶
			

			

				4
			

		
	
, 
	
		
			

				𝐶
			

			

				5
			

		
	
, which implies that 
							
	
 		
 			
				(
				2
				.
				6
				)
			
 		
	

	
		
			
				𝐶
				|
				|
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				|
				|
			

			
				𝛼
				/
				2
			

			
				≥
				
				
			

			
				𝑇
				0
			

			
				|
				|
				̇
				𝑢
			

			

				𝑛
			

			
				|
				|
				(
				𝑡
				)
			

			

				2
			

			
				
				𝑑
				𝑡
			

			
				1
				/
				2
			

			
				−
				𝐶
			

			

				6
			

			

				,
			

		
	

						for some positive constants 
	
		
			

				𝐶
			

		
	
, 
	
		
			

				𝐶
			

			

				6
			

		
	
. By (1.6), the above inequality implies that 
							
	
 		
 			
				(
				2
				.
				7
				)
			
 		
	

	
		
			
				‖
				‖
				̃
				𝑢
			

			

				𝑛
			

			
				‖
				‖
			

			

				∞
			

			
				≤
				𝐶
			

			

				7
			

			
				
				|
				|
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				|
				|
			

			
				𝛼
				/
				2
			

			
				
				,
				+
				1
			

		
	

						for the positive constant 
	
		
			

				𝐶
			

			

				7
			

		
	
. The one has 
							
	
 		
 			
				(
				2
				.
				8
				)
			
 		
	

	
		
			
				|
				|
				𝑢
			

			

				𝑛
			

			
				|
				|
				≥
				|
				|
				(
				𝑡
				)
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				|
				|
				−
				|
				|
				̃
				𝑢
			

			

				𝑛
			

			
				|
				|
				≥
				|
				|
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				|
				|
				−
				‖
				‖
				̃
				𝑢
			

			

				𝑛
			

			
				‖
				‖
			

			

				∞
			

			
				≥
				|
				|
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				|
				|
				−
				𝐶
			

			

				7
			

			
				
				|
				|
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				|
				|
			

			
				𝛼
				/
				2
			

			
				
				[
				]
				.
				+
				1
				,
				∀
				𝑡
				∈
				0
				,
				𝑇
			

		
	

						If 
	
		
			
				{
				|
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				|
				}
			

		
	
 is unbounded, we may assume that, going to a subsequence if necessary, 
							
	
 		
 			
				(
				2
				.
				9
				)
			
 		
	

	
		
			
				|
				|
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				|
				|
				→
				∞
				a
				s
				𝑛
				→
				∞
				.
			

		
	

						By (2.8) and (2.9), we have 
							
	
 		
 			
				(
				2
				.
				1
				0
				)
			
 		
	

	
		
			
				|
				|
				𝑢
			

			

				𝑛
			

			
				|
				|
				≥
				1
				(
				𝑡
				)
			

			
				
			
			
				2
				|
				|
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				|
				|
				,
			

		
	

						for all large 
	
		
			

				𝑛
			

		
	
 and every 
	
		
			
				𝑡
				∈
				[
				0
				,
				𝑇
				]
			

		
	
. By (2.10) and 
	
		
			
				(
				𝐻
			

			

				4
			

			

				)
			

		
	
, one has 
	
		
			
				|
				𝑢
			

			

				𝑛
			

			
				(
				𝑡
				)
				|
				≥
				𝑀
			

		
	
 for all large 
	
		
			

				𝑛
			

		
	
. It follows from 
	
		
			
				(
				𝐻
			

			

				4
			

			

				)
			

		
	
, (2.4), (2.6), (2.7), and above inequality that 
							
	
 		
 			
				(
				2
				.
				1
				1
				)
			
 		
	

	
		
			
				𝜑
				
				𝑢
			

			

				𝑛
			

			
				
				≤
				
				𝐶
				|
				|
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				|
				|
			

			
				𝛼
				/
				2
			

			
				+
				𝐶
			

			

				6
			

			

				
			

			

				2
			

			
				−
				
			

			
				𝑇
				0
			

			
				𝛾
				|
				|
				𝑢
			

			

				𝑛
			

			
				|
				|
				(
				𝑡
				)
			

			

				𝛽
			

			
				𝑑
				𝑡
				+
				𝐶
			

			

				2
			

			
				‖
				̃
				𝑢
				‖
			

			
				𝛼
				∞
			

			
				+
				𝐶
			

			

				2
			

			
				|
				|
			

			
				
			
			
				𝑢
				|
				|
			

			

				𝛼
			

			
				+
				𝐶
			

			

				3
			

			
				≤
				
				𝐶
				|
				|
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				|
				|
			

			
				𝛼
				/
				2
			

			
				+
				𝐶
			

			

				6
			

			

				
			

			

				2
			

			
				−
				2
			

			
				−
				𝛽
			

			
				|
				|
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				|
				|
			

			

				𝛽
			

			
				𝑇
				𝛾
				+
				𝐶
			

			

				8
			

			
				
				|
				|
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				|
				|
			

			
				𝛼
				/
				2
			

			
				
				+
				1
			

			

				𝛼
			

			
				+
				𝐶
			

			

				2
			

			
				|
				|
			

			
				
			
			
				𝑢
				|
				|
			

			

				𝛼
			

			
				+
				𝐶
			

			

				3
			

			

				,
			

		
	

						for large 
	
		
			

				𝑛
			

		
	
 and the positive constant 
	
		
			

				𝐶
			

			

				8
			

		
	
, which contradicts the boundedness of 
	
		
			
				𝜑
				(
				𝑢
			

			

				𝑛
			

			

				)
			

		
	
 since 
	
		
			
				𝛽
				>
				𝛼
			

		
	
. Hence 
	
		
			
				(
				|
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				|
				)
			

		
	
 is bounded. Furthermore, 
	
		
			
				(
				𝑢
			

			

				𝑛
			

			

				)
			

		
	
 is bounded by (2.6). A similar calculation to Lemma 3.1 in [9] shows that 
	
		
			

				𝜑
			

		
	
 satisfies the (PS) condition. We now prove that 
	
		
			

				𝜑
			

		
	
 satisfies the other conditions of the saddle point theorem. Assume that 
	
		
			
				
				𝐻
			

			
				1
				𝑇
			

			
				=
				{
				𝑢
				∈
				𝐻
			

			
				1
				𝑇
			

			

				∶
			

			
				
			
			
				𝑢
				=
				0
				}
			

		
	
, then 
	
		
			

				𝐻
			

			
				1
				𝑇
			

			
				=
				
				𝐻
			

			
				1
				𝑇
			

			
				⊕
				ℝ
			

			

				𝑛
			

		
	
. From above calculation, one has 
							
	
 		
 			
				(
				2
				.
				1
				2
				)
			
 		
	

	
		
			
				1
				𝜑
				(
				𝑢
				)
				≥
			

			
				
			
			
				2
				
			

			
				𝑇
				0
			

			
				|
				|
				|
				|
				̇
				𝑢
				(
				𝑡
				)
			

			

				2
			

			
				𝑑
				𝑡
				−
				𝐶
			

			

				5
			

			
				
				
			

			
				𝑇
				0
			

			
				|
				|
				|
				|
				̇
				𝑢
				(
				𝑡
				)
			

			

				2
			

			
				
				𝑑
				𝑡
			

			
				1
				/
				2
			

			
				−
				𝐶
			

			

				1
			

			
				‖
				̇
				𝑢
				‖
			

			
				𝛼
				2
			

			
				−
				𝐶
			

			

				4
			

			

				,
			

		
	

						for all 
	
		
			
				
				𝐻
				𝑢
				∈
			

			
				1
				𝑇
			

		
	
, which implies that 
							
	
 		
 			
				(
				2
				.
				1
				3
				)
			
 		
	

	
		
			
				𝜑
				(
				𝑢
				)
				→
				+
				∞
				,
			

		
	

						as 
	
		
			
				‖
				𝑢
				‖
				→
				∞
			

		
	
 in 
	
		
			
				
				𝐻
			

			
				1
				𝑇
			

		
	
. Moreover, by 
	
		
			
				(
				𝐻
			

			

				3
			

			

				)
			

		
	
 and 
	
		
			
				(
				𝐻
			

			

				4
			

			

				)
			

		
	
 we have 
							
	
 		
 			
				(
				2
				.
				1
				4
				)
			
 		
	

	
		
			
				
				𝜑
				(
				𝑥
				)
				=
			

			
				𝑇
				0
			

			
				𝐹
				(
				𝑡
				,
				𝑥
				)
				𝑑
				𝑡
				+
			

			

				𝑚
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝐺
			

			

				𝑘
			

			
				(
				𝑥
				)
				≤
				−
				𝑇
				𝛾
				|
				𝑥
				|
			

			

				𝛽
			

			
				+
				𝑚
				𝜂
				|
				𝑥
				|
			

			

				𝛼
			

			
				+
				𝑚
				𝜃
				,
			

		
	

						for 
	
		
			
				|
				𝑥
				|
				>
				𝑀
			

		
	
, which implies that 
							
	
 		
 			
				(
				2
				.
				1
				5
				)
			
 		
	

	
		
			
				𝜑
				(
				𝑥
				)
				→
				−
				∞
				,
			

		
	

						as 
	
		
			
				|
				𝑥
				|
				→
				∞
			

		
	
 in 
	
		
			

				ℝ
			

			

				𝑛
			

		
	
 since 
	
		
			
				𝛽
				>
				𝛼
			

		
	
. Now Theorem 2.3 is proved by (2.13), (2.15), and the saddle point theorem. 
Theorem 2.5.  Assume that assumption 
	
		
			
				(
				𝐴
				)
			

		
	
 holds. Suppose that 
	
		
			
				𝐹
				(
				𝑡
				,
				⋅
				)
				,
				𝐺
			

			

				𝑘
			

			
				(
				𝑥
				)
			

		
	
 are concave and satisfy 
	
		
			
				(
				𝐻
			

			

				5
			

			

				)
			

		
	

	
		
			

				𝐺
			

			

				𝑘
			

			
				(
				𝑥
				)
				≤
				−
				𝜂
				|
				𝑥
				|
				+
				𝜃
			

		
	
 for some positive constant 
	
		
			
				𝜂
				,
				𝜃
				>
				0
			

		
	
, then (1.1) possesses at least one solution in 
	
		
			

				H
			

			

				1
			

			

				T
			

		
	
. 
 Proof of Theorem 2.5. Consider the corresponding functional 
	
		
			

				𝜑
			

		
	
 on 
	
		
			

				ℝ
			

			

				𝑛
			

			
				×
				
				𝐻
			

			
				1
				𝑇
			

		
	
 given by 
							
	
 		
 			
				(
				2
				.
				1
				6
				)
			
 		
	

	
		
			
				1
				𝜑
				(
				𝑢
				)
				=
				−
			

			
				
			
			
				2
				
			

			
				𝑇
				0
			

			
				|
				|
				|
				|
				̇
				𝑢
				(
				𝑡
				)
			

			

				2
			

			
				
				𝑑
				𝑡
				−
			

			
				𝑇
				0
			

			
				𝐹
				(
				𝑡
				,
				𝑢
				(
				𝑡
				)
				)
				𝑑
				𝑡
				−
			

			

				𝑚
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝐺
			

			

				𝑘
			

			
				
				𝑢
				
				𝑡
			

			

				𝑘
			

			
				,
				
				
			

		
	

						which is continuously differentiable, bounded, and weakly upper semi-continuous on 
	
		
			

				𝐻
			

			
				1
				𝑇
			

		
	
. Similar to the proof of Lemma 3.1 in [2], one has that 
	
		
			
				𝜑
				(
				𝑥
				+
				𝑤
				)
			

		
	
 is convex in 
	
		
			
				𝑥
				∈
				ℝ
			

			

				𝑛
			

		
	
 for every 
	
		
			
				
				𝐻
				𝑤
				∈
			

			
				1
				𝑇
			

		
	
. By the condition, we have 
	
		
			
				−
				𝐺
			

			

				𝑘
			

			
				(
				𝑥
				+
				𝑤
				)
				≥
				−
				2
				𝐺
			

			

				𝑘
			

			
				(
				(
				1
				/
				2
				)
				𝑥
				)
				+
				𝐺
			

			

				𝑘
			

			
				(
				−
				𝑤
				)
			

		
	
. Similar to the proof of Theorem 3.1, we have 
							
	
 		
 			
				(
				2
				.
				1
				7
				)
			
 		
	

	
		
			
				1
				𝜑
				(
				𝑥
				+
				𝑤
				)
				=
				−
			

			
				
			
			
				2
				
			

			
				𝑇
				0
			

			
				|
				̇
				𝑤
				|
			

			

				2
			

			
				
				𝑑
				𝑡
				−
			

			
				𝑇
				0
			

			
				𝐹
				(
				𝑡
				,
				𝑥
				+
				𝑤
				)
				𝑑
				𝑡
				−
			

			

				𝑚
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝐺
			

			

				𝑘
			

			
				1
				(
				𝑥
				+
				𝑤
				)
				≥
				−
			

			
				
			
			
				2
				
			

			
				𝑇
				0
			

			
				|
				̇
				𝑤
				|
			

			

				2
			

			
				
				
				𝑑
				𝑡
				−
			

			
				𝑇
				0
			

			
				|
				|
				𝑓
				
				𝑡
				,
			

			
				
			
			
				𝑥
				
				|
				|
				
				𝑑
				𝑡
				‖
				𝑤
				‖
			

			

				∞
			

			

				−
			

			

				𝑚
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝐺
			

			

				𝑘
			

			
				(
				𝑥
				+
				𝑤
				)
				+
				𝐶
			

			

				9
			

			
				1
				≥
				−
			

			
				
			
			
				2
				
			

			
				𝑇
				0
			

			
				|
				̇
				𝑤
				|
			

			

				2
			

			
				𝑑
				𝑡
				−
				𝐶
			

			

				0
			

			
				
				
			

			
				𝑇
				0
			

			
				|
				̇
				𝑤
				|
			

			

				2
			

			
				
				𝑑
				𝑡
			

			
				1
				/
				2
			

			
				−
				2
				𝐺
			

			

				𝑘
			

			
				
				1
			

			
				
			
			
				2
				𝑥
				
				+
				𝐺
			

			

				𝑘
			

			
				(
				−
				𝑤
				)
				+
				𝐶
			

			

				9
			

			

				,
			

		
	

						which means 
	
		
			
				𝜑
				(
				𝑥
				+
				𝑤
				)
				→
				+
				∞
			

		
	
 as 
	
		
			
				|
				𝑥
				|
				→
				∞
			

		
	
, uniformly for 
	
		
			
				
				𝐻
				𝑤
				∈
			

			
				1
				𝑇
			

		
	
 with 
	
		
			
				‖
				𝑤
				‖
				≤
				𝑀
			

		
	
 by 
	
		
			
				(
				𝐻
			

			

				5
			

			

				)
			

		
	
 and (1.6). On the other hand, 
							
	
 		
 			
				(
				2
				.
				1
				8
				)
			
 		
	

	
		
			
				1
				𝜑
				(
				𝑤
				)
				=
				−
			

			
				
			
			
				2
				
			

			
				𝑇
				0
			

			
				|
				̇
				𝑤
				|
			

			

				2
			

			
				
				𝑑
				𝑡
				−
			

			
				𝑇
				0
			

			
				𝐹
				(
				𝑡
				,
				𝑤
				)
				𝑑
				𝑡
				−
			

			

				𝑚
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝐺
			

			

				𝑘
			

			
				1
				(
				𝑤
				)
				≤
				−
			

			
				
			
			
				2
				
			

			
				𝑇
				0
			

			
				|
				̇
				𝑤
				|
			

			

				2
			

			
				𝑑
				𝑡
				+
				𝐶
			

			

				0
			

			
				
				
			

			
				𝑇
				0
			

			
				|
				̇
				𝑤
				|
			

			

				2
			

			
				
				𝑑
				𝑡
			

			
				1
				/
				2
			

			
				+
				𝑚
				𝜂
				‖
				𝑤
				‖
			

			

				∞
			

			
				+
				𝐶
			

			

				9
			

			

				,
			

		
	

						which implies that 
	
		
			
				𝜑
				(
				𝑤
				)
				→
				−
				∞
			

		
	
 as 
	
		
			
				
				𝐻
				‖
				𝑤
				‖
				→
				∞
				∈
			

			
				1
				𝑇
			

		
	
 by 
	
		
			
				(
				𝐻
			

			

				5
			

			

				)
			

		
	
 and (1.6). We complete our proof by Theorem 1.1.  
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