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Abstract. 
We discuss the asymptotic behavior of solutions for semilinear parabolic equations on the Heisenberg group with a singular potential. The singularity is controlled by Hardy's inequality, and the nonlinearity is controlled by Sobolev's inequality. We also establish the existence of a global branch of the corresponding steady states via the classical Rabinowitz theorem.


1. Introduction
In this paper, we study a class of parabolic equations on the Heisenberg group 
	
		
			

				ℍ
			

			

				𝑑
			

		
	
. Let us recall that the Heisenberg group is the space 
	
		
			

				ℝ
			

			
				2
				𝑑
				+
				1
			

		
	
 of the (noncommutative) law of product
	
 		
 			
				(
				1
				.
				1
				)
			
 		
	

	
		
			
				
				𝑥
				(
				𝑥
				,
				𝑦
				,
				𝑠
				)
				⋅
			

			

				
			

			
				,
				𝑦
			

			

				
			

			
				,
				𝑠
			

			

				
			

			
				
				=
				
				𝑥
				+
				𝑥
			

			

				
			

			
				,
				𝑦
				+
				𝑦
			

			

				
			

			
				,
				𝑠
				+
				𝑠
			

			

				
			

			
				+
				2
				
				
				𝑦
				∣
				𝑥
			

			

				
			

			
				
				−
				
				𝑦
			

			

				
			

			
				.
				∣
				𝑥
				
				
				
			

		
	


				 The left invariant vector fields are
	
 		
 			
				(
				1
				.
				2
				)
			
 		
	

	
		
			

				𝑋
			

			

				𝑗
			

			
				=
				𝜕
			

			

				𝑥
			

			

				𝑗
			

			
				+
				2
				𝑦
			

			

				𝑗
			

			

				𝜕
			

			

				𝑠
			

			
				,
				𝑌
			

			

				𝑗
			

			
				=
				𝜕
			

			

				𝑦
			

			

				𝑗
			

			
				−
				2
				𝑥
			

			

				𝑗
			

			

				𝜕
			

			

				𝑠
			

			
				,
				𝑗
				=
				1
				,
				…
				,
				𝑑
				𝑆
				=
				𝜕
			

			

				𝑠
			

			
				=
				1
			

			
				
			
			
				4
				
				𝑌
			

			

				𝑗
			

			
				,
				𝑋
			

			

				𝑗
			

			
				
				.
			

		
	


				In the sequel we will denote, we will denote 
	
		
			

				𝑍
			

			

				𝑗
			

			
				=
				𝑋
			

			

				𝑗
			

		
	
 and 
	
		
			

				𝑍
			

			
				𝑗
				+
				𝑑
			

			
				=
				𝑌
			

			

				𝑗
			

		
	
 for 
	
		
			
				𝑗
				∈
				{
				1
				,
				…
				,
				𝑑
				}
			

		
	
. We fix here some notations:
	
 		
 			
				(
				1
				.
				3
				)
			
 		
	

	
		
			
				𝑧
				=
				(
				𝑥
				,
				𝑦
				)
				∈
				ℝ
			

			
				2
				𝑑
			

			
				,
				𝑤
				=
				(
				𝑧
				,
				𝑠
				)
				∈
				ℍ
			

			

				𝑑
			

			
				
				,
				𝜌
				(
				𝑧
				,
				𝑠
				)
				=
				|
				𝑧
				|
			

			

				4
			

			
				+
				|
				𝑠
				|
			

			

				2
			

			

				
			

			
				1
				/
				4
			

			

				,
			

		
	


				 where 
	
		
			

				𝜌
			

		
	
 is the Heisenberg distance. Moreover, the Laplacian-Kohn operator on 
	
		
			

				ℍ
			

			

				𝑑
			

		
	
 and Heisenberg gradient is given by
	
 		
 			
				(
				1
				.
				4
				)
			
 		
	

	
		
			

				Δ
			

			

				ℍ
			

			

				𝑑
			

			

				=
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑋
			

			
				2
				𝑗
			

			
				+
				𝑌
			

			
				2
				𝑗
			

			
				;
				∇
			

			

				ℍ
			

			

				𝑑
			

			
				=
				
				𝑍
			

			

				1
			

			
				,
				…
				,
				𝑍
			

			
				2
				𝑑
			

			
				
				.
			

		
	

Let 
	
		
			

				Ω
			

		
	
 be an open and bounded domain of 
	
		
			

				ℍ
			

			

				𝑑
			

		
	
, we define thus the associated Sobolev space as follows
	
 		
 			
				(
				1
				.
				5
				)
			
 		
	

	
		
			

				𝐻
			

			

				1
			

			
				
				Ω
				,
				ℍ
			

			

				𝑑
			

			
				
				=
				
				𝑓
				∈
				𝐿
			

			

				2
			

			
				(
				Ω
				)
				;
				∇
			

			

				ℍ
			

			

				𝑑
			

			
				𝑓
				∈
				𝐿
			

			

				2
			

			
				
				,
				(
				Ω
				)
			

		
	


				and 
	
		
			

				𝐻
			

			
				1
				0
			

			
				(
				Ω
				,
				ℍ
			

			

				𝑑
			

			

				)
			

		
	
 is the closure of 
	
		
			

				𝐶
			

			
				∞
				0
			

			
				(
				Ω
				)
			

		
	
 in 
	
		
			

				𝐻
			

			

				1
			

			
				(
				Ω
				,
				ℍ
			

			

				𝑑
			

			

				)
			

		
	
.
 We are concerned in the following semilinear parabolic problem
	
 		
 			
				(
				1
				.
				6
				)
			
 		
	

	
		
			

				𝜕
			

			

				𝑡
			

			
				𝑢
				−
				Δ
			

			

				ℍ
			

			

				𝑑
			

			
				𝑢
				−
				𝜇
				|
				𝑧
				|
			

			

				2
			

			
				
			
			

				𝜌
			

			

				4
			

			
				𝑢
				=
				𝜆
				𝑢
				+
				|
				𝑢
				|
			

			
				𝑝
				−
				2
			

			
				𝑢
				,
				𝑤
				∈
				Ω
				,
				𝑡
				>
				0
				,
				𝑢
				(
				𝑤
				,
				0
				)
				=
				𝑢
			

			

				0
			

			
				(
				𝑤
				)
				,
				𝑤
				∈
				Ω
				,
				𝑢
				|
			

			
				𝜕
				Ω
			

			
				=
				0
				,
				𝑡
				>
				0
				,
			

		
	


				where 
	
		
			

				𝜆
			

		
	
 is a real constant and 
	
		
			
				2
				<
				𝑝
				<
				2
			

			

				∗
			

		
	
; the index 
	
		
			

				2
			

			

				∗
			

			
				=
				2
				+
				2
				/
				𝑑
			

		
	
 is the critical index of Sobolev’s inequality on the Heisenberg group [1, 2]:
	
 		
 			
				(
				1
				.
				7
				)
			
 		
	

	
		
			
				‖
				𝑢
				‖
			

			

				𝐿
			

			
				2
				∗
			

			
				(
				Ω
				)
			

			
				≤
				𝐶
			

			

				Ω
			

			
				‖
				𝑢
				‖
			

			

				𝐻
			

			

				1
			

			
				(
				Ω
				,
				ℍ
			

			

				𝑑
			

			

				)
			

			
				,
				∀
				𝑢
				∈
				𝐻
			

			
				1
				0
			

			
				
				Ω
				,
				ℍ
			

			

				𝑑
			

			
				
				.
			

		
	


				D’Ambrosio in [3] has proved Hardy’s inequality: let 
	
		
			
				𝑢
				∈
				𝐻
			

			
				1
				0
			

			
				(
				Ω
				,
				ℍ
			

			

				𝑑
			

			

				)
			

		
	
, it holds that
	
 		
 			
				(
				1
				.
				8
				)
			
 		
	

	
		
			
				
			
			
				𝜇
				
			

			

				Ω
			

			
				|
				𝑧
				|
			

			

				2
			

			
				
			
			
				𝜌
				(
				𝑤
				)
			

			

				4
			

			
				|
				|
				|
				|
				𝑢
				(
				𝑤
				)
			

			

				2
			

			
				‖
				‖
				∇
				𝑑
				𝑤
				≤
			

			

				ℍ
			

			

				𝑑
			

			
				𝑢
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				(
				Ω
				)
			

			

				.
			

		
	


				And by the work of Dou et al. [4], we have the following Hardy inequality with remainder terms for all 
	
		
			
				u
				∈
				𝐶
			

			
				∞
				0
			

			
				(
				Ω
				⧵
				{
				0
				}
				)
			

		
	
:
	
 		
 			
				(
				1
				.
				9
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				4
				
			

			

				Ω
			

			
				
				
				𝑅
				l
				n
			

			
				
			
			
				𝜌
				(
				𝑤
				)
				
				
			

			
				−
				2
			

			
				|
				𝑧
				|
			

			

				2
			

			
				
			
			
				𝜌
				(
				𝑤
				)
			

			

				4
			

			
				|
				|
				|
				|
				𝑢
				(
				𝑤
				)
			

			

				2
			

			
				𝑑
				𝑤
				+
			

			
				
			
			
				𝜇
				
			

			

				Ω
			

			
				|
				𝑧
				|
			

			

				2
			

			
				
			
			
				𝜌
				(
				𝑤
				)
			

			

				4
			

			
				|
				|
				|
				|
				𝑢
				(
				𝑤
				)
			

			

				2
			

			
				‖
				‖
				∇
				𝑑
				𝑤
				≤
			

			

				ℍ
			

			

				𝑑
			

			
				𝑢
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				(
				Ω
				)
			

			

				,
			

		
	


				for any 
	
		
			
				𝑅
				≥
				𝑅
			

			

				0
			

		
	
, where 
	
		
			

				𝑅
			

			

				0
			

			
				=
				s
				u
				p
			

			
				𝑤
				∈
				Ω
			

			
				𝜌
				(
				𝑤
				)
			

		
	
, and 
	
		
			
				
			
			
				𝜇
				=
				𝑑
			

			

				2
			

		
	
. Moreover 
	
		
			
				
			
			

				𝜇
			

		
	
 is optimal and it is not attained in 
	
		
			

				𝐻
			

			
				1
				0
			

			
				(
				Ω
				,
				ℍ
			

			

				𝑑
			

			

				)
			

		
	
. 
Stimulated by the recent paper in the Euclidean space 
	
		
			

				ℝ
			

			

				𝑑
			

		
	
 of Karachalios and Zographopoulos [5] which studied the global bifurcation of nontrivial equilibrium solutions on the bounded domain case for a reaction term 
	
		
			
				𝑓
				(
				𝑠
				)
				=
				𝜆
				𝑠
				−
				|
				𝑠
				|
			

			

				2
			

			

				𝑠
			

		
	
, where 
	
		
			

				𝜆
			

		
	
 is a bifurcation parameter;  our focus here is devoted to some results concerning the existence of a global attractor for the (1.6) and the existence of a global branch of the corresponding steady states
	
 		
 			
				(
				1
				.
				1
				0
				)
			
 		
	

	
		
			
				−
				Δ
			

			

				ℍ
			

			

				𝑑
			

			
				𝑢
				−
				𝜇
				|
				𝑧
				|
			

			

				2
			

			
				
			
			
				𝜌
				(
				𝑤
				)
			

			

				4
			

			
				𝑢
				=
				𝜆
				𝑢
				+
				|
				𝑢
				|
			

			
				𝑝
				−
				2
			

			
				𝑢
				i
				n
				Ω
				,
				𝑢
				|
			

			
				𝜕
				Ω
			

			
				=
				0
				,
			

		
	


				with respect to 
	
		
			

				𝜆
			

		
	
. Let us recall some definitions on semiflows.
Definition 1.1. Let E be a complete metric space, a semiflow is a family of continuous maps 
	
		
			
				𝒮
				(
				𝑡
				)
				∶
				𝐸
				→
				𝐸
			

		
	
, 
	
		
			
				𝑡
				≥
				0
			

		
	
, satisfying the semigroup identities 
							
	
 		
 			
				(
				1
				.
				1
				1
				)
			
 		
	

	
		
			
				
				𝒮
				(
				0
				)
				=
				𝐼
				,
				𝒮
				𝑡
				+
				𝑡
			

			

				′
			

			
				
				
				𝑡
				=
				𝒮
				(
				𝑡
				)
				𝒮
			

			

				
			

			
				
				.
			

		
	

						For 
	
		
			
				ℬ
				⊂
				𝐸
			

		
	
 and 
	
		
			
				𝑡
				≥
				0
			

		
	
, 
							
	
 		
 			
				(
				1
				.
				1
				2
				)
			
 		
	

	
		
			
				
				𝒮
				(
				𝑡
				)
				ℬ
				∶
				=
				𝑢
				(
				𝑡
				)
				=
				𝒮
				(
				𝑡
				)
				𝑢
			

			

				0
			

			
				;
				𝑢
			

			

				0
			

			
				
				.
				∈
				ℬ
			

		
	

						The positive orbit of 
	
		
			

				𝑢
			

		
	
 through 
	
		
			

				𝑢
			

			

				0
			

		
	
 is the set 
							
	
 		
 			
				(
				1
				.
				1
				3
				)
			
 		
	

	
		
			

				𝛾
			

			

				+
			

			
				
				𝑢
			

			

				0
			

			
				
				=
				
				𝑢
				(
				𝑡
				)
				=
				𝒮
				(
				𝑡
				)
				𝑢
			

			

				0
			

			
				
				,
				,
				𝑡
				≥
				0
			

		
	

						then the positive orbit of 
	
		
			

				ℬ
			

		
	
 is the set 
	
		
			

				𝛾
			

			

				+
			

			
				(
				ℬ
				)
				=
				∪
			

			
				𝑡
				≥
				0
			

			
				𝒮
				(
				𝑡
				)
				ℬ
			

		
	
. The 
	
		
			

				𝒲
			

		
	
-limit set of 
	
		
			

				𝑢
			

			

				0
			

		
	
 is 
							
	
 		
 			
				(
				1
				.
				1
				4
				)
			
 		
	

	
		
			
				𝒲
				
				𝑢
			

			

				0
			

			
				
				=
				
				
				𝑡
				𝜙
				∈
				𝐸
				∶
				𝑢
			

			

				𝑗
			

			
				
				
				𝑡
				=
				𝒮
			

			

				𝑗
			

			
				
				𝑢
			

			

				0
			

			
				⟶
				𝜙
				,
				𝑡
			

			

				𝑗
			

			
				
				.
				⟶
				+
				∞
			

		
	

						The 
	
		
			

				𝛼
			

		
	
-limit set of 
	
		
			

				𝑢
			

			

				0
			

		
	
 is 
							
	
 		
 			
				(
				1
				.
				1
				5
				)
			
 		
	

	
		
			
				𝛼
				
				𝑢
			

			

				0
			

			
				
				=
				
				
				𝑡
				𝜙
				∈
				𝐸
				∶
				𝑢
			

			

				𝑗
			

			
				
				⟶
				𝜙
				,
				𝑡
			

			

				𝑗
			

			
				
				.
				⟶
				−
				∞
			

		
	

						The subset 
	
		
			

				𝒜
			

		
	
 attracts a set 
	
		
			

				ℬ
			

		
	
 if 
	
		
			
				d
				i
				s
				t
				(
				𝒮
				(
				𝑡
				)
				ℬ
				,
				𝒜
				)
				→
				0
				,
				𝑡
				→
				+
				∞
			

		
	
. 
	
		
			

				𝒜
			

		
	
 is invariant if 
	
		
			
				𝒮
				(
				𝑡
				)
				𝒜
				=
				𝒜
			

		
	
 and  for all 
	
		
			
				𝑡
				≥
				0
			

		
	
.The functional 
	
		
			
				𝒥
				∶
				𝐸
				→
				ℝ
			

		
	
 is a Lyapunov functional for the semiflow 
	
		
			
				𝒮
				(
				𝑡
				)
			

		
	
 if(i)
	
		
			

				𝒥
			

		
	
 is continuous.(ii)
	
		
			
				𝒥
				(
				𝒮
				(
				𝑡
				)
				𝑢
			

			

				0
			

			
				)
				≤
				𝒥
				(
				𝒮
				(
				𝑡
				′
				)
				𝑢
			

			

				0
			

			

				)
			

		
	
 for 
	
		
			
				0
				≤
				𝑡
				′
				≤
				𝑡
			

		
	
.(iii)
	
		
			
				𝒥
				(
				𝒮
				(
				𝑡
				)
				)
			

		
	
 is constant for some orbit 
	
		
			

				𝑢
			

		
	
 and for all 
	
		
			
				𝑡
				∈
				ℝ
			

		
	
.We have the following theorem from Ball [6, 7].
Theorem 1.2.  Let 
	
		
			
				𝒮
				(
				𝑡
				)
			

		
	
 be an asymptotically compact semiflow, and suppose that there exists a Lyapunov functional 
	
		
			

				𝒥
			

		
	
. Suppose further that the set 
	
		
			

				ℰ
			

		
	
 is bounded, then 
	
		
			
				𝒮
				(
				𝑡
				)
			

		
	
 is dissipative, so there exists a global attractor 
	
		
			
				𝒜
				(
				𝑡
				)
			

		
	
. For each complete orbit 
	
		
			

				𝑢
			

		
	
 containing 
	
		
			

				𝑢
			

			

				0
			

		
	
 lying in 
	
		
			
				𝒜
				(
				𝑡
				)
			

		
	
, the limit sets 
	
		
			
				𝛼
				(
				𝑢
			

			

				0
			

			

				)
			

		
	
 and 
	
		
			
				𝒲
				(
				𝑢
			

			

				0
			

			

				)
			

		
	
 are connected subsets of 
	
		
			

				ℰ
			

		
	
 on which 
	
		
			

				𝒥
			

		
	
 is constant. If 
	
		
			

				ℰ
			

		
	
 is totally disconnected (in particular countable), the limits 
							
	
 		
 			
				(
				1
				.
				1
				6
				)
			
 		
	

	
		
			

				𝜙
			

			

				−
			

			
				=
				l
				i
				m
			

			
				𝑡
				→
				−
				∞
			

			
				𝑢
				(
				𝑡
				)
				,
				𝜙
			

			

				+
			

			
				=
				l
				i
				m
			

			
				𝑡
				→
				+
				∞
			

			
				𝑢
				(
				𝑡
				)
			

		
	

						exist and are equilibrium points. furthermore, any solution 
	
		
			
				𝒮
				(
				𝑡
				)
				𝑢
			

			

				0
			

		
	
 tends to an equilibrium point as 
	
		
			
				𝑡
				→
				±
				∞
			

		
	
.
The outline of the paper is as follows. In Section 2, we study the existence of an unbounded connected branch of positive solutions of (1.10) with respect to the parameter 
	
		
			

				𝜆
			

		
	
 by using global bifurcation theorem introduced by López-Gómez and Molina-Meyer in [8]. In Section 3, we describe the asymptotic behavior of solutions of (1.6) when 
	
		
			

				𝑢
			

			

				0
			

		
	
 has low energy smaller than the mountain pass level.
2. Existence of a Global Branch of the Corresponding Steady States
 From the study of spectral decomposition of 
	
		
			

				𝐻
			

			
				1
				0
			

			
				(
				Ω
				,
				ℍ
			

			

				𝑑
			

			

				)
			

		
	
 with respect to the operator 
	
		
			
				−
				Δ
			

			

				ℍ
			

			

				𝑑
			

			
				−
				𝜇
				(
				|
				𝑧
				|
			

			

				2
			

			
				/
				𝜌
				(
				𝑤
				)
			

			

				4
			

			

				)
			

		
	
, where the singular potential 
	
		
			

				𝑉
			

		
	
 satisfies Hardy’s inequality (1.8), we have the following.
Proposition 2.1.  Let 
	
		
			
				0
				<
				𝜇
				≤
			

			
				
			
			

				𝜇
			

		
	
. Then there exist 
	
		
			
				0
				<
				𝜆
			

			

				1
			

			
				<
				𝜆
			

			

				2
			

			
				≤
				𝜆
			

			

				3
			

			
				≤
				⋯
				≤
				𝜆
			

			

				𝑘
			

			
				≤
				⋯
				→
				+
				∞
			

		
	
, such that for each 
	
		
			
				𝑘
				≥
				1
			

		
	
, the following Dirichlet problem 
							
	
 		
 			
				(
				2
				.
				1
				)
			
 		
	

	
		
			
				−
				Δ
			

			

				ℍ
			

			

				𝑑
			

			

				𝜙
			

			

				𝑘
			

			
				−
				𝜇
				|
				𝑧
				|
			

			

				2
			

			
				
			
			
				𝜌
				(
				𝑤
				)
			

			

				4
			

			

				𝜙
			

			

				𝑘
			

			
				=
				𝜆
			

			

				𝑘
			

			

				𝜙
			

			

				𝑘
			

			
				𝜙
				,
				i
				n
				Ω
			

			

				𝑘
			

			
				|
				|
			

			
				𝜕
				Ω
			

			
				=
				0
			

		
	

						admits a nontrivial solution in 
	
		
			

				𝐻
			

			
				1
				0
			

			
				(
				Ω
				,
				ℍ
			

			

				𝑑
			

			

				)
			

		
	
. Moreover, 
	
		
			
				{
				𝜙
			

			

				𝑘
			

			

				}
			

			
				𝑘
				≥
				1
			

		
	
 constitutes an orthonormal basis of Hilbert space 
	
		
			

				𝐻
			

			
				1
				0
			

			
				(
				Ω
				,
				ℍ
			

			

				𝑑
			

			

				)
			

		
	
.
For the proof of this proposition, we refer to [9].
Remark that the first eigenvalue 
	
		
			

				𝜆
			

			
				1
				,
				𝜇
			

		
	
 characterized by
	
 		
 			
				(
				2
				.
				2
				)
			
 		
	

	
		
			

				𝜆
			

			
				1
				,
				𝜇
			

			
				=
				i
				n
				f
			

			
				𝑢
				∈
				𝐻
			

			
				1
				0
			

			
				
				Ω
				,
				ℍ
			

			

				𝑑
			

			
				
				⧵
				{
				0
				}
			

			

				∫
			

			

				Ω
			

			
				
				|
				|
				∇
			

			

				ℍ
			

			

				𝑑
			

			
				|
				|
				𝑢
				(
				𝑤
				)
			

			

				2
			

			
				
				−
				𝜇
				|
				𝑧
				|
			

			

				2
			

			
				/
				𝜌
				(
				𝑤
				)
			

			

				4
			

			
				
				|
				|
				|
				|
				𝑢
				(
				𝑤
				)
			

			

				2
			

			
				
				𝑑
				𝑤
			

			
				
			
			
				‖
				𝑢
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				(
				Ω
				)
			

			

				,
			

		
	

					is simple with a positive associated eigenfunction 
	
		
			

				𝜙
			

			
				1
				,
				𝜇
			

		
	
.
We discuss the behavior of 
	
		
			

				𝜆
			

			
				1
				,
				𝜇
			

		
	
 when 
	
		
			
				0
				<
				𝜇
				<
			

			
				
			
			

				𝜇
			

		
	
 and 
	
		
			
				𝜇
				↑
			

			
				
			
			

				𝜇
			

		
	
.
Proposition 2.2.  Let 
	
		
			
				0
				<
				𝜇
				<
			

			
				
			
			

				𝜇
			

		
	
 and 
	
		
			
				𝜇
				↑
			

			
				
			
			

				𝜇
			

		
	
. Then, (i)
	
		
			
				(
				𝜆
			

			
				1
				,
				𝜇
			

			

				)
			

			

				𝜇
			

		
	
 is a decreasing sequence, and there exist 
	
		
			

				𝜆
			

			

				∗
			

			
				>
				0
			

		
	
 such that 
	
		
			

				𝜆
			

			
				1
				,
				𝜇
			

			
				→
				𝜆
			

			

				∗
			

		
	
.(ii)The corresponding normalized eigenfunction 
	
		
			

				𝜙
			

			
				1
				,
				𝜇
			

		
	
 converging weakly to 0, in 
	
		
			

				𝐻
			

			
				1
				0
			

			
				(
				Ω
				,
				ℍ
			

			

				𝑑
			

			

				)
			

		
	
.
Proof. (i) Let 
	
		
			

				𝜇
			

			

				1
			

			
				<
				𝜇
			

			

				2
			

		
	
. The characterization (2.2) of 
	
		
			

				𝜆
			

			
				1
				,
				𝜇
			

		
	
 implies that 
	
		
			

				𝜆
			

			
				1
				,
				𝜇
			

			

				1
			

			
				>
				𝜆
			

			
				1
				,
				𝜇
			

			

				2
			

		
	
. The improved Hardy inequality (1.9) implies that 
	
		
			

				𝜆
			

			
				1
				,
				𝜇
			

		
	
 is bounded from below by 
	
		
			

				𝐶
			

			

				Ω
			

			
				=
				1
				/
				4
				s
				u
				p
			

			

				Ω
			

			
				(
				l
				n
				(
				𝑅
				/
				𝜌
				(
				𝑤
				)
				)
				)
			

			
				−
				2
			

			
				(
				|
				𝑧
				|
			

			

				2
			

			
				)
				/
				(
				𝜌
				(
				𝑤
				)
			

			

				4
			

			

				)
			

		
	
. So, there exist 
	
		
			

				𝜆
			

			

				∗
			

			
				>
				0
			

		
	
 such that 
	
		
			

				𝜆
			

			
				1
				,
				𝜇
			

			
				→
				𝜆
			

			

				∗
			

		
	
.(ii) The eigenfunction 
	
		
			

				𝜙
			

			
				1
				,
				𝜇
			

		
	
 satisfies, for any 
	
		
			
				𝑣
				∈
				𝐶
			

			
				∞
				0
			

			
				(
				Ω
				)
			

		
	
: 
							
	
 		
 			
				(
				2
				.
				3
				)
			
 		
	

	
		
			

				
			

			

				Ω
			

			

				∇
			

			

				ℍ
			

			

				𝑑
			

			

				𝜙
			

			
				1
				,
				𝜇
			

			
				
			
			

				∇
			

			

				ℍ
			

			

				𝑑
			

			
				
				𝑣
				𝑑
				𝑤
				−
				𝜇
			

			

				Ω
			

			
				|
				𝑧
				|
			

			

				2
			

			
				
			
			
				𝜌
				(
				𝑤
				)
			

			

				4
			

			

				𝜙
			

			
				1
				,
				𝜇
			

			
				
			
			
				𝑣
				𝑑
				𝑤
				=
				𝜆
			

			
				1
				,
				𝜇
			

			

				
			

			

				Ω
			

			

				𝜙
			

			
				1
				,
				𝜇
			

			
				
			
			
				𝑣
				𝑑
				𝑤
				.
			

		
	

						We still denote by 
	
		
			

				𝜙
			

			
				1
				,
				𝜇
			

		
	
 the sequence of normalized eigenfunction, forming a bounded sequence in 
	
		
			

				𝐻
			

			
				1
				0
			

			
				(
				Ω
				,
				ℍ
			

			

				𝑑
			

			

				)
			

		
	
. Then there exists 
	
		
			
				𝑢
				∈
				𝐻
			

			
				1
				0
			

			
				(
				Ω
				,
				ℍ
			

			

				𝑑
			

			

				)
			

		
	
 such that 
							
	
 		
 			
				(
				2
				.
				4
				)
			
 		
	

	
		
			

				𝜙
			

			
				1
				,
				𝜇
			

			
				⇀
				𝑢
				i
				n
				𝐻
			

			
				1
				0
			

			
				
				Ω
				,
				ℍ
			

			

				𝑑
			

			
				
				,
				𝜙
			

			
				1
				,
				𝜇
			

			
				→
				𝑢
				i
				n
				𝐿
			

			

				𝑞
			

			
				(
				Ω
				)
				,
				f
				o
				r
				a
				n
				y
				2
				≤
				𝑞
				<
				2
			

			

				∗
			

			

				.
			

		
	

						For some fixed small enough 
	
		
			
				𝜀
				>
				0
			

		
	
 and any 
	
		
			
				𝑣
				∈
				𝐶
			

			
				∞
				0
			

			
				(
				Ω
				)
			

		
	
, we have
							
	
 		
 			
				(
				2
				.
				5
				)
			
 		
	

	
		
			

				
			

			

				Ω
			

			
				|
				𝑧
				|
			

			

				2
			

			
				
			
			
				𝜌
				(
				𝑤
				)
			

			

				4
			

			
				
				𝜙
			

			
				1
				,
				𝜇
			

			
				
				−
				𝑢
			

			
				
			
			
				𝑣
				𝑑
				𝑤
				≤
				‖
				𝑣
				‖
			

			

				𝐿
			

			

				∞
			

			
				(
				Ω
				)
			

			
				
				
			

			

				Ω
			

			
				|
				|
				𝜙
			

			
				1
				,
				𝜇
			

			
				|
				|
				−
				𝑢
			

			
				𝑄
				−
				𝜀
				/
				𝑄
				−
				2
				−
				𝜀
			

			
				
				𝑑
				𝑤
			

			
				𝑄
				−
				2
				−
				𝜀
				/
				𝑄
				−
				𝜀
			

			
				×
				
				
			

			

				Ω
			

			
				
				|
				𝑧
				|
			

			
				
			
			
				𝜌
				(
				𝑤
				)
			

			

				2
			

			

				
			

			
				𝑄
				−
				𝜀
			

			
				
				𝑑
				𝑤
			

			
				2
				/
				𝑄
				−
				𝜀
			

			

				.
			

		
	

						Thus, 
							
	
 		
 			
				(
				2
				.
				6
				)
			
 		
	

	
		
			

				
			

			

				Ω
			

			
				|
				𝑧
				|
			

			

				2
			

			
				
			
			
				𝜌
				(
				𝑤
				)
			

			

				4
			

			

				𝜙
			

			
				1
				,
				𝜇
			

			
				
			
			
				
				𝑣
				𝑑
				𝑤
				⟶
			

			

				Ω
			

			
				|
				𝑧
				|
			

			

				2
			

			
				
			
			
				𝜌
				(
				𝑤
				)
			

			

				4
			

			

				𝑢
			

			
				
			
			
				𝑣
				𝑑
				𝑤
				,
				a
				s
				𝜇
				↑
			

			
				
			
			
				𝜇
				.
			

		
	

						We assume that 
	
		
			
				𝑢
				≠
				0
			

		
	
, so passing to the limit in (2.3), we get that 
	
		
			

				𝑢
			

		
	
 is a nontrivial solution of the problem 
							
	
 		
 			
				(
				2
				.
				7
				)
			
 		
	

	
		
			
				−
				Δ
			

			

				ℍ
			

			

				𝑑
			

			
				𝑢
				−
			

			
				
			
			
				𝜇
				|
				𝑧
				|
			

			

				2
			

			
				
			
			
				𝜌
				(
				𝑤
				)
			

			

				4
			

			
				𝑢
				=
				𝜆
			

			

				∗
			

			
				𝑢
				,
				𝑢
				∈
				𝐻
			

			
				1
				0
			

			
				
				Ω
				,
				ℍ
			

			

				𝑑
			

			
				
				.
			

		
	

						However, 
	
		
			
				
			
			

				𝜇
			

		
	
 is not achieved in 
	
		
			

				𝐻
			

			
				1
				0
			

			
				(
				Ω
				,
				ℍ
			

			

				𝑑
			

			

				)
			

		
	
, so 
	
		
			
				𝑢
				=
				0
			

		
	
.
Thanks to Hardy’s inequality (1.8) and Poincaré’s inequality,
	
 		
 			
				(
				2
				.
				8
				)
			
 		
	

	
		
			
				‖
				𝑢
				‖
			

			

				𝜇
			

			
				=
				
				
			

			

				Ω
			

			
				
				|
				|
				∇
			

			

				ℍ
			

			

				𝑑
			

			
				|
				|
				𝑢
				(
				𝑤
				)
			

			

				2
			

			
				−
				𝜇
				|
				𝑧
				|
			

			

				2
			

			
				
			
			
				𝜌
				(
				𝑤
				)
			

			

				4
			

			
				|
				|
				|
				|
				𝑢
				(
				𝑤
				)
			

			

				2
			

			
				
				
				𝑑
				𝑤
			

			
				1
				/
				2
			

			

				,
			

		
	

					is equivalent to the norm on 
	
		
			

				𝐻
			

			
				1
				0
			

			
				(
				Ω
				,
				ℍ
			

			

				𝑑
			

			

				)
			

		
	
 for all 
	
		
			
				0
				≤
				𝜇
				<
			

			
				
			
			

				𝜇
			

		
	
, so that we will use 
	
		
			
				‖
				⋅
				‖
			

			

				𝜇
			

		
	
 as the norm of 
	
		
			

				𝐻
			

			
				1
				0
			

			
				(
				Ω
				,
				ℍ
			

			

				𝑑
			

			

				)
			

		
	
.
Theorem 2.3.  Let 
	
		
			
				Ω
				∈
				ℍ
			

			

				𝑑
			

		
	
 a bounded domain and assume that 
	
		
			
				0
				<
				𝜇
				<
			

			
				
			
			

				𝜇
			

		
	
. Then, there exists an unbounded component 
	
		
			

				𝐶
			

			
				+
				𝜆
			

			
				1
				,
				𝜇
			

			
				⊂
				ℝ
				×
				𝐻
			

			
				1
				0
			

			
				(
				Ω
				,
				ℍ
			

			

				𝑑
			

			

				)
			

		
	
 of the set of positive solutions of (1.10) bifurcating from 
	
		
			
				(
				𝜆
			

			
				1
				,
				𝜇
			

			
				,
				0
				)
			

		
	
.
Proof. We introduce the Banach space 
	
		
			
				𝑋
				=
				𝐻
			

			
				1
				0
			

			
				(
				Ω
				,
				ℍ
			

			

				𝑑
			

			

				)
			

		
	
, and the inner product in 
	
		
			

				𝑋
			

		
	
 is given by 
							
	
 		
 			
				(
				2
				.
				9
				)
			
 		
	

	
		
			
				⟨
				𝑢
				,
				𝑣
				⟩
			

			

				𝑋
			

			
				≡
				
			

			

				Ω
			

			
				
				∇
			

			

				ℍ
			

			

				𝑑
			

			

				𝑢
			

			
				
			
			

				∇
			

			

				ℍ
			

			

				𝑑
			

			
				𝑣
				−
				𝜇
				|
				𝑧
				|
			

			

				2
			

			
				
			
			
				𝜌
				(
				𝑤
				)
			

			

				4
			

			

				𝑢
			

			
				
			
			
				𝑣
				
				𝜆
				𝑑
				𝑤
				−
			

			
				1
				,
				𝜇
			

			
				
			
			
				2
				
			

			

				Ω
			

			

				𝑢
			

			
				
			
			
				𝑣
				𝑑
				𝑤
				.
			

		
	

						Let
							
	
 		
 			
				(
				2
				.
				1
				0
				)
			
 		
	

	
		
			
				
				𝑎
				(
				𝑢
				,
				𝑣
				)
				=
			

			

				Ω
			

			
				𝑢
				𝑣
				𝑑
				𝑤
				,
				∀
				𝑢
				,
				𝑣
				∈
				𝑋
				.
			

		
	

						The bilinear form 
	
		
			
				𝑎
				(
				𝑢
				,
				𝑣
				)
			

		
	
 is continuous in 
	
		
			

				𝑋
			

		
	
, so the Riesz representation theorem implies that there exist a bounded linear operator 
	
		
			

				𝐿
			

		
	
 such that 
							
	
 		
 			
				(
				2
				.
				1
				1
				)
			
 		
	

	
		
			
				𝑎
				(
				𝑢
				,
				𝑣
				)
				=
				⟨
				𝐿
				𝑢
				,
				𝑣
				⟩
				,
				∀
				𝑢
				,
				𝑣
				∈
				𝑋
				.
			

		
	

						The operator 
	
		
			

				𝐿
			

		
	
 is self-adjoint and compact and its largest eigenvalue is characterized by 
							
	
 		
 			
				(
				2
				.
				1
				2
				)
			
 		
	

	
		
			

				𝜈
			

			

				1
			

			
				=
				s
				u
				p
			

			
				𝑢
				∈
				𝑋
			

			
				⟨
				𝐿
				𝑢
				,
				𝑢
				⟩
			

			
				
			
			
				⟨
				𝑢
				,
				𝑢
				⟩
			

			

				𝑋
			

			
				=
				s
				u
				p
			

			
				𝑢
				∈
				𝑋
			

			
				‖
				𝑢
				‖
			

			

				𝐿
			

			

				2
			

			
				(
				Ω
				)
			

			
				
			
			

				∫
			

			

				Ω
			

			
				
				|
				|
				∇
			

			

				ℍ
			

			

				𝑑
			

			
				𝑢
				|
				|
			

			

				2
			

			
				
				−
				𝜇
				|
				𝑧
				|
			

			

				2
			

			
				/
				𝜌
				(
				𝑤
				)
			

			

				4
			

			
				
				|
				𝑢
				|
			

			

				2
			

			
				
				=
				1
				𝑑
				𝑤
			

			
				
			
			

				𝜆
			

			
				1
				,
				𝜇
			

			

				.
			

		
	
We define the following energy functional on 
	
		
			

				𝐻
			

			
				1
				0
			

			
				(
				Ω
				,
				ℍ
			

			

				𝑑
			

			

				)
			

		
	
: 
							
	
 		
 			
				(
				2
				.
				1
				3
				)
			
 		
	

	
		
			

				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				1
				(
				𝑢
				)
				=
			

			
				
			
			
				2
				
			

			

				Ω
			

			
				
				|
				|
				∇
			

			

				ℍ
			

			

				𝑑
			

			
				𝑢
				|
				|
			

			

				2
			

			
				−
				𝜇
				|
				𝑧
				|
			

			

				2
			

			
				
			
			
				𝜌
				(
				𝑤
				)
			

			

				4
			

			
				|
				𝑢
				|
			

			

				2
			

			
				
				1
				𝑑
				𝑤
				−
			

			
				
			
			
				𝑝
				
			

			

				Ω
			

			
				|
				𝑢
				|
			

			

				𝑝
			

			
				𝜆
				𝑑
				𝑤
				−
			

			
				
			
			
				2
				
			

			

				Ω
			

			
				|
				𝑢
				|
			

			

				2
			

			
				𝑑
				𝑤
				.
			

		
	
Similar to the classical case, 
	
		
			

				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				(
				⋅
				)
			

		
	
 is well defined on 
	
		
			

				𝐻
			

			
				1
				0
			

			
				(
				Ω
				,
				ℍ
			

			

				𝑑
			

			

				)
			

		
	
 and belongs to 
	
		
			

				𝐶
			

			

				1
			

			
				(
				𝐻
			

			
				1
				0
			

			
				(
				Ω
				,
				ℍ
			

			

				𝑑
			

			
				)
				;
				ℝ
				)
			

		
	
, and we have
							
	
 		
 			
				(
				2
				.
				1
				4
				)
			
 		
	

	
		
			
				
				𝐼
			

			

				′
			

			
				𝜇
				,
				𝜆
			

			
				
				=
				
				(
				𝑢
				)
				,
				𝑣
			

			

				Ω
			

			
				
				∇
			

			

				ℍ
			

			

				𝑑
			

			

				𝑢
			

			
				
			
			

				∇
			

			

				ℍ
			

			

				𝑑
			

			
				𝑣
				−
				𝜇
				|
				𝑧
				|
			

			

				2
			

			
				
			
			
				𝜌
				(
				𝑤
				)
			

			

				4
			

			

				𝑢
			

			
				
			
			
				𝑣
				−
				|
				𝑢
				|
			

			
				𝑝
				−
				2
			

			

				𝑢
			

			
				
			
			
				𝑣
				−
				𝜆
				𝑢
			

			
				
			
			
				𝑣
				
				,
				𝑑
				𝑤
			

		
	

						for any 
	
		
			
				𝑣
				∈
				𝐻
			

			
				1
				0
			

			
				(
				Ω
				,
				ℍ
			

			

				𝑑
			

			

				)
			

		
	
. Let 
	
		
			
				𝑁
				(
				𝜆
				,
				.
				)
				∶
				ℝ
				×
				𝑋
				→
				𝑋
			

			

				∗
			

		
	
, 
	
		
			

				𝑋
			

			

				∗
			

		
	
 is the dual space of 
	
		
			

				𝑋
			

		
	
, defined as by
							
	
 		
 			
				(
				2
				.
				1
				5
				)
			
 		
	

	
		
			
				
				⟨
				𝑁
				(
				𝜆
				,
				𝑢
				)
				,
				𝑣
				⟩
				=
			

			

				Ω
			

			
				
				∇
			

			

				ℍ
			

			

				𝑑
			

			

				𝑢
			

			
				
			
			

				∇
			

			

				ℍ
			

			

				𝑑
			

			
				𝑣
				−
				𝜇
				|
				𝑧
				|
			

			

				2
			

			
				
			
			
				𝜌
				(
				𝑤
				)
			

			

				4
			

			

				𝑢
			

			
				
			
			
				𝑣
				−
				|
				𝑢
				|
			

			
				𝑝
				−
				2
			

			

				𝑢
			

			
				
			
			
				𝑣
				−
				𝜆
				𝑢
			

			
				
			
			
				𝑣
				
				𝑑
				𝑤
				,
			

		
	

						for all 
	
		
			
				𝑣
				∈
				𝑋
			

		
	
. Since 
	
		
			

				𝐼
			

			
				
				𝜇
				,
				𝜆
			

			
				(
				𝑢
				)
			

		
	
 is a bounded linear functional, 
	
		
			
				𝑁
				(
				𝜆
				,
				⋅
				)
			

		
	
 is well defined, and 
	
		
			
				𝑁
				(
				𝜆
				,
				𝑢
				)
				=
				𝑢
				−
				𝐺
				(
				𝜆
				,
				𝑢
				)
			

		
	
, where 
	
		
			
				𝐺
				(
				𝜆
				,
				𝑢
				)
				=
				𝜆
				𝐿
				𝑢
				+
				𝐻
				(
				𝑢
				)
			

		
	
,
							
	
 		
 			
				(
				2
				.
				1
				6
				)
			
 		
	

	
		
			
				
				⟨
				𝐻
				(
				𝑢
				)
				,
				𝑣
				⟩
				=
			

			

				Ω
			

			
				|
				𝑢
				|
			

			
				𝑝
				−
				2
			

			

				𝑢
			

			
				
			
			
				𝑣
				𝑑
				𝑤
				,
				∀
				𝑣
				∈
				𝑋
				.
			

		
	
 So,
							
	
 		
 			
				(
				2
				.
				1
				7
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				⟨
				𝐻
				(
				𝑢
				)
				,
				𝑣
				⟩
				≤
				‖
				𝑢
				‖
			

			
				𝐿
				𝑝
				−
				1
			

			

				𝑝
			

			
				(
				Ω
				)
			

			
				‖
				𝑣
				‖
			

			

				𝐿
			

			

				𝑝
			

			
				(
				Ω
				)
			

			

				.
			

		
	

						By Sobolev embedding Sobolev theorem [10], we have
							
	
 		
 			
				(
				2
				.
				1
				8
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				‖
				𝑢
				‖
			

			

				𝑋
			

			
				|
				|
				|
				|
				⟨
				𝐻
				(
				𝑢
				)
				,
				𝑣
				⟩
				≤
				‖
				𝑢
				‖
			

			
				𝑋
				𝑝
				−
				2
			

			
				‖
				𝑣
				‖
			

			

				𝑋
			

			

				.
			

		
	

						Then,
							
	
 		
 			
				(
				2
				.
				1
				9
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				‖
				𝑢
				‖
			

			

				𝑋
			

			
				→
				0
			

			
				‖
				𝐻
				(
				𝑢
				)
				‖
			

			

				𝑋
			

			

				∗
			

			
				
			
			
				‖
				𝑢
				‖
			

			

				𝑋
			

			
				=
				l
				i
				m
			

			
				‖
				𝑢
				‖
			

			

				𝑋
			

			
				→
				0
			

			
				s
				u
				p
			

			
				‖
				𝑣
				‖
			

			

				𝑋
			

			
				≤
				1
			

			

				1
			

			
				
			
			
				‖
				𝑢
				‖
			

			

				𝑋
			

			
				|
				|
				|
				|
				⟨
				𝐻
				(
				𝑢
				)
				,
				𝑣
				⟩
				=
				0
				.
			

		
	
Consequently, hypotheses (HL) and (HR) of [8] are hold. If 
	
		
			
				𝑢
				∈
				𝐻
			

			
				1
				0
			

			
				(
				Ω
				,
				ℍ
			

			

				𝑑
			

			
				)
				⧵
				{
				0
				}
			

		
	
 is a nonnegative solution of (1.10), then it follows from the strong maximum principle of J.-M. Bony [11] and the generalization of the Hopf boundary point lemma on the Heisenberg group [12], that 
	
		
			

				𝑢
			

		
	
 lies in the interior of the cone:
							
	
 		
 			
				(
				2
				.
				2
				0
				)
			
 		
	

	
		
			
				
				i
				n
				t
				(
				𝒫
				)
				=
				𝑢
				∈
				𝐻
			

			
				1
				0
			

			
				
				Ω
				,
				ℍ
			

			

				𝑑
			

			
				
				∶
				𝑢
				>
				0
				i
				n
				Ω
				,
				𝜕
				𝑢
			

			
				
			
			
				
				.
				𝜕
				𝑛
				<
				0
				o
				n
				𝜕
				Ω
			

		
	

						Hence, the assumption (HP) of [8] is fulfilled.
Remark 2.4. According to the theory of Rabinowitz [13], we can see that there is a continuum 
	
		
			

				C
			

			

				𝜆
			

			
				1
				,
				𝜇
			

		
	
 of the set of nontrivial solutions of (1.10), and the continuum 
	
		
			

				C
			

			

				𝜆
			

			
				1
				,
				𝜇
			

		
	
 consists of two subcontinua 
	
		
			

				C
			

			
				+
				𝜆
			

			
				1
				,
				𝜇
			

		
	
 and 
	
		
			

				C
			

			
				−
				𝜆
			

			
				1
				,
				𝜇
			

		
	
. However, this does not necessarily implies that the subcontinuum 
	
		
			

				C
			

			
				+
				𝜆
			

			
				1
				,
				𝜇
			

		
	
 satisfies the global alternative of Rabinowitz [13] by the reasons already explained by Dancer [14], López-Gómez and Molina-Meyer [8, 15]. Instead, the existence of a global subcontinuum 
	
		
			

				C
			

			
				+
				𝜆
			

			
				1
				,
				𝜇
			

		
	
 of the set of positive solutions follows by slightly adapting [8, Theorem 1.1]. 
3. Asymptotic Behavior of Solutions for Problem (1.6)
 Similar to [16, 17], we are interested here in the description of the behavior of solutions of (1.6) when 
	
		
			

				𝑢
			

			

				0
			

		
	
 has low energy smaller than the mountain pass level
	
 		
 			
				(
				3
				.
				1
				)
			
 		
	

	
		
			

				𝑐
			

			
				𝜇
				,
				𝜆
			

			
				=
				i
				n
				f
			

			
				ℎ
				∈
				Γ
			

			
				m
				a
				x
			

			
				𝑡
				∈
				[
				0
				,
				1
				]
			

			

				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				
				
				[
				]
				(
				ℎ
				(
				𝑡
				)
				)
				,
				w
				h
				e
				r
				e
				Γ
				=
				ℎ
				∈
				𝐶
				0
				,
				1
				;
				𝐻
			

			
				1
				0
			

			
				
				Ω
				,
				ℍ
			

			

				𝑑
			

			
				
				.
				
				
				;
				ℎ
				(
				0
				)
				=
				0
				a
				n
				d
				ℎ
				(
				1
				)
				=
				𝑒
			

		
	

					In view of [9], since 
	
		
			
				2
				<
				𝑝
				<
				2
			

			

				∗
			

		
	
, the functional 
	
		
			

				𝐼
			

			
				𝜇
				,
				𝜆
			

		
	
 satisfies the Palais-Smale condition and admits at least a positive solution (called mountain pass solution). 
Proposition 3.1.  Let 
	
		
			

				𝑢
			

			

				0
			

			
				∈
				𝐻
			

			
				1
				0
			

			
				(
				Ω
				,
				ℍ
			

			

				𝑑
			

			

				)
			

		
	
, 
	
		
			
				𝜆
				>
				0
			

		
	
, and 
	
		
			
				0
				<
				𝜇
				<
			

			
				
			
			

				𝜇
			

		
	
, the problem (1.6) has a unique weak solution 
	
		
			

				𝑢
			

		
	
 such that
							
	
 		
 			
				(
				3
				.
				2
				)
			
 		
	

	
		
			
				
				[
				𝑢
				∈
				𝐶
				0
				,
				𝑇
				)
				;
				𝐻
			

			
				1
				0
			

			
				
				Ω
				,
				ℍ
			

			

				𝑑
			

			
				
				
				∩
				𝐶
			

			

				1
			

			
				
				[
				0
				,
				𝑇
				)
				;
				𝐻
			

			
				−
				1
			

			
				
				Ω
				,
				ℍ
			

			

				𝑑
			

			
				,
				
				
			

		
	

						and we have
							
	
 		
 			
				(
				3
				.
				3
				)
			
 		
	

	
		
			

				𝑑
			

			
				
			
			
				𝐼
				𝑑
				𝑡
			

			
				𝜇
				,
				𝜆
			

			
				‖
				‖
				𝜕
				(
				𝑢
				(
				𝑡
				)
				)
				=
				−
			

			

				𝑡
			

			
				𝑢
				‖
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				(
				Ω
				)
			

			

				.
			

		
	

Proof. By means of the Hill-Yosida theorem, 
	
		
			
				𝒯
				(
				𝑡
				)
				=
				{
				𝑒
			

			
				−
				𝑡
				𝐿
			

			

				𝜇
			

			

				}
			

			
				𝑡
				≥
				0
			

		
	
 is the semigroup generated by the operator 
	
		
			

				𝐿
			

			

				𝜇
			

			
				=
				−
				Δ
			

			

				ℍ
			

			

				𝑑
			

			
				−
				𝜇
				|
				𝑧
				|
			

			

				2
			

			
				/
				𝜌
				(
				𝑧
				,
				𝑠
				)
			

			

				4
			

		
	
. Let 
	
		
			

				𝑓
			

		
	
 the function defined by 
	
		
			
				𝑓
				(
				𝑡
				)
				=
				𝜆
				𝑡
				+
				|
				𝑡
				|
			

			
				𝑝
				−
				2
			

			

				𝑡
			

		
	
, for 
	
		
			
				𝑡
				∈
				ℝ
			

		
	
. Since 
	
		
			
				𝑓
				∶
				𝐻
			

			
				1
				0
			

			
				(
				Ω
				,
				ℍ
			

			

				𝑑
			

			
				)
				→
				𝐻
			

			
				−
				1
			

			
				(
				Ω
				)
			

		
	
 is locally Lipschitz, so by Pazy [18, Theorem 1.4] or Cazenave and Haraux [19, Theorem 6.2.2], there exists a unique solution of (1.6) defined on a maximal interval 
	
		
			
				[
				0
				,
				𝑇
			

			
				m
				a
				x
			

			

				)
			

		
	
, where 
	
		
			
				0
				<
				𝑇
			

			
				m
				a
				x
			

			
				≤
				+
				∞
			

		
	
 and
							
	
 		
 			
				(
				3
				.
				4
				)
			
 		
	

	
		
			
				
				[
				𝑢
				∈
				𝐶
				0
				,
				𝑇
				)
				;
				𝐻
			

			
				1
				0
			

			
				
				Ω
				,
				ℍ
			

			

				𝑑
			

			
				
				
				∩
				𝐶
			

			

				1
			

			
				
				[
				0
				,
				𝑇
				)
				;
				𝐻
			

			
				−
				1
			

			
				
				,
				(
				Ω
				)
			

		
	

						satisfying the variation of constants formula
							
	
 		
 			
				(
				3
				.
				5
				)
			
 		
	

	
		
			
				𝑢
				(
				𝑡
				)
				=
				𝒯
				(
				𝑡
				)
				𝑢
			

			

				0
			

			
				+
				
			

			
				𝑡
				0
			

			
				𝒯
				(
				𝑡
				−
				𝜏
				)
				𝑓
				(
				𝑢
				(
				𝜏
				)
				)
				𝑑
				𝜏
				.
			

		
	

						Moreover, if 
	
		
			

				𝑇
			

			
				m
				a
				x
			

			
				<
				+
				∞
			

		
	
, we say that 
	
		
			

				𝑇
			

			
				m
				a
				x
			

		
	
 is blow-up time, whereas if 
	
		
			

				𝑇
			

			
				m
				a
				x
			

			
				=
				+
				∞
			

		
	
, we say that 
	
		
			

				𝑢
			

		
	
 is global solution.We will show that 
	
		
			

				𝑢
			

		
	
 satisfies (3.3): Let 
	
		
			
				𝑢
				∈
				𝐷
				(
				𝐿
			

			

				𝜇
			

			

				)
			

		
	
, (
	
		
			
				𝐷
				(
				𝐿
			

			

				𝜇
			

			

				)
			

		
	
 is the domain of definition of 
	
		
			

				𝐿
			

			

				𝜇
			

		
	
), and 
	
		
			
				𝑡
				∈
				[
				0
				,
				𝑇
				)
				,
				𝑇
				<
				𝑇
			

			
				m
				a
				x
			

		
	
. Since 
	
		
			

				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				∈
				𝐶
			

			

				1
			

			
				(
				𝐻
			

			
				1
				0
			

			
				(
				Ω
				,
				ℍ
			

			

				𝑑
			

			
				)
				;
				ℝ
				)
			

		
	
, we have
							
	
 		
 			
				(
				3
				.
				6
				)
			
 		
	

	
		
			
				
				𝐼
			

			

				′
			

			
				𝜇
				,
				𝜆
			

			
				(
				𝑢
				)
				,
				Δ
			

			

				ℍ
			

			

				𝑑
			

			
				𝑢
				+
				𝜇
				|
				𝑧
				|
			

			

				2
			

			
				
			
			
				𝜌
				(
				𝑤
				)
			

			

				4
			

			
				
				
				𝑢
				+
				𝑓
				(
				𝑢
				)
				=
				−
			

			

				Ω
			

			
				|
				|
				|
				|
				Δ
			

			

				ℍ
			

			

				𝑑
			

			
				𝑢
				+
				𝜇
				|
				𝑧
				|
			

			

				2
			

			
				
			
			
				𝜌
				(
				𝑤
				)
			

			

				4
			

			
				|
				|
				|
				|
				𝑢
				+
				𝑓
				(
				𝑢
				)
			

			

				2
			

			
				
				𝑑
				𝑤
				=
				−
			

			

				Ω
			

			
				|
				|
				𝜕
			

			

				𝑡
			

			
				𝑢
				|
				|
			

			

				2
			

			
				𝑑
				𝑤
				.
			

		
	
 Set 
	
		
			
				𝑔
				(
				𝑡
				)
				=
				𝑓
				(
				𝑢
				(
				𝑡
				)
				)
			

		
	
, and let 
	
		
			

				𝑔
			

			

				𝑛
			

			
				∈
				𝐶
			

			

				1
			

			
				(
				[
				0
				,
				𝑇
				]
				;
				𝐻
			

			
				1
				0
			

			
				(
				Ω
				,
				ℍ
			

			

				𝑑
			

			
				)
				)
			

		
	
, 
	
		
			

				𝑢
			

			
				0
				𝑛
			

			
				∈
				𝐷
				(
				𝐿
			

			

				𝜇
			

			

				)
			

		
	
 such that
							
	
 		
 			
				(
				3
				.
				7
				)
			
 		
	

	
		
			

				𝑔
			

			

				𝑛
			

			
				⟶
				𝑔
				i
				n
				𝐶
			

			

				1
			

			
				
				[
				]
				0
				,
				𝑇
				;
				𝐻
			

			
				1
				0
			

			
				
				Ω
				,
				ℍ
			

			

				𝑑
			

			
				,
				𝑢
				
				
			

			
				0
				𝑛
			

			
				⟶
				𝑢
			

			

				0
			

			
				i
				n
				𝐻
			

			
				1
				0
			

			
				
				Ω
				,
				ℍ
			

			

				𝑑
			

			
				
				.
			

		
	

						Define 
	
		
			

				𝑢
			

			

				𝑛
			

			
				(
				𝑡
				)
				=
				𝒯
				(
				𝑡
				)
				𝑢
			

			
				0
				𝑛
			

			
				+
				∫
			

			
				𝑡
				0
			

			
				𝒯
				(
				𝑡
				−
				𝜏
				)
				𝑔
			

			

				𝑛
			

			
				(
				𝜏
				)
				𝑑
				𝜏
			

		
	
, then, 
	
		
			

				𝑢
			

			

				𝑛
			

			
				∈
				𝐶
			

			

				1
			

			
				(
				[
				0
				,
				𝑇
				]
				;
				𝐻
			

			
				1
				0
			

			
				(
				Ω
				,
				ℍ
			

			

				𝑑
			

			
				)
				)
			

		
	
 and satisfies
							
	
 		
 			
				(
				3
				.
				8
				)
			
 		
	

	
		
			

				𝜕
			

			

				𝑡
			

			

				𝑢
			

			

				𝑛
			

			
				−
				Δ
			

			

				ℍ
			

			

				𝑑
			

			

				𝑢
			

			

				𝑛
			

			
				−
				𝜇
				𝑉
				𝑢
			

			

				𝑛
			

			
				=
				𝑔
			

			

				𝑛
			

			

				𝑢
			

			

				𝑛
			

			
				⟶
				𝑢
				i
				n
				𝐻
			

			
				1
				0
			

			
				
				Ω
				,
				ℍ
			

			

				𝑑
			

			
				
				.
			

		
	

						Thus, from (3.6),
							
	
 		
 			
				(
				3
				.
				9
				)
			
 		
	

	
		
			

				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				
				𝑢
			

			

				𝑛
			

			
				
				(
				𝑡
				)
				−
				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				
				𝑢
			

			
				0
				𝑛
			

			
				
				=
				
			

			
				𝑡
				0
			

			
				
				𝐼
			

			

				′
			

			
				𝜇
				,
				𝜆
			

			
				
				𝑢
			

			

				𝑛
			

			
				
				(
				𝜏
				)
				,
				Δ
			

			

				ℍ
			

			

				𝑑
			

			

				𝑢
			

			

				𝑛
			

			
				+
				𝜇
				|
				𝑧
				|
			

			

				2
			

			
				
			
			
				𝜌
				(
				𝑤
				)
			

			

				4
			

			

				𝑢
			

			

				𝑛
			

			
				+
				𝑔
			

			

				𝑛
			

			
				
				
				(
				𝜏
				)
				𝑑
				𝜏
				=
				−
			

			
				𝑡
				0
			

			
				‖
				‖
				𝜕
			

			

				𝜏
			

			

				𝑢
			

			

				𝑛
			

			
				‖
				‖
				(
				𝜏
				)
			

			
				2
				𝐿
			

			

				2
			

			
				(
				Ω
				)
			

			
				
				𝑑
				𝜏
				+
			

			
				𝑡
				0
			

			
				
				𝐼
			

			
				
				𝜇
				,
				𝜆
			

			
				
				𝑢
			

			

				𝑛
			

			
				
				(
				𝜏
				)
				,
				𝑔
			

			

				𝑛
			

			
				
				𝑢
				(
				𝜏
				)
				−
				𝑓
			

			

				𝑛
			

			
				
				
				(
				𝜏
				)
				𝑑
				𝜏
				.
			

		
	

						Passing to the limit, we deduce (3.3).
Next, we introduce the following sets:
	
 		
 			
				(
				3
				.
				1
				0
				)
			
 		
	

	
		
			

				𝒪
			

			

				+
			

			
				≡
				
				𝑢
				∈
				𝐻
			

			
				1
				0
			

			
				
				Ω
				,
				ℍ
			

			

				𝑑
			

			
				
				∶
				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				(
				𝑢
				)
				<
				𝑐
			

			
				𝜇
				,
				𝜆
			

			
				;
				
				𝐼
			

			
				
				𝜇
				,
				𝜆
			

			
				
				
				,
				𝒪
				(
				𝑢
				)
				,
				𝑢
				>
				0
			

			

				−
			

			
				≡
				
				𝑢
				∈
				𝐻
			

			
				1
				0
			

			
				
				Ω
				,
				ℍ
			

			

				𝑑
			

			
				
				∶
				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				(
				𝑢
				)
				<
				𝑐
			

			
				𝜇
				,
				𝜆
			

			
				;
				
				𝐼
			

			
				
				𝜇
				,
				𝜆
			

			
				
				
				,
				
				(
				𝑢
				)
				,
				𝑢
				<
				0
				𝒩
				≡
				𝑢
				∈
				𝐻
			

			
				1
				0
			

			
				
				Ω
				,
				ℍ
			

			

				𝑑
			

			
				
				∶
				
				𝐼
			

			
				
				𝜇
				,
				𝜆
			

			
				
				
				.
				(
				𝑢
				)
				,
				𝑢
				=
				0
			

		
	


	
		
			

				𝒩
			

		
	
 is named the Nehari manifold relative to 
	
		
			

				𝐼
			

			
				𝜇
				,
				𝜆
			

		
	
. The mountain-pass level 
	
		
			

				𝑐
			

			
				𝜇
				,
				𝜆
			

		
	
 defined in (3.1) may also be characterized as
	
 		
 			
				(
				3
				.
				1
				1
				)
			
 		
	

	
		
			

				𝑐
			

			
				𝜇
				,
				𝜆
			

			
				=
				i
				n
				f
			

			
				𝑢
				∈
				𝒩
			

			

				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				(
				𝑢
				)
				.
			

		
	

Theorem 3.2.  If there exist 
	
		
			

				𝑡
			

			

				0
			

			
				≥
				0
			

		
	
 such that 
	
		
			

				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				(
				𝑢
				(
				𝑡
			

			

				0
			

			
				)
				)
				≤
				0
			

		
	
, then 
	
		
			
				𝑢
				(
				𝑡
				)
			

		
	
 blows up in finite time.
Proof. Let 
	
		
			

				𝑡
			

			

				0
			

			
				≥
				0
			

		
	
 such that 
	
		
			

				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				(
				𝑢
				(
				𝑡
			

			

				0
			

			
				)
				)
				≤
				0
			

		
	
, and we suppose that 
	
		
			
				𝑢
				(
				𝑡
				)
			

		
	
 is a global solution for the problem (1.6). Since 
	
		
			
				𝑢
				(
				𝑡
				)
			

		
	
 satisfy (3.3), we have
							
	
 		
 			
				(
				3
				.
				1
				2
				)
			
 		
	

	
		
			

				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				
				𝑢
				
				𝑡
			

			

				0
			

			
				
				
				=
				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				
				(
				𝑢
				(
				𝑡
				)
				)
				+
			

			
				𝑡
				𝑡
			

			

				0
			

			
				‖
				‖
				𝜕
			

			

				𝜏
			

			
				‖
				‖
				𝑢
				(
				𝜏
				)
			

			
				2
				𝐿
			

			

				2
			

			
				(
				Ω
				)
			

			
				.
				𝑑
				𝜏
			

		
	

						Set 
	
		
			
				∫
				𝑔
				(
				𝑡
				)
				≡
			

			

				Ω
			

			
				|
				𝑢
				(
				𝑡
				)
				|
			

			

				2
			

			
				𝑑
				𝑤
			

		
	
, then
							
	
 		
 			
				(
				3
				.
				1
				3
				)
			
 		
	

	
		
			

				𝑑
			

			
				
			
			
				
				𝑑
				𝑡
				𝑔
				(
				𝑡
				)
				=
			

			

				Ω
			

			
				𝑢
				(
				𝑡
				)
				𝜕
			

			

				𝑡
			

			
				
				𝑢
				(
				𝑡
				)
				𝑑
				𝑤
				=
				−
				2
			

			

				Ω
			

			
				
				|
				|
				∇
			

			

				ℍ
			

			

				𝑑
			

			
				|
				|
				𝑢
				(
				𝑡
				)
			

			

				2
			

			
				−
				𝜇
				|
				𝑧
				|
			

			

				2
			

			
				
			
			
				𝜌
				(
				𝑤
				)
			

			

				4
			

			
				|
				|
				|
				|
				𝑢
				(
				𝑡
				)
			

			

				2
			

			
				
				
				𝑑
				𝑤
				+
				2
				𝜆
			

			

				Ω
			

			
				|
				|
				|
				|
				𝑢
				(
				𝑡
				)
			

			

				2
			

			
				
				𝑑
				𝑤
				+
				2
			

			

				Ω
			

			
				|
				|
				|
				|
				𝑢
				(
				𝑡
				)
			

			

				𝑝
			

			
				
				𝑑
				𝑤
				=
				4
			

			
				𝑡
				𝑡
			

			

				0
			

			
				‖
				‖
				𝜕
			

			

				𝜏
			

			
				‖
				‖
				𝑢
				(
				𝜏
				)
			

			
				2
				𝐿
			

			

				2
			

			
				(
				Ω
				)
			

			
				𝑑
				𝜏
				−
				4
				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				
				𝑢
				
				𝑡
			

			

				0
			

			
				
				2
				
				
				+
				2
				1
				−
			

			
				
			
			
				𝑝
				
				
			

			

				Ω
			

			
				|
				|
				|
				|
				𝑢
				(
				𝑡
				)
			

			

				𝑝
			

			
				
				2
				𝑑
				𝑤
				≥
				2
				1
				−
			

			
				
			
			
				𝑝
				
				
			

			

				Ω
			

			
				|
				|
				|
				|
				𝑢
				(
				𝑡
				)
			

			

				𝑝
			

			
				𝑑
				𝑤
				>
				0
				.
			

		
	

						Hence, we get for 
	
		
			
				𝑡
				≥
				𝑡
			

			

				0
			

		
	
, 
	
		
			
				𝑔
				(
				𝑡
				)
				≥
				𝑔
				(
				𝑡
			

			

				0
			

			
				∫
				)
				=
			

			

				Ω
			

			
				|
				𝑢
				(
				𝑡
			

			

				0
			

			
				)
				|
			

			

				2
			

			
				𝑑
				𝑤
			

		
	
.Let 
	
		
			
				𝜖
				∈
				(
				1
				,
				𝑝
				/
				2
				)
			

		
	
, so we deduce by (3.13), that for any 
	
		
			
				𝑡
				≥
				𝑡
			

			

				0
			

		
	
:
							
	
 		
 			
				(
				3
				.
				1
				4
				)
			
 		
	

	
		
			
				−
				1
			

			
				
			
			
				𝑑
				𝜖
				−
				1
			

			
				
			
			
				𝑔
				𝑑
				𝑡
			

			
				1
				−
				𝜖
			

			
				(
				𝑡
				)
				=
				𝑔
			

			
				−
				𝜖
			

			
				𝑑
				(
				𝑡
				)
			

			
				
			
			
				
				2
				𝑑
				𝑡
				𝑔
				(
				𝑡
				)
				≥
				2
				1
				−
			

			
				
			
			
				𝑝
				
				𝑔
			

			
				−
				𝜖
			

			
				
				(
				𝑡
				)
			

			

				Ω
			

			
				|
				|
				|
				|
				𝑢
				(
				𝑡
				)
			

			

				𝑝
			

			
				𝑑
				𝑤
				≥
				𝐶
				𝑔
			

			
				−
				𝜖
			

			
				
				
				(
				𝑡
				)
			

			

				Ω
			

			
				|
				|
				|
				|
				𝑢
				(
				𝑡
				)
			

			

				2
			

			
				
				𝑑
				𝑤
			

			
				𝑝
				/
				2
			

			
				
				
				≥
				𝐶
			

			

				Ω
			

			
				|
				|
				𝑢
				
				𝑡
			

			

				0
			

			
				
				|
				|
			

			

				2
			

			
				
				𝑑
				𝑤
			

			
				(
				𝑝
				/
				2
				)
				−
				𝜖
			

			

				.
			

		
	
Hence, for any 
	
		
			
				𝑡
				≥
				𝑡
			

			

				0
			

		
	
 sufficiently large, we have
							
	
 		
 			
				(
				3
				.
				1
				5
				)
			
 		
	

	
		
			
				
				
				0
				<
			

			

				Ω
			

			
				|
				|
				|
				|
				𝑢
				(
				𝑡
				)
			

			

				2
			

			
				
				𝑑
				𝑤
			

			
				1
				−
				𝜖
			

			
				=
				𝑔
			

			
				1
				−
				𝜖
			

			
				(
				𝑡
				)
				≤
				𝑔
			

			
				1
				−
				𝜖
			

			
				
				𝑡
			

			

				0
			

			
				
				+
				𝐶
				(
				𝜖
				−
				1
				)
				𝑔
			

			
				(
				𝑝
				/
				2
				)
				−
				𝜖
			

			
				
				𝑡
			

			

				0
			

			
				𝑡
				
				
			

			

				0
			

			
				
				.
				−
				𝑡
			

		
	

						Then
							
	
 		
 			
				(
				3
				.
				1
				6
				)
			
 		
	

	
		
			
				−
				1
				<
				𝐶
				(
				𝜖
				−
				1
				)
				𝑔
			

			
				(
				𝑝
				/
				2
				)
				−
				1
			

			
				
				𝑡
			

			

				0
			

			
				𝑡
				
				
			

			

				0
			

			
				
				,
				−
				𝑡
			

		
	

						and so 
	
		
			
				𝑡
				<
				𝑡
			

			

				0
			

			
				+
				[
				𝐶
				(
				𝜖
				−
				1
				)
				𝑔
			

			
				𝑝
				/
				2
				−
				1
			

			
				(
				𝑡
			

			

				0
			

			
				)
				]
			

			
				−
				1
			

		
	
, which is a contradiction.
Theorem 3.3.  Assume that 
	
		
			

				𝑢
			

			

				0
			

			
				∈
				𝒪
			

			

				+
			

		
	
 and 
	
		
			
				𝜆
				<
				𝜆
			

			
				1
				,
				𝜇
			

		
	
, then the problem (1.6) admits a global solution 
	
		
			
				𝑢
				(
				𝑡
				)
			

		
	
. Moreover, there exists a positive number 
	
		
			

				𝛼
			

		
	
 such that
							
	
 		
 			
				(
				3
				.
				1
				7
				)
			
 		
	

	
		
			
				
				𝑒
				‖
				𝑢
				(
				𝑡
				)
				‖
				=
				𝑂
			

			
				−
				𝛼
				𝑡
			

			
				
				,
				a
				s
				𝑡
				→
				+
				∞
				.
			

		
	

Proof. Let 
	
		
			

				𝑢
			

			

				0
			

			
				∈
				𝒪
			

			

				+
			

		
	
, and let 
	
		
			
				𝑢
				(
				𝑡
				)
				=
				𝑢
				(
				𝑤
				,
				𝑡
				,
				𝑢
			

			

				0
			

			

				)
			

		
	
 be the unique solution established in Proposition 3.1. From inequality (3.3), we have that 
	
		
			
				𝑡
				↦
				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				(
				𝑢
				(
				𝑡
				)
				)
			

		
	
 is strictly decreasing, so
							
	
 		
 			
				(
				3
				.
				1
				8
				)
			
 		
	

	
		
			

				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				(
				𝑢
				(
				𝑡
				)
				)
				≤
				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				
				𝑢
			

			

				0
			

			
				
				≤
				𝑐
			

			
				𝜇
				,
				𝜆
			

			

				.
			

		
	

						Suppose there exists 
	
		
			

				𝑡
			

			

				∗
			

			
				∈
				(
				0
				,
				𝑇
			

			
				m
				a
				x
			

			

				)
			

		
	
 such that 
	
		
			
				𝑢
				(
				𝑡
			

			

				∗
			

			
				)
				∉
				𝒪
			

			

				+
			

		
	
. Then,
							
	
 		
 			
				(
				3
				.
				1
				9
				)
			
 		
	

	
		
			
				
				𝐼
			

			

				′
			

			
				𝜇
				,
				𝜆
			

			
				
				𝑢
				
				𝑡
			

			

				∗
			

			
				
				𝑡
				
				
				,
				𝑢
			

			

				∗
			

			
				
				
				≤
				0
				.
			

		
	

						Moreover, since the application 
	
		
			
				𝑡
				↦
				⟨
				𝐼
			

			
				
				𝜇
				,
				𝜆
			

			
				(
				𝑢
				(
				𝑡
				)
				)
				,
				𝑢
				(
				𝑡
				)
				⟩
			

		
	
 is continuous, there exists 
	
		
			

				𝑡
			

			

				0
			

			
				∈
				(
				0
				,
				𝑡
			

			

				∗
			

			

				]
			

		
	
 such that
							
	
 		
 			
				(
				3
				.
				2
				0
				)
			
 		
	

	
		
			
				
				𝐼
			

			
				
				𝜇
				,
				𝜆
			

			
				
				𝑢
				
				𝑡
			

			

				0
			

			
				
				𝑡
				
				
				,
				𝑢
			

			

				0
			

			
				
				
				=
				0
				.
			

		
	

						Hence, 
	
		
			
				𝑢
				(
				𝑡
			

			

				0
			

			
				)
				=
				0
			

		
	
 in 
	
		
			

				Ω
			

		
	
 or 
	
		
			
				𝑢
				(
				𝑡
			

			

				0
			

			
				)
				∈
				𝒩
			

		
	
. If 
	
		
			
				𝑢
				(
				𝑡
			

			

				0
			

			
				)
				=
				0
			

		
	
 in 
	
		
			

				Ω
			

		
	
, then by the uniquess of 
	
		
			
				𝑢
				(
				𝑡
				)
			

		
	
, we conclude that 
	
		
			
				𝑢
				(
				𝑡
				)
				=
				0
			

		
	
 for any 
	
		
			
				𝑡
				∈
				[
				𝑡
			

			

				0
			

			
				,
				𝑇
			

			
				m
				a
				x
			

			

				)
			

		
	
. Thus, 
	
		
			
				𝑢
				(
				𝑡
				)
			

		
	
 is global by extending to 0 for all 
	
		
			
				𝑡
				≥
				𝑇
			

			
				m
				a
				x
			

		
	
, and so 
	
		
			

				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				(
				𝑢
				(
				𝑡
				)
				)
				>
				0
			

		
	
 for any 
	
		
			
				𝑡
				≥
				0
			

		
	
 by Theorem 3.2. But 
	
		
			

				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				(
				𝑢
				(
				𝑡
			

			

				0
			

			
				)
				)
				=
				0
			

		
	
, which is a contradiction. So, we conclude that 
	
		
			
				𝑢
				(
				𝑡
				)
				∈
				𝒪
			

			

				+
			

		
	
 for all 
	
		
			
				𝑡
				∈
				[
				𝑡
			

			

				0
			

			
				,
				𝑇
			

			
				m
				a
				x
			

			

				)
			

		
	
.On other hand, we can write
							
	
 		
 			
				(
				3
				.
				2
				1
				)
			
 		
	

	
		
			

				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				1
				(
				𝑢
				(
				𝑡
				)
				)
				=
			

			
				
			
			
				𝑝
				
				𝐼
			

			
				
				𝜇
				,
				𝜆
			

			
				
				+
				
				1
				(
				𝑢
				(
				𝑡
				)
				)
				,
				𝑢
				(
				𝑡
				)
			

			
				
			
			
				2
				−
				1
			

			
				
			
			
				𝑝
				
				
			

			

				Ω
			

			
				
				|
				|
				∇
			

			

				ℍ
			

			

				𝑑
			

			
				|
				|
				𝑢
				(
				𝑡
				)
			

			

				2
			

			
				−
				𝜇
				|
				𝑧
				|
			

			

				2
			

			
				
			
			
				𝜌
				(
				𝑤
				)
			

			

				4
			

			
				|
				|
				|
				|
				𝑢
				(
				𝑡
				)
			

			

				2
			

			
				
				
				1
				𝑑
				𝑤
				−
			

			
				
			
			
				2
				−
				1
			

			
				
			
			
				𝑝
				
				𝜆
				
			

			

				Ω
			

			
				|
				|
				|
				|
				𝑢
				(
				𝑡
				)
			

			

				2
			

			
				>
				
				1
				𝑑
				𝑤
			

			
				
			
			
				2
				−
				1
			

			
				
			
			
				𝑝
				
				
			

			

				Ω
			

			
				
				|
				|
				∇
			

			

				ℍ
			

			

				𝑑
			

			
				|
				|
				𝑢
				(
				𝑡
				)
			

			

				2
			

			
				−
				𝜇
				|
				𝑧
				|
			

			

				2
			

			
				
			
			
				𝜌
				(
				𝑤
				)
			

			

				4
			

			
				|
				|
				|
				|
				𝑢
				(
				𝑡
				)
			

			

				2
			

			
				
				
				1
				𝑑
				𝑤
				−
			

			
				
			
			
				2
				−
				1
			

			
				
			
			
				𝑝
				
				𝜆
				
			

			

				Ω
			

			
				|
				|
				|
				|
				𝑢
				(
				𝑡
				)
			

			

				2
			

			
				≥
				
				1
				𝑑
				𝑤
			

			
				
			
			
				2
				−
				1
			

			
				
			
			
				𝑝
				𝜆
				
				
				1
				−
			

			
				
			
			

				𝜆
			

			
				1
				,
				𝜇
			

			
				
				(
				‖
				𝑢
				𝑡
				)
				‖
			

			
				2
				𝜇
			

			
				>
				0
				.
			

		
	

						Since 
	
		
			
				𝑢
				(
				𝑡
				)
			

		
	
 satisfy (3.3), we have
							
	
 		
 			
				(
				3
				.
				2
				2
				)
			
 		
	

	
		
			

				
			

			
				𝑡
				𝑡
			

			

				0
			

			
				‖
				‖
				𝜕
			

			

				𝜏
			

			
				‖
				‖
				𝑢
				(
				𝜏
				)
			

			
				2
				𝐿
			

			

				2
			

			
				(
				Ω
				)
			

			
				
				1
				𝑑
				𝜏
				+
			

			
				
			
			
				2
				−
				1
			

			
				
			
			
				𝑝
				𝜆
				
				
				1
				−
			

			
				
			
			

				𝜆
			

			
				1
				,
				𝜇
			

			
				
				‖
				𝑢
				(
				𝑡
				)
				‖
			

			
				2
				𝜇
			

			
				≤
				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				
				𝑢
				
				𝑡
			

			

				0
			

			
				
				
				<
				𝑐
			

			
				𝜇
				,
				𝜆
			

			

				.
			

		
	

						Then we have
							
	
 		
 			
				(
				3
				.
				2
				3
				)
			
 		
	

	
		
			

				
			

			
				𝑡
				𝑡
			

			

				0
			

			
				‖
				‖
				𝜕
			

			

				𝜏
			

			
				‖
				‖
				𝑢
				(
				𝜏
				)
			

			
				2
				𝐿
			

			

				2
			

			
				(
				Ω
				)
			

			
				𝑑
				𝜏
				<
				𝑐
			

			
				𝜇
				,
				𝜆
			

			
				,
				‖
				𝑢
				(
				𝑡
				)
				‖
			

			
				2
				𝜇
			

			
				<
				1
				
				
			

			
				
			
			
				2
				−
				1
			

			
				
			
			
				𝑝
				𝜆
				
				
				1
				−
			

			
				
			
			

				𝜆
			

			
				1
				,
				𝜇
			

			
				
				
			

			
				−
				1
			

			

				𝑐
			

			
				𝜇
				,
				𝜆
			

			

				,
			

		
	

						which implies that 
	
		
			
				𝑢
				(
				𝑡
				)
			

		
	
 is a global solution of the problem (1.6), and 
	
		
			

				𝒪
			

			

				+
			

		
	
 is invariant set. Letting 
	
		
			
				𝑡
				→
				+
				∞
			

		
	
 in (3.23), the integral 
	
		
			

				∫
			

			
				𝑡
				𝑡
			

			

				0
			

			
				‖
				𝜕
			

			

				𝜏
			

			
				𝑢
				(
				𝜏
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				(
				Ω
				)
			

			
				𝑑
				𝜏
			

		
	
 is finitely determined. Therefore, there exists a sequence 
	
		
			
				(
				𝑡
			

			

				𝑛
			

			
				)
				𝑛
				⩾
				0
			

		
	
 with 
	
		
			

				𝑡
			

			

				𝑛
			

			
				→
				+
				∞
			

		
	
 as 
	
		
			
				𝑛
				→
				+
				∞
			

		
	
 such that
							
	
 		
 			
				(
				3
				.
				2
				4
				)
			
 		
	

	
		
			

				
			

			

				Ω
			

			
				|
				|
				𝜕
			

			

				𝜏
			

			
				𝑢
				
				𝑡
			

			

				𝑛
			

			
				
				|
				|
			

			

				2
			

			
				
				𝑡
				𝑑
				𝑤
				⟶
				0
				,
				𝑢
			

			

				𝑛
			

			
				
				⇀
				𝑣
				i
				n
				𝐻
			

			
				1
				0
			

			
				
				Ω
				,
				ℍ
			

			

				𝑑
			

			
				
				.
			

		
	

						Letting 
	
		
			

				𝑡
			

			

				𝑛
			

			
				→
				+
				∞
			

		
	
, we obtain that 
	
		
			
				𝑣
				∈
				𝐻
			

			
				1
				0
			

			
				(
				Ω
				,
				ℍ
			

			

				𝑑
			

			

				)
			

		
	
 is a solution of problem (1.10). So
							
	
 		
 			
				(
				3
				.
				2
				5
				)
			
 		
	

	
		
			
				
				𝐼
			

			

				′
			

			
				𝜇
				,
				𝜆
			

			
				
				(
				𝑣
				)
				,
				𝑣
				=
				0
				.
			

		
	

						If 
	
		
			
				𝑣
				≠
				0
			

		
	
, then 
	
		
			
				𝑣
				∈
				𝒩
			

		
	
, and so
							
	
 		
 			
				(
				3
				.
				2
				6
				)
			
 		
	

	
		
			

				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				(
				𝑣
				)
				≥
				𝑐
			

			
				𝜇
				,
				𝜆
			

			

				.
			

		
	

						Since 
	
		
			
				𝑢
				(
				𝑡
			

			

				𝑛
			

			

				)
			

		
	
 satisfies (3.3), it follows by Hölder inequality and from (3.24), that
							
	
 		
 			
				(
				3
				.
				2
				7
				)
			
 		
	

	
		
			
				|
				|
				|
				
				𝐼
			

			
				
				𝜇
				,
				𝜆
			

			
				
				𝑢
				
				𝑡
			

			

				𝑛
			

			
				
				𝑡
				,
				.
				
				
				,
				𝑢
			

			

				𝑛
			

			
				
				
				|
				|
				|
				≤
				|
				|
				|
				|
				
				,
				.
			

			

				Ω
			

			
				𝑢
				
				𝑡
			

			

				𝑛
			

			
				
				𝜕
				,
				𝑤
			

			

				𝑡
			

			
				|
				|
				|
				|
				≤
				‖
				‖
				𝑢
				
				𝑡
				𝑢
				(
				𝑡
				𝑛
				,
				𝑤
				)
				𝑑
				𝑤
			

			

				𝑛
			

			
				
				‖
				,
				.
			

			

				𝐿
			

			

				2
			

			
				(
				Ω
				)
			

			
				‖
				𝜕
			

			

				𝑡
			

			
				𝑢
				
				𝑡
			

			

				𝑛
			

			
				
				‖
				‖
				,
				.
			

			

				𝐿
			

			

				2
			

			
				(
				Ω
				)
			

			
				≤
				
			

			
				
			
			

				𝜆
			

			
				1
				,
				𝜇
			

			
				‖
				‖
				𝑢
				
				𝑡
			

			

				𝑛
			

			
				
				‖
				‖
				,
				.
			

			

				𝜇
			

			
				‖
				‖
				𝜕
			

			

				𝑡
			

			
				𝑢
				
				𝑡
			

			

				𝑛
			

			
				
				‖
				‖
				,
				.
			

			

				L
			

			

				2
			

			
				(
				Ω
				)
			

			
				‖
				‖
				𝜕
				≤
				𝐶
			

			

				𝑡
			

			
				𝑢
				
				𝑡
			

			

				𝑛
			

			
				
				‖
				‖
				,
				.
			

			

				𝐿
			

			

				2
			

			
				(
				Ω
				)
			

			

				.
			

		
	

						Therefore,
							
	
 		
 			
				(
				3
				.
				2
				8
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				+
				∞
			

			
				
				𝐼
			

			

				′
			

			
				𝜇
				,
				𝜆
			

			
				
				𝑢
				
				𝑡
			

			

				𝑛
			

			
				
				𝑡
				
				
				,
				𝑢
			

			

				𝑛
			

			
				
				
				=
				0
				.
			

		
	

						We deduce by (3.22), (3.25), and (3.28) that
							
	
 		
 			
				(
				3
				.
				2
				9
				)
			
 		
	

	
		
			

				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				
				1
				(
				𝑣
				)
				=
			

			
				
			
			
				2
				−
				1
			

			
				
			
			
				𝑝
				
				
			

			

				Ω
			

			
				
				|
				|
				∇
			

			

				ℍ
			

			

				𝑑
			

			
				|
				|
				𝑣
				(
				𝑤
				)
			

			

				2
			

			
				−
				𝜇
				|
				𝑧
				|
			

			

				2
			

			
				
			
			

				𝜌
			

			

				4
			

			
				|
				|
				|
				|
				(
				𝑤
				)
				𝑣
				(
				𝑤
				)
			

			

				2
			

			
				
				
				1
				𝑑
				𝑤
				−
			

			
				
			
			
				2
				−
				1
			

			
				
			
			
				𝑝
				
				𝜆
				
			

			

				Ω
			

			
				|
				|
				|
				|
				𝑣
				(
				𝑤
				)
			

			

				2
			

			
				𝑑
				𝑤
				≤
				l
				i
				m
			

			
				𝑛
				→
				+
				∞
			

			
				
				1
			

			
				
			
			
				2
				−
				1
			

			
				
			
			
				𝑝
				
				
			

			

				Ω
			

			
				
				|
				|
				∇
			

			

				ℍ
			

			

				𝑑
			

			
				𝑢
				
				𝑡
			

			

				𝑛
			

			
				
				|
				|
				,
				𝑤
			

			

				2
			

			
				−
				𝜇
				|
				𝑧
				|
			

			

				2
			

			
				
			
			

				𝜌
			

			

				4
			

			
				|
				|
				𝑣
				
				𝑡
				(
				𝑤
				)
			

			

				𝑛
			

			
				
				|
				|
				,
				𝑤
			

			

				2
			

			
				
				𝑑
				𝑤
				−
				l
				i
				m
			

			
				𝑛
				→
				+
				∞
			

			
				
				1
			

			
				
			
			
				2
				−
				1
			

			
				
			
			
				𝑝
				
				𝜆
				
			

			

				Ω
			

			
				|
				|
				𝑣
				
				𝑡
			

			

				𝑛
			

			
				
				|
				|
				,
				𝑤
			

			

				2
			

			
				𝑑
				𝑤
				+
				l
				i
				m
			

			
				𝑛
				→
				+
				∞
			

			
				
				𝐼
			

			
				
				𝜇
				,
				𝜆
			

			
				
				𝑢
				
				𝑡
			

			

				𝑛
			

			
				
				𝑡
				
				
				,
				𝑢
			

			

				𝑛
			

			
				
				
				≤
				l
				i
				m
			

			
				𝑛
				→
				+
				∞
			

			

				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				
				𝑢
				
				𝑡
			

			

				𝑛
			

			
				
				
				≤
				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				
				𝑢
			

			

				0
			

			
				
				<
				𝑐
			

			
				𝜇
				,
				𝜆
			

			

				,
			

		
	

						which contradicts (3.26), and so 
	
		
			
				𝑣
				=
				0
			

		
	
 in 
	
		
			

				Ω
			

		
	
. Hence, by (3.24), we have
							
	
 		
 			
				(
				3
				.
				3
				0
				)
			
 		
	

	
		
			
				𝑢
				
				𝑡
			

			

				𝑛
			

			
				
				,
				.
				⟶
				0
				i
				n
				𝐿
			

			

				𝑞
			

			
				(
				Ω
				)
				,
				2
				≤
				𝑞
				<
				2
			

			

				∗
			

			

				.
			

		
	

						Since
							
	
 		
 			
				(
				3
				.
				3
				1
				)
			
 		
	

	
		
			
				‖
				‖
				𝑢
				
				𝑡
			

			

				𝑛
			

			
				
				‖
				‖
				,
				.
			

			
				2
				𝜇
			

			
				=
				
				𝐼
			

			

				′
			

			
				𝜇
				,
				𝜆
			

			
				
				𝑢
				
				𝑡
			

			

				𝑛
			

			
				
				𝑡
				
				
				,
				𝑢
			

			

				𝑛
			

			
				
				
				
				+
				𝜆
			

			

				Ω
			

			
				|
				|
				𝑢
				
				𝑡
			

			

				𝑛
			

			
				
				|
				|
				,
				𝑤
			

			

				2
			

			
				
				𝑑
				𝑤
				+
			

			

				Ω
			

			
				|
				|
				𝑢
				
				𝑡
			

			

				𝑛
			

			
				
				|
				|
				,
				𝑤
			

			

				𝑝
			

			
				𝑑
				𝑤
				→
				0
				,
				a
				s
				𝑛
				⟶
				+
				∞
				,
			

		
	

						we have
							
	
 		
 			
				(
				3
				.
				3
				2
				)
			
 		
	

	
		
			
				𝑢
				
				𝑡
			

			

				𝑛
			

			
				
				,
				.
				⟶
				0
				i
				n
				𝐻
			

			
				1
				0
			

			
				
				Ω
				,
				ℍ
			

			

				𝑑
			

			
				
				,
				a
				s
				𝑛
				→
				+
				∞
				.
			

		
	

						For simplicity, let us denote by 
	
		
			

				𝑡
			

		
	
 the divergent sequence and by 
	
		
			
				𝑢
				(
				𝑡
				)
				=
				𝑢
				(
				𝑡
			

			

				𝑛
			

			
				,
				𝑤
				)
			

		
	
. We have from (3.29) that
							
	
 		
 			
				(
				3
				.
				3
				3
				)
			
 		
	

	
		
			

				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				
				1
				(
				𝑢
				(
				𝑡
				)
				)
				=
			

			
				
			
			
				2
				−
				1
			

			
				
			
			
				𝑝
				
				
			

			

				Ω
			

			
				
				|
				|
				∇
			

			

				ℍ
			

			

				𝑑
			

			
				|
				|
				𝑢
				(
				𝑡
				,
				𝑤
				)
			

			

				2
			

			
				−
				𝜇
				|
				𝑧
				|
			

			

				2
			

			
				
			
			

				𝜌
			

			

				4
			

			
				|
				|
				|
				|
				(
				𝑤
				)
				𝑢
				(
				𝑡
				,
				𝑤
				)
			

			

				2
			

			
				
				−
				
				1
				𝑑
				𝑤
			

			
				
			
			
				2
				−
				1
			

			
				
			
			
				𝑝
				
				𝜆
				
			

			

				Ω
			

			
				|
				|
				|
				|
				𝑢
				(
				𝑡
				,
				𝑤
				)
			

			

				2
			

			
				=
				
				1
				𝑑
				𝑤
			

			
				
			
			
				2
				−
				1
			

			
				
			
			
				𝑝
				
				‖
				𝑢
				(
				𝑡
				)
				‖
			

			
				2
				𝜇
			

			
				
				1
				−
				𝜆
			

			
				
			
			
				2
				−
				1
			

			
				
			
			
				𝑝
				
				‖
				𝑢
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				(
				Ω
				)
			

			

				.
			

		
	

						So, due to (3.3) we have
							
	
 		
 			
				(
				3
				.
				3
				4
				)
			
 		
	

	
		
			
				‖
				𝑢
				(
				𝑡
				)
				‖
			

			
				2
				𝜇
			

			
				=
				2
				𝑝
			

			
				
			
			
				𝐼
				𝑝
				−
				2
			

			
				𝜇
				,
				𝜆
			

			
				(
				𝑢
				(
				𝑡
				)
				)
				+
				𝜆
				‖
				𝑢
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				(
				Ω
				)
			

			
				≤
				2
				𝑝
			

			
				
			
			
				𝐼
				𝑝
				−
				2
			

			
				𝜇
				,
				𝜆
			

			
				
				𝑢
			

			

				0
			

			
				
				+
				𝜆
				‖
				𝑢
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				(
				Ω
				)
			

			
				<
				2
				𝑝
			

			
				
			
			
				𝑐
				𝑝
				−
				2
			

			
				𝜇
				,
				𝜆
			

			
				+
				𝑜
				(
				1
				)
				.
			

		
	

						Therefore, there exists 
	
		
			

				𝑡
			

			

				0
			

		
	
 such that for all 
	
		
			
				𝑡
				≥
				𝑡
			

			

				0
			

		
	
,
							
	
 		
 			
				(
				3
				.
				3
				5
				)
			
 		
	

	
		
			
				‖
				𝑢
				(
				𝑡
				)
				‖
			

			
				2
				𝜇
			

			
				≤
				2
				𝑝
			

			
				
			
			
				𝑐
				𝑝
				−
				2
			

			
				𝜇
				,
				𝜆
			

			

				.
			

		
	

						On the other hand,
							
	
 		
 			
				(
				3
				.
				3
				6
				)
			
 		
	

	
		
			

				
			

			

				Ω
			

			
				|
				|
				|
				|
				𝑢
				(
				𝑡
				,
				𝑤
				)
			

			

				𝑝
			

			
				𝑑
				𝑤
				≤
				𝐶
			

			
				𝑝
				Ω
			

			

				
			

			
				
			
			

				𝜇
			

			
				
			
			
				
			
			
				
				𝜇
				−
				𝜇
			

			
				𝑝
				/
				2
			

			
				‖
				𝑢
				(
				𝑡
				)
				‖
			

			
				𝑝
				𝜇
			

			
				≤
				𝐶
			

			
				𝑝
				Ω
			

			

				
			

			
				
			
			

				𝜇
			

			
				
			
			
				
			
			
				
				𝜇
				−
				𝜇
			

			
				𝑝
				/
				2
			

			
				
				2
				𝑝
			

			
				
			
			
				𝑐
				𝑝
				−
				2
			

			
				𝜇
				,
				𝜆
			

			

				
			

			
				𝑝
				−
				2
				/
				2
			

			
				‖
				𝑢
				(
				𝑡
				)
				‖
			

			
				2
				𝜇
			

			

				.
			

		
	

						Let 
	
		
			

				𝐶
			

			

				1
			

			
				=
				𝐶
			

			
				𝑝
				Ω
			

			

				(
			

			
				
			
			
				𝜇
				/
			

			
				
			
			
				𝜇
				−
				𝜇
				)
			

			
				𝑝
				/
				2
			

			
				[
				(
				2
				𝑝
				/
				𝑝
				−
				2
				)
				𝑐
			

			
				𝜇
				,
				𝜆
			

			

				]
			

			
				(
				𝑝
				−
				2
				)
				/
				2
			

		
	
, we have
							
	
 		
 			
				(
				3
				.
				3
				7
				)
			
 		
	

	
		
			
				
				1
				−
				𝐶
			

			

				1
			

			
				
				‖
				𝑢
				(
				𝑡
				)
				‖
			

			
				2
				𝜇
			

			
				≤
				‖
				𝑢
				(
				𝑡
				)
				‖
			

			
				2
				𝜇
			

			
				−
				‖
				𝑢
				(
				𝑡
				)
				‖
			

			
				𝑝
				𝐿
			

			

				𝑝
			

			
				(
				Ω
				)
			

			
				≤
				
				𝐼
			

			

				′
			

			
				𝜇
				,
				𝜆
			

			
				
				(
				𝑢
				(
				𝑡
				)
				)
				,
				𝑢
				(
				𝑡
				)
				+
				𝜆
				‖
				𝑢
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				(
				Ω
				)
			

			

				.
			

		
	

						Let us recall that if we set 
	
		
			
				∫
				𝑔
				(
				𝑡
				)
				≡
			

			

				Ω
			

			
				|
				𝑢
				(
				𝑡
				,
				𝑤
				)
				|
			

			

				2
			

			
				𝑑
				𝑤
			

		
	
, then
							
	
 		
 			
				(
				3
				.
				3
				8
				)
			
 		
	

	
		
			

				𝑑
			

			
				
			
			
				
				𝑑
				𝑡
				𝑔
				(
				𝑡
				)
				=
				2
			

			

				Ω
			

			
				𝑢
				(
				𝑡
				,
				𝑤
				)
				𝜕
			

			

				𝑡
			

			
				
				𝑢
				(
				𝑡
				,
				𝑤
				)
				𝑑
				𝑤
				=
				−
				2
			

			

				Ω
			

			
				
				|
				|
				∇
			

			

				ℍ
			

			

				𝑑
			

			
				|
				|
				𝑢
				(
				𝑡
				,
				𝑤
				)
			

			

				2
			

			
				−
				𝜇
				|
				𝑧
				|
			

			

				2
			

			
				
			
			

				𝜌
			

			

				4
			

			
				|
				|
				|
				|
				(
				𝑤
				)
				𝑢
				(
				𝑡
				,
				𝑤
				)
			

			

				2
			

			
				
				
				𝑑
				𝑤
				+
				2
				𝜆
			

			

				Ω
			

			
				|
				|
				|
				|
				𝑢
				(
				𝑡
				,
				𝑤
				)
			

			

				2
			

			
				
				𝑑
				𝑤
				+
				𝜆
			

			

				Ω
			

			
				|
				|
				𝑣
				
				𝑡
			

			

				𝑛
			

			
				
				|
				|
				,
				𝑤
			

			

				𝑝
			

			
				
				𝐼
				𝑑
				𝑤
				=
				−
				2
			

			
				
				𝜇
				,
				𝜆
			

			
				
				.
				(
				𝑢
				(
				𝑡
				)
				)
				,
				𝑢
				(
				𝑡
				)
			

		
	

						So we get from (3.22) that for any 
	
		
			
				𝑡
				≥
				𝑡
			

			

				0
			

		
	
, we have
							
	
 		
 			
				(
				3
				.
				3
				9
				)
			
 		
	

	
		
			

				
			

			
				𝑡
				+
				∞
			

			
				
				𝐼
			

			
				
				𝜇
				,
				𝜆
			

			
				
				1
				(
				𝑢
				(
				𝜏
				)
				)
				,
				𝑢
				(
				𝜏
				)
				d
				𝜏
				=
			

			
				
			
			
				2
				‖
				𝑢
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				(
				Ω
				)
			

			
				≤
				1
			

			
				
			
			
				2
				𝜆
			

			
				𝜇
				,
				𝜆
			

			
				‖
				𝑢
				(
				𝑡
				)
				‖
			

			
				2
				𝜇
			

			
				≤
				𝑝
			

			
				
			
			
				(
				𝑝
				−
				2
				)
				𝜆
			

			
				𝜇
				,
				𝜆
			

			

				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				(
				𝑢
				(
				𝑡
				)
				)
				.
			

		
	

						So from (3.37) and (3.39), we have for any 
	
		
			
				𝑡
				≥
				𝑡
			

			

				0
			

		
	
 that
							
	
 		
 			
				(
				3
				.
				4
				0
				)
			
 		
	

	
		
			

				
			

			
				𝑡
				+
				∞
			

			

				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				1
				(
				𝑢
				(
				𝜏
				)
				)
				𝑑
				𝜏
				≤
			

			
				
			
			
				2
				𝜆
			

			
				𝜇
				,
				𝜆
			

			

				
			

			
				𝑡
				+
				∞
			

			
				‖
				𝑢
				(
				𝜏
				)
				‖
			

			
				2
				𝜇
			

			
				≤
				
				𝑑
				𝜏
				1
				−
				𝐶
			

			

				1
			

			

				
			

			
				−
				1
			

			

				1
			

			
				
			
			
				2
				𝜆
			

			
				𝜇
				,
				𝜆
			

			
				
				
			

			
				𝑡
				+
				∞
			

			
				
				𝐼
			

			

				′
			

			
				𝜇
				,
				𝜆
			

			
				
				
				(
				𝑢
				(
				𝜏
				)
				)
				,
				𝑢
				(
				𝜏
				)
				𝑑
				𝜏
				+
				𝜆
			

			
				𝑡
				+
				∞
			

			
				‖
				𝑢
				(
				𝜏
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				(
				Ω
				)
			

			
				
				≤
				
				𝑑
				𝜏
				1
				−
				𝐶
			

			

				1
			

			

				
			

			
				−
				1
			

			
				
			
			
				2
				𝜆
			

			
				2
				𝜇
				,
				𝜆
			

			

				𝑝
			

			
				
			
			
				𝐼
				𝑝
				−
				2
			

			
				𝜇
				,
				𝜆
			

			
				
				(
				𝑢
				(
				𝑡
				)
				)
				+
				1
				−
				𝐶
			

			

				1
			

			

				
			

			
				−
				1
			

			

				𝜆
			

			
				
			
			
				2
				𝜆
			

			
				𝜇
				,
				𝜆
			

			

				
			

			
				𝑡
				+
				∞
			

			
				‖
				𝑢
				(
				𝜏
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				(
				Ω
				)
			

			
				𝑑
				𝜏
				.
			

		
	

						Since 
	
		
			
				l
				i
				m
			

			
				𝑡
				→
				+
				∞
			

			
				‖
				𝑢
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				(
				Ω
				)
			

			
				=
				0
			

		
	
, there exists 
	
		
			

				𝑡
			

			

				1
			

			
				>
				𝑡
			

			

				0
			

		
	
 such that for any 
	
		
			
				𝑡
				≥
				𝑡
			

			

				1
			

		
	
, we have
							
	
 		
 			
				(
				3
				.
				4
				1
				)
			
 		
	

	
		
			

				
			

			
				𝑡
				+
				∞
			

			

				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				
				(
				𝑢
				(
				𝜏
				)
				)
				𝑑
				𝜏
				≤
				1
				−
				𝐶
			

			

				1
			

			

				
			

			
				−
				1
			

			
				
			
			
				2
				𝜆
			

			
				2
				𝜇
				,
				𝜆
			

			

				𝑝
			

			
				
			
			
				𝐼
				𝑝
				−
				2
			

			
				𝜇
				,
				𝜆
			

			
				(
				𝑢
				(
				𝑡
				)
				)
				.
			

		
	

						Thus,
							
	
 		
 			
				(
				3
				.
				4
				2
				)
			
 		
	

	
		
			

				
			

			
				𝑡
				+
				∞
			

			

				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				
				𝑡
				(
				𝑢
				(
				𝜏
				)
				)
				𝑑
				𝜏
				≤
				𝐶
			

			

				1
			

			
				
				𝑒
			

			
				−
				𝛼
				𝑡
			

			

				,
			

		
	

						with 
	
		
			
				𝛼
				=
				(
				(
				1
				−
				𝐶
			

			

				1
			

			

				)
			

			
				−
				1
			

			
				/
				2
				𝜆
			

			
				2
				𝜇
				,
				𝜆
			

			
				)
				(
				𝑝
				/
				𝑝
				−
				2
				)
			

		
	
. But we remark that
							
	
 		
 			
				(
				3
				.
				4
				3
				)
			
 		
	

	
		
			

				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				
				(
				𝑢
				(
				𝑡
				+
				1
				)
				)
				≤
			

			
				𝑡
				𝑡
				+
				1
			

			

				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				
				(
				𝑢
				(
				𝜏
				)
				)
				𝑑
				𝜏
				<
			

			
				𝑡
				+
				∞
			

			

				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				(
				𝑢
				(
				𝜏
				)
				)
				𝑑
				𝜏
				,
			

		
	

						hence, we deduce that for any 
	
		
			
				𝑡
				≥
				𝑡
			

			

				1
			

		
	
, we have
							
	
 		
 			
				(
				3
				.
				4
				4
				)
			
 		
	

	
		
			

				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				
				𝑡
				(
				𝑢
				(
				𝑡
				+
				1
				)
				)
				<
				𝐶
			

			

				1
			

			
				
				𝑒
			

			
				−
				𝛼
				𝑡
			

			

				,
			

		
	

						and we can conclude that for any 
	
		
			
				𝑡
				≥
				𝑡
			

			

				1
			

		
	
, we have
							
	
 		
 			
				(
				3
				.
				4
				5
				)
			
 		
	

	
		
			
				‖
				‖
				𝑢
				(
				𝑡
				)
			

			

				𝜇
			

			
				
				𝑒
				=
				𝑂
			

			
				−
				𝛼
				𝑡
			

			
				
				.
			

		
	

Remark 3.4. for small 
	
		
			

				𝑢
			

			

				0
			

		
	
, Theorem 3.3 is an immediate consequence from the fact that, according to the linearized stability principle, the trivial solution is linearly asymptotically stable. In other words, from the fact that the principle eigenvalue of the linearization at 
	
		
			
				𝑢
				=
				0
			

		
	
 is positive. Questions of stability for nonlinear systems are frequently resolved via linearized stability or Lyapunov-type methods. Here, we proved the asymptotic stability under Lyapunov function to obtain estimates in 
	
		
			

				𝐿
			

			

				𝑝
			

			
				(
				Ω
				)
			

		
	
.
Corollary 3.5.  Assume that 
	
		
			

				𝑢
			

			

				0
			

			
				∈
				𝒪
			

			

				+
			

		
	
 and 
	
		
			
				𝜆
				<
				𝜆
			

			
				1
				,
				𝜇
			

		
	
. Then any solution 
	
		
			
				𝑢
				(
				𝑡
				)
			

		
	
 of (1.6) tends to the trivial equilibrium point, as 
	
		
			
				𝑡
				→
				+
				∞
			

		
	
.
Proof. It follows from (3.45) that the semiflow 
	
		
			
				𝒯
				(
				𝑡
				)
			

		
	
 is eventually bounded, see [7]. Since the resolvent of the operator 
	
		
			

				𝐿
			

			

				𝜇
			

		
	
 is compact, 
	
		
			
				𝒯
				(
				𝑡
				)
			

		
	
 is compact for 
	
		
			
				𝑡
				>
				0
			

		
	
 (see [20, Theorem 3.3], thus by [18, Corollary 3.2.2], 
	
		
			
				𝒯
				(
				𝑡
				)
			

		
	
 is asymptotically smooth and so by [7, Proposition 2.3] is asymptotically compact. It remains to shows that 
	
		
			

				ℰ
			

		
	
, the set of equilibrium points of 
	
		
			
				𝒯
				(
				𝑡
				)
			

		
	
, is bounded: 
	
		
			
				𝑢
				(
				𝑡
				)
				∈
				ℰ
			

		
	
, so 
	
		
			
				𝑢
				(
				𝑡
				)
				∈
				𝒩
			

		
	
. Then from (3.3) and Poincaré’s inequality, we have 
							
	
 		
 			
				(
				3
				.
				4
				6
				)
			
 		
	

	
		
			
				
				1
			

			
				
			
			
				2
				−
				1
			

			
				
			
			
				𝑝
				
				‖
				𝑢
				(
				𝑡
				)
				‖
			

			
				2
				𝜇
			

			
				=
				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				
				1
				(
				𝑢
				(
				𝑡
				)
				)
				+
				𝜆
			

			
				
			
			
				2
				−
				1
			

			
				
			
			
				𝑝
				
				‖
				𝑢
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				(
				Ω
				)
			

			
				≤
				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				
				𝑢
			

			

				0
			

			
				
				
				1
				+
				𝜆
			

			
				
			
			
				2
				−
				1
			

			
				
			
			
				𝑝
				
				‖
				𝑢
				(
				𝑡
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				(
				Ω
				)
			

			
				≤
				𝑐
			

			
				𝜇
				,
				𝜆
			

			
				+
				𝜆
			

			
				
			
			

				𝜆
			

			
				1
				,
				𝜇
			

			
				
				1
			

			
				
			
			
				2
				−
				1
			

			
				
			
			
				𝑝
				
				‖
				𝑢
				(
				𝑡
				)
				‖
			

			
				2
				𝜇
			

			

				,
			

		
	

						which implies that the set 
	
		
			

				ℰ
			

		
	
 is bounded. Then, by Theorem 1.2, 
	
		
			
				𝒯
				(
				𝑡
				)
			

		
	
 is dissipative and by (3.45), we have 
	
		
			
				d
				i
				s
				t
				(
				𝒯
				(
				𝑡
				)
				ℬ
				,
				0
				)
				→
				0
			

		
	
 as 
	
		
			
				𝑡
				→
				+
				∞
			

		
	
, for every bounded set 
	
		
			
				ℬ
				⊂
				𝐻
			

			
				1
				0
			

			
				(
				Ω
				,
				ℍ
			

			

				𝑑
			

			

				)
			

		
	
. So, we conclude that the global attractor 
	
		
			
				𝒜
				=
				0
			

		
	
, and that any solution 
	
		
			
				𝑢
				(
				𝑡
				)
				=
				𝒮
				(
				𝑡
				)
				𝑢
			

			

				0
			

		
	
 tends to the trivial equilibrium point as 
	
		
			
				𝑡
				→
				+
				∞
			

		
	
, when 
	
		
			

				𝑢
			

			

				0
			

			
				∈
				𝒪
			

			

				+
			

		
	
.
Theorem 3.6.  Assume that 
	
		
			

				𝑢
			

			

				0
			

			
				∈
				𝒪
			

			

				−
			

		
	
. Then the solution 
	
		
			
				𝑢
				(
				𝑡
				)
			

		
	
 of the problem (1.6) blows up in finite time.
Proof. Let 
	
		
			

				𝑢
			

			

				0
			

			
				∈
				𝒪
			

			

				−
			

		
	
, and let 
	
		
			
				𝑢
				(
				𝑡
				)
				=
				𝑢
				(
				𝑤
				,
				𝑡
				,
				𝑢
			

			

				0
			

			

				)
			

		
	
 be the unique solution, the existence of which has been proved in Proposition 3.1. From the inequality (3.3), we have that 
	
		
			
				𝑡
				↦
				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				(
				𝑢
				(
				𝑡
				)
				)
			

		
	
 is strictly decreasing, so
							
	
 		
 			
				(
				3
				.
				4
				7
				)
			
 		
	

	
		
			

				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				(
				𝑢
				(
				𝑡
				)
				)
				=
				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				
				𝑢
			

			

				0
			

			
				
				=
				𝑐
			

			
				𝜇
				,
				𝜆
			

			

				.
			

		
	

						Suppose there exists 
	
		
			
				̃
				𝑡
				∈
				(
				0
				,
				𝑇
			

			
				m
				a
				x
			

			

				)
			

		
	
 such that 
	
		
			
				̃
				𝑢
				(
				𝑡
				)
				∉
				𝒪
			

			

				−
			

		
	
. Then
							
	
 		
 			
				(
				3
				.
				4
				8
				)
			
 		
	

	
		
			
				
				𝐼
			

			
				
				𝜇
				,
				𝜆
			

			
				
				(
				𝑢
				(
				𝑡
				)
				)
				,
				𝑢
				(
				𝑡
				)
				≥
				0
				.
			

		
	

						And since the application 
	
		
			
				𝑡
				↦
				⟨
				𝐼
			

			
				
				𝜇
				,
				𝜆
			

			
				(
				𝑢
				(
				𝑡
				)
				)
				,
				𝑢
				(
				𝑡
				)
				⟩
			

		
	
 is continuous, there exists 
	
		
			
				̃
				𝑡
			

			

				0
			

			
				̃
				∈
				(
				0
				,
				𝑡
				]
			

		
	
 such that
							
	
 		
 			
				(
				3
				.
				4
				9
				)
			
 		
	

	
		
			
				
				𝐼
			

			
				
				𝜇
				,
				𝜆
			

			
				
				𝑢
				
				𝑡
			

			

				0
			

			
				
				𝑡
				
				
				,
				𝑢
			

			

				0
			

			
				
				
				=
				0
				.
			

		
	

						Hence, 
	
		
			
				̃
				𝑡
				𝑢
				(
			

			

				0
			

			
				)
				=
				0
			

		
	
 in 
	
		
			

				Ω
			

		
	
 or 
	
		
			
				̃
				𝑡
				𝑢
				(
			

			

				0
			

			
				)
				∈
				𝒩
			

		
	
. If 
	
		
			
				̃
				𝑡
				𝑢
				(
			

			

				0
			

			
				)
				=
				0
			

		
	
 in 
	
		
			

				Ω
			

		
	
, then by the uniquess of 
	
		
			
				𝑢
				(
				𝑡
				)
			

		
	
, we conclude that 
	
		
			
				𝑢
				(
				𝑡
				)
				=
				0
			

		
	
 for any 
	
		
			
				̃
				𝑡
				𝑡
				∈
				[
			

			

				0
			

			
				,
				𝑇
			

			
				m
				a
				x
			

			

				)
			

		
	
. Thus, 
	
		
			
				𝑢
				(
				𝑡
				)
			

		
	
 is global by extending to 0 for all 
	
		
			
				𝑡
				≥
				𝑇
			

			
				m
				a
				x
			

		
	
, and thanks to Theorem 3.2, 
	
		
			

				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				(
				𝑢
				(
				𝑡
				)
				)
				>
				0
			

		
	
 for any 
	
		
			
				𝑡
				≥
				0
			

		
	
. But 
	
		
			

				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				̃
				𝑡
				(
				𝑢
				(
			

			

				0
			

			
				)
				)
				=
				0
			

		
	
, which is a contradiction, and so 
	
		
			
				̃
				𝑡
				𝑢
				(
			

			

				0
			

			
				)
				∈
				𝒩
			

		
	
. But by [21],
							
	
 		
 			
				(
				3
				.
				5
				0
				)
			
 		
	

	
		
			

				𝑐
			

			
				𝜇
				,
				𝜆
			

			
				=
				i
				n
				f
			

			
				𝑢
				∈
				𝒩
			

			

				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				(
				𝑢
				)
				,
			

		
	

						then 
	
		
			

				𝑐
			

			
				𝜇
				,
				𝜆
			

			
				≤
				𝐼
			

			
				𝜇
				,
				𝜆
			

			
				̃
				𝑡
				(
				𝑢
				(
			

			

				0
			

			
				)
				)
			

		
	
, which contradicts (3.47). So, we conclude that 
	
		
			
				𝑢
				(
				𝑡
				)
				∈
				𝒪
			

			

				−
			

		
	
 for all 
	
		
			
				̃
				𝑡
				𝑡
				∈
				[
			

			

				0
			

			
				,
				𝑇
			

			
				m
				a
				x
			

			

				)
			

		
	
. We suppose by contradiction that 
	
		
			

				𝑇
			

			
				m
				a
				x
			

			
				=
				+
				∞
			

		
	
, that is, 
	
		
			
				𝑢
				(
				𝑡
				)
				=
				𝑢
				(
				𝑡
				,
				⋅
				)
			

		
	
 exists for all 
	
		
			
				𝑡
				≥
				0
			

		
	
. For 
	
		
			
				𝑢
				∈
				𝒪
			

			

				−
			

		
	
, we have
							
	
 		
 			
				(
				3
				.
				5
				1
				)
			
 		
	

	
		
			

				𝑑
			

			
				
			
			
				𝑑
				𝑡
				‖
				𝑢
				(
				𝑡
				,
				⋅
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				(
				Ω
				)
			

			
				
				𝐼
				=
				−
				2
			

			
				
				𝜇
				,
				𝜆
			

			
				
				𝑢
				
				𝑡
			

			

				0
			

			
				
				𝑡
				
				
				,
				𝑢
			

			

				0
			

			
				
				
				>
				0
				.
			

		
	

						Then 
	
		
			
				𝑡
				↦
				‖
				𝑢
				(
				𝑡
				,
				⋅
				)
				‖
			

			

				𝐿
			

			

				2
			

			
				(
				Ω
				)
			

		
	
 is strictly increasing and so
							
	
 		
 			
				(
				3
				.
				5
				2
				)
			
 		
	

	
		
			
				l
				i
				m
			

			

				t
			

			
				→
				+
				∞
			

			
				‖
				‖
				𝑢
				(
				𝑡
				,
				⋅
				)
			

			

				𝐿
			

			

				2
			

			
				(
				Ω
				)
			

			
				]
				.
				=
				𝑐
				∈
				(
				0
				,
				+
				∞
			

		
	

						We suppose that 
	
		
			
				𝑐
				<
				+
				∞
			

		
	
. Following the same reasoning as in the proof of Theorem 3.3, we deduce that we can select a divergent subsequence, still denoted by 
	
		
			

				𝑡
			

		
	
, such that when 
	
		
			
				𝑡
				→
				+
				∞
			

		
	
,
							
	
 		
 			
				(
				3
				.
				5
				3
				)
			
 		
	

	
		
			
				𝑢
				(
				𝑡
				,
				⋅
				)
				⟶
				0
				i
				n
				𝐻
			

			
				1
				0
			

			
				
				Ω
				,
				ℍ
			

			

				𝑑
			

			
				
				.
			

		
	

						Letting 
	
		
			
				𝑡
				→
				+
				∞
			

		
	
 in the inequality
							
	
 		
 			
				(
				3
				.
				5
				4
				)
			
 		
	

	
		
			

				
			

			
				
			
			

				𝜆
			

			
				1
				,
				𝜇
			

			
				‖
				𝑢
				(
				𝑡
				,
				⋅
				)
				‖
			

			

				𝐿
			

			

				2
			

			
				(
				Ω
				)
			

			
				≤
				‖
				𝑢
				(
				𝑡
				,
				⋅
				)
				‖
			

			

				𝜇
			

			

				,
			

		
	

						we get that 
	
		
			
				0
				<
				𝑐
				≤
				0
			

		
	
, which is a contradiction. So we conclude that
							
	
 		
 			
				(
				3
				.
				5
				5
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑡
				→
				+
				∞
			

			
				‖
				‖
				𝑢
				(
				𝑡
				,
				⋅
				)
			

			

				𝐿
			

			

				2
			

			
				(
				Ω
				)
			

			
				=
				+
				∞
				.
			

		
	

						Set 
	
		
			
				𝑔
				(
				𝑡
				)
				=
				‖
				𝑢
				(
				𝑡
				,
				⋅
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				(
				Ω
				)
			

		
	
, so
							
	
 		
 			
				(
				3
				.
				5
				6
				)
			
 		
	

	
		
			
				−
				2
			

			
				
			
			
				𝑑
				𝑝
				−
				2
			

			
				
			
			
				𝑔
				𝑑
				𝑡
			

			
				1
				−
				𝑝
				/
				2
			

			
				(
				𝑡
				)
				=
				𝑔
			

			

				′
			

			
				(
				𝑡
				)
				𝑔
			

			
				−
				𝑝
				/
				2
			

			
				(
				𝑡
				)
				=
				−
				2
				‖
				𝑢
				(
				𝑡
				,
				⋅
				)
				‖
			

			
				𝐿
				−
				𝑝
			

			

				2
			

			
				(
				Ω
				)
			

			
				
				‖
				𝑢
				(
				𝑡
				,
				⋅
				)
				‖
			

			
				2
				𝜇
			

			
				−
				𝜆
				‖
				𝑢
				(
				𝑡
				,
				⋅
				)
				‖
			

			
				2
				𝐿
			

			

				2
			

			
				(
				Ω
				)
			

			
				‖
				𝑢
				(
				𝑡
				,
				⋅
				)
				‖
			

			
				2
				𝐿
			

			

				𝑝
			

			
				(
				Ω
				)
			

			
				
				‖
				≥
				−
				2
				‖
				𝑢
				(
				𝑡
				,
				⋅
				)
			

			
				𝐿
				−
				𝑝
			

			

				2
			

			
				(
				Ω
				)
			

			
				‖
				‖
				𝑢
				(
				𝑡
				,
				⋅
				)
			

			
				2
				𝜇
			

			
				‖
				+
				2
				‖
				𝑢
				(
				𝑡
				,
				⋅
				)
			

			
				𝐿
				−
				𝑝
			

			

				2
			

			
				(
				Ω
				)
			

			
				‖
				‖
				𝑢
				(
				𝑡
				,
				⋅
				)
			

			
				2
				𝐿
			

			

				𝑝
			

			
				(
				Ω
				)
			

			

				.
			

		
	

						By Hölder inequality, we have
							
	
 		
 			
				(
				3
				.
				5
				7
				)
			
 		
	

	
		
			
				‖
				𝑢
				(
				𝑡
				,
				⋅
				)
				‖
			

			
				𝑝
				𝐿
			

			

				𝑝
			

			
				(
				Ω
				)
			

			
				≥
				|
				|
				Ω
				|
				|
			

			
				1
				−
				𝑝
				/
				2
			

			
				‖
				𝑢
				(
				𝑡
				,
				⋅
				)
				‖
			

			
				𝑝
				𝐿
			

			

				2
			

			
				(
				Ω
				)
			

			

				,
			

		
	

						and by (3.55), there exist 
	
		
			

				𝑡
			

			

				1
			

			
				>
				0
			

		
	
 and a constant 
	
		
			

				𝐶
			

			

				1
			

			
				>
				0
			

		
	
 such that for 
	
		
			
				𝑡
				≥
				𝑡
			

			

				1
			

		
	
, we have
							
	
 		
 			
				(
				3
				.
				5
				8
				)
			
 		
	

	
		
			
				‖
				𝑢
				(
				𝑡
				,
				⋅
				)
				‖
			

			

				𝐿
			

			

				2
			

			
				(
				Ω
				)
			

			
				≥
				𝐶
			

			

				1
			

			

				.
			

		
	

						Then, there exist 
	
		
			

				𝑡
			

			

				1
			

			
				>
				0
			

		
	
 and a constant 
	
		
			

				𝐶
			

			

				2
			

			
				>
				0
			

		
	
 such that for 
	
		
			
				𝑡
				≥
				𝑡
			

			

				1
			

		
	
, we have
							
	
 		
 			
				(
				3
				.
				5
				9
				)
			
 		
	

	
		
			
				−
				2
			

			
				
			
			
				𝑑
				𝑝
				−
				2
			

			
				
			
			
				𝑔
				𝑑
				𝑡
			

			
				1
				−
				𝑝
				/
				2
			

			
				(
				𝑡
				)
				≥
				−
				2
				𝜆
			

			
				1
				,
				𝜇
			

			

				𝐶
			

			
				1
				2
				−
				𝑝
			

			
				|
				|
				Ω
				|
				|
				+
				2
			

			
				1
				−
				𝑝
				/
				2
			

			
				≥
				𝐶
			

			

				2
			

			

				.
			

		
	

						Hence, we have from (3.59), that for any 
	
		
			
				𝑡
				≥
				𝑡
			

			

				1
			

		
	
,
							
	
 		
 			
				(
				3
				.
				6
				0
				)
			
 		
	

	
		
			
				
				𝑡
				0
				<
				𝑔
				(
				𝑡
				)
				≤
				𝑔
			

			

				1
			

			
				
				+
				𝑝
				−
				2
			

			
				
			
			
				2
				𝐶
			

			

				2
			

			
				
				𝑡
				−
				𝑡
			

			

				1
			

			
				
				,
			

		
	

						which is a contradiction if 
	
		
			

				𝑡
			

		
	
 is sufficiently large. So we conclude that 
	
		
			

				𝑇
			

			
				m
				a
				x
			

			
				<
				+
				∞
			

		
	
.
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