Research Article

On the Stability Problem in Fuzzy Banach Space

G. Zamani Eskandani, 1 P. Găvruța, 2 and Gwang Hui Kim 3

1 Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran
2 Department of Mathematics, University Politehnica of Timisoara, Piata Victoriei 2, 300006 Timisoara, Romania
3 Department of Mathematics, Kangnam University, Suwon, Kyunggi 449-702, Republic of Korea

Correspondence should be addressed to Gwang Hui Kim, ghkim@kangnam.ac.kr

Received 6 February 2012; Accepted 17 May 2012

Academic Editor: Nicole Brillouet-Belluot

Copyright © 2012 G. Zamani Eskandani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We investigate the generalized Ulam-Hyers stability of the Cauchy functional equation and pose two open problems in fuzzy Banach space.

1. Introduction and Preliminaries

Theorem 1.1 (Th. M. Rassias). Let \(f : E \to E' \) be a mapping from a normed vector space \(E \) into a Banach space \(E' \) subject to the inequality:

\[
\| f(x + y) - f(x) - f(y) \| \leq \epsilon (\|x\|^p + \|y\|^p) \tag{1.1}
\]

for all \(x, y \in E \), where \(\epsilon \) and \(p \) are constants with \(\epsilon > 0 \) and \(0 \leq p < 1 \). Then, the limit \(L(x) = \lim_{n \to \infty} (1/2^n) f (2^n x) \) exists for all \(x \in E \) and \(L : E \to E' \) is the unique additive mapping which satisfies

\[
\| f(x) - L(x) \| \leq \frac{2\epsilon}{2 - 2^p} \|x\|^p \tag{1.2}
\]

for all \(x \in E \). Also, if for each \(x \in E \) the function \(f(tx) \) is continuous in \(t \in \mathbb{R} \), then \(L \) is linear.
In 1990, Th. M. Rassias [5] during the 27th International Symposium on Functional Equations asked the question whether such a theorem can also be proved for \(p \geq 1 \). In 1991, Gajda [6] gave an affirmative solution to this question for \(p > 1 \). It was shown by Gajda [6], as well as by Th. M. Rassias and Šemrl [7], that one cannot prove a Th. M. Rassias type theorem when \(p = 1 \). Găvruţa [8] proved that the function \(f(x) = x \ln|x|, \) if \(x \neq 0 \) and \(f(0) = 0 \) satisfies (1.1) with \(\varepsilon = p = 1 \) but

\[
\sup_{x \neq 0} \frac{|f(x) - A(x)|}{|x|} \geq \sup_{n \in \mathbb{N}} \frac{|n \ln n - A(n)|}{n} = \sup_{n \in \mathbb{N}} |\ln n - A(1)| = \infty
\]

for any additive function \(A : \mathbb{R} \to \mathbb{R} \). J. M. Rassias [9] replaced the factor \(||x||^p + ||y||^p \) by \(||x||^p \cdot ||y||^p \) for \(p_1, p_2 \in \mathbb{R} \) with \(p_1 + p_2 \neq 1 \) (see also [10, 11]) and has obtained the following theorem.

Theorem 1.2. Let \(X \) be a real normed linear space and \(Y \) a real complete normed linear space. Assume that \(f : X \to Y \) is an approximately additive mapping for which there exist constants \(\theta \geq 0 \) and \(p = p_1 + p_2 \neq 1 \) such that \(f \) satisfies the inequality:

\[
||f(x + y) - f(x) - f(y)|| \leq \theta ||x||^p ||y||^p
\]

for all \(x, y \in X \). Then, there exists a unique additive mapping \(L : X \to Y \) satisfying

\[
||f(x) - L(x)|| \leq \frac{\theta}{2^p - 2} ||x||^p
\]

for all \(x \in X \). If, in addition, \(f : X \to Y \) is a mapping such that the transformation \(t \to f(tx) \) is continuous in \(t \in \mathbb{R} \) for each fixed \(x \in X \), then \(L \) is an \(\mathbb{R} \)-linear mapping.

In the case \(p = 1 \), we do not have stability [12]. In 1994, a further generalization of Th. M. Rassias’ Theorem was obtained by Găvruţa [13], in which he replaced the bound \(\varepsilon(||x||^p + ||y||^p) \) by a general control function \(\varphi(x, y) \). Isac and Th. M. Rassias [14] replaced the factor \(||x||^p + ||y||^p \) by \(||x||^p \cdot ||y||^p \) in Theorem 1.1 and solved stability problem when \(p_2 \leq p_1 < 1 \) or \(1 < p_2 \leq p_1 \), also they asked the question whether such a theorem can be proved for \(p_2 < 1 < p_1 \). Găvruţa [8] gave a negative answer to this question. Isac and Th. M. Rassias [15] applied the Ulam-Hyers-Rassias stability theory to prove fixed point theorems and study some new applications in nonlinear analysis. During the last two decades, a number of papers and research monographs have been published on various generalizations and applications of the generalized Ulam-Hyers stability to a number of functional equations and mappings (see [16–40]). We also refer the readers to the books of Czerwik [41] and Hyers et al. [42].

Th. M. Rassias [43] has obtained the following theorem and posed a problem.

Theorem 1.3. Let \(E_1 \) and \(E_2 \) be two Banach spaces, and let \(f : E_1 \to E_2 \) be a mapping such that \(f(tx) \) is continuous in \(t \) for each fixed \(x \). Assume that there exist \(\theta \geq 0 \) and \(p \in (0, 1) \) such that

\[
||f(x + y) - f(x) - f(y)|| \leq \theta (||x||^p + ||y||^p)
\]
Abstract and Applied Analysis

for all \(x, y \in X\). Let \(k\) be a positive integer \(k > 2\). Then, there exists a unique linear mapping \(T : E_1 \rightarrow E_2\) such that

\[
\|f(x) - T(x)\| \leq \frac{k\theta}{k - k^p}\|x\|^p s(k, p) \tag{1.7}
\]

for all \(x \in X\), where

\[
s(k, p) = 1 + \frac{1}{k} \sum_{m=2}^{k-1} m^p. \tag{1.8}
\]

Th. M. Rassias Problem

What is the best possible value of \(k\) in Theorem 1.3?

Gâvruţa et al. have given a generalization of [13] and have answered to Th. M. Rassias problem [44].

In [45], J. M. Rassias et al. have investigated the generalized Ulam-Hyers “product-sum” stability of functional equations and have obtained the following theorem.

Theorem 1.4 (see [45]). Let \(f : E \rightarrow F\) be a mapping which satisfies the inequality

\[
\left\|f(mx + y) + f(mx - y) - 2f(x + y) - 2f(x - y) - 2\left(m^2 - 2\right)f(x) + 2f(y)\right\| \leq e \left(\|x\|_E^p \|y\|_E^p + \|x\|_E^{2p} + \|y\|_E^{2p}\right) \tag{1.9}
\]

for all \(x, y \in E\) with \(x \perp y\), where \(e\) and \(p\) are constants with \(e, p > 0\) and either \(m > 1, p < 1\) or \(m < 1, p > 1\) with \(m \neq 0, m \neq \pm 1, m \neq \sqrt{2}\), and \(-1 \neq |m|^{-1} < 1\). Then, the limit \(\lim_{n \rightarrow \infty} m^{-2n}f(m^n x)\) exists for all \(x \in E\) and \(Q : E \rightarrow F\) is the unique orthogonally Euler-Lagrange quadratic mapping such that

\[
\left\|f(x) - Q(x)\right\| \leq \frac{e}{2[m^2 - m^{2p}]} \|x\|_E^{2p} \tag{1.10}
\]

for all \(x \in E\).

Note that the mixed “product-sum” function was introduced by J. M. Rassias in 2008-2009 [46–48].

We recall some basic facts concerning fuzzy normed space.

Let \(X\) be a real linear space. A function \(N : X \times \mathbb{R} \rightarrow [0, 1]\) (so-called fuzzy subset) is said to be a fuzzy norm on \(X\) if for all \(x, y \in X\) and all \(c, t \in \mathbb{R}\),

(N1) \(N(x, c) = 0\) for \(c \leq 0\);
(N2) \(x = 0\) if and only if \(N(x, c) = 1\) for all \(c > 0\);
(N3) \(N(cx, t) = N(x, t/|c|)\) if \(c \neq 0\);
(N4) \(N(x + y, t) \geq \min\{N(x, t), N(y, t)\}\);
(N5) \(N(x, \cdot) \) is a nondecreasing function of \(\mathbb{R} \) and
\[
\lim_{t \to \infty} N(x, t) = 1.
\] (1.11)

The pair \((X, N)\) is called a fuzzy normed linear space. The properties of fuzzy normed vector spaces and examples of fuzzy norms are given in [49–51].

Let \((X, N)\) be a fuzzy normed space and let \(\{x_n\}\) be a sequence in \(X\). Then, \(\{x_n\}\) is said to be convergent if there exists \(x \in X\) such that \(\lim_{n \to \infty} N(x_n - x, t) = 1\) for all \(t > 0\). In that case, \(x\) is called the limit of the sequence \(\{x_n\}\) and we denote it by \(\lim_{n \to \infty} x_n = x\).

A sequence \(\{x_n\}\) in a fuzzy normed space \((X, N)\) is called Cauchy if, for each \(\epsilon > 0\) and \(\delta > 0\), one can find some \(n_0\) such that
\[
N(x_m - x_n, \delta) > 1 - \epsilon
\] (1.12)
for all \(n, m \geq n_0\).

It is known that every convergent sequence in a fuzzy normed space is Cauchy. If, in a fuzzy-normed space, each Cauchy sequence is convergent, then the fuzzy-norm is said to be complete and the fuzzy normed space is called a fuzzy Banach space.

Stability of Cauchy, Jensen, quadratic, and cubic function equation in fuzzy normed spaces have first been investigated in [50–53].

In this paper, we give a generalization of the results from [13] and pose two open problems in fuzzy Banach space. For convenience, we use the following abbreviation for a given mapping \(f\):
\[
Df(x, y) =: f(x + y) - f(x) - f(y).
\] (1.13)

2. Stability of the Cauchy Functional Equation

Hereafter, unless otherwise stated, we will assume that \(X\) is real vector space, \((Y, N)\) is a complete fuzzy norm space and \(k\) is a fixed integer greater than 1.

Theorem 2.1. Let \((Z, N')\) be a fuzzy normed space and \(\varphi : X \times X \to Z\) be a mapping such that, \(\varphi(\alpha x, \alpha y) = \varphi(x, y)\) for some \(\alpha\) with \(0 < \alpha < 1\). Suppose that \(f : X \to Y\) be mapping such that
\[
N(Df(x, y), t) \geq N'(\varphi(x, y), t)
\] (2.1)
for all \(x, y \in X\) and all positive real number \(t\). Then, there is a unique additive mapping \(T_k : X \to Y\) such that \(T_k(x) = \lim_{n \to \infty} f(k^n x) / k^n\) and
\[
N(T_k(x) - f(x), t) \geq M_k(x, (k - \alpha)t),
\] (2.2)
where \(M_k(x, t) := \min\{N'(\varphi(x, i x), t) : 1 \leq i < k\}\).

Proof. By induction on \(k\), we show that
\[
N(f(kx) - kf(x), t) \geq M_k(x, t) := \min\{N'(\varphi(x, i x), t) : 1 \leq i < k\}
\] (2.3)
for all \(x \in X \) and all positive real number \(t \). Letting \(y = x \) in (2.1), we get

\[
N \left(f(2x) - 2f(x), t \right) \geq N'(\varphi(x, x), t). \tag{2.4}
\]

So we get (2.3) for \(k = 2 \).

Assume that (2.3) holds for \(k \) with \(k > 2 \). Letting \(y = kx \) in (2.1), we get

\[
N \left(f((k+1)x) - f(kx), t \right) \geq N'(\varphi(x, kx), t). \tag{2.5}
\]

for all \(x \in X \). By using (2.3) and (2.5), we get (2.3) for \(k + 1 \) and this completes the induction argument. Replacing \(x \) by \(k^nx \) in (2.3), we get

\[
N \left(f(k^{n+1}x) - kf(k^n x), t \right) \geq M_k(k^n x, t). \tag{2.6}
\]

Thus

\[
N \left(\frac{1}{k^{n+1}} f(k^n x) - \frac{1}{k^n} f(k^{n-1} x), t \right) \geq \frac{1}{k^n} f(k^{n-1} x) \tag{2.7}
\]

for all \(x \in X \) and all positive real number \(t \). Hence,

\[
N \left(\frac{1}{k^{n+1}} f(k^n x) - \frac{1}{k^n} f(k^{n-1} x), \sum_{i=m}^{n} \frac{\alpha^i}{k^{i+1}} t \right) \geq \frac{1}{k^n} f(k^{n-1} x) \tag{2.8}
\]

Let \(\epsilon > 0 \) and \(\delta > 0 \) be given. Since \(\lim_{n \to \infty} M_k(x, t) = 1 \), there is some \(t_0 > 0 \) such that \(M_k(x, t_0) > 1 - \epsilon \). Since \(\sum_{n=0}^{\infty} (a^n/k^n) t_0 < \infty \), there is some \(n_0 \in N \) such that \(\sum_{i=m}^{n} (a^i/k^i) t_0 < k\delta \) for all \(n > m \geq n_0 \). It follows that

\[
N \left(\frac{1}{k^{n+1}} f(k^n x) - \frac{1}{k^n} f(k^{n-1} x), \delta \right) \geq \frac{1}{k^n} f(k^{n-1} x) \tag{2.9}
\]

for all \(x \in X \) and all nonnegative integers \(n \) and \(m \) with \(n > m \geq n_0 \). Therefore, the sequence \(\{1/k^n f(k^n x)\} \) is a Cauchy sequence in \((Y, N)\) for all \(x \in X \). Since \((Y, N)\) is complete, the
sequence \(\{1/k^n f(k^n x)\} \) converges in \(Y \) for all \(x \in X \). So one can define the mapping \(T_k : X \to Y \) by

\[
T_k(x) := \lim_{n \to \infty} \frac{1}{k^n} f(k^n x) \tag{2.10}
\]

for all \(x \in X \). Now, we show that \(T_k \) is an additive mapping. It follows from (2.1) and (2.10) that

\[
N(DT_k(x, y), t) = \lim_{n \to \infty} N\left(\frac{Df(k^n x, k^n y)}{k^n}, t \right) \\
\geq \lim_{n \to \infty} N\left(\frac{\varphi(k^n x, k^n y)}{k^n}, t \right) \\
= \lim_{n \to \infty} N\left(\varphi(x, y), \frac{k^n}{\alpha^n} t \right) \\
= 1
\]

for all \(x, y \in X \) and all positive real number \(t \). Therefore, the mapping \(T_k \) is additive. Moreover, if we put \(m = 0 \) in (2.8), we observe that

\[
N\left(\frac{1}{k^{n+1}} f(k^{n+1} x) - f(x), \sum_{i=0}^{n} \frac{\alpha^i}{k^{i+1}} t \right) \geq M_k(x, t) \tag{2.12}
\]

Therefore,

\[
N\left(\frac{1}{k^{n+1}} f(k^{n+1} x) - f(x), t \right) \geq M_k\left(x, \frac{t}{\sum_{i=0}^{n} (\alpha^i/k^{i+1})} \right) \tag{2.13}
\]

It follows from (2.13), for large enough \(n \), that

\[
N(T_k(x) - f(x), t) \geq \min \left\{ N\left(\frac{f(k^{n+1} x)}{k^{n+1}} - f(x), t \right), N\left(T_k(x) - \frac{f(k^{n+1} x)}{k^{n+1}}, t \right) \right\} \\
\geq M_k\left(x, \frac{t}{\sum_{i=0}^{n} (\alpha^i/k^{i+1})} \right) \\
\geq M_k(x, (k - \alpha)t) \tag{2.14}
\]

Now, we show that \(T_k \) is unique. Let \(T' \) be another additive mapping from \(X \) into \(Y \), which satisfies the required inequality. Then, for each \(x \in X \) and \(t > 0 \), we have

\[
N(T_k(x) - T'(x), t) \geq \min \left\{ N(T_k(x) - f(x), t), N(f(x) - T'(x), t) \right\} \\
\geq M_k(x, (k - \alpha)t) \tag{2.15}
\]
So,

\[N\left(T_k(x) - T'(x), t \right) = N\left(\frac{T_k(k^n x)}{k^n} - \frac{T'(k^n x)}{k^n}, t \right) \]
\[= N\left(T_k(k^n x) - T'(k^n x), k^n t \right) \]
\[\geq M_k \left(x, (k - \alpha) \frac{k^n t}{\alpha n} \right). \]

Hence, the right-hand side of the above inequality tends to 1 as \(n \to \infty \). It follows that \(T_k(x) = T'(x) \) for all \(x \in X \).

\[\square \]

Theorem 2.2. Let \((Z, N')\) be a fuzzy normed space and, \(\Phi : X \times X \to Z \) be a mapping such that \(\Phi(k^{-1}x, k^{-1}y) = \alpha^{-1}\Phi(x, y) \) for some \(\alpha \) with \(\alpha > k \). Suppose that \(f : X \to Y \) be mapping such that

\[N(Df(x, y), t) \geq N'(\Phi(x, y), t) \] (2.17)

for all \(x, y \in X \) and all positive real number \(t \). Then, there is a unique additive mapping \(T_k : X \to Y \) such that \(T_k(x) = \lim_{n \to \infty} k^n f\left(x / k^n \right) \) and

\[N(T_k(x) - f(x), t) \geq M_k(x, (\alpha - k)t), \]

where \(M_k(x, t) := \min\{ N'(\Phi(x, ix), t) : 1 \leq i < k \} \).

Proof. Similarly to the proof of Theorem 2.1, we have

\[N\left(f(kx) - kf(x), t \right) \geq M_k(x, t) \] (2.19)

for all \(x \in X \) and all positive real number \(t \). Replacing \(x \) by \(x / k^{n+1} \) in (2.19), we get

\[N\left(f\left(\frac{x}{k^n} \right) - kf\left(\frac{x}{k^{n+1}} \right), t \right) \geq M_k\left(\frac{x}{k^{n+1}}, t \right). \] (2.20)

Thus,

\[N\left(k^n f\left(\frac{x}{k^n} \right) - k^{n+1} f\left(\frac{x}{k^{n+1}} \right), k^n t \right) \geq M_k\left(x, \alpha^{n+1} t \right) \] (2.21)
for all $x \in X$ and all positive real number t. Hence,
\[
N\left(f(k^{n+1}x) - k^n f\left(\frac{x}{k^n} \right) \right) \geq N\left(\sum_{i=m}^{n} k^i f\left(\frac{x}{k^{i+1}} \right) - k^m f\left(\frac{x}{k^m} \right) \sum_{i=m}^{n} \frac{k^i}{\alpha^{i+1}}t \right) \\
\geq \min \bigcup_{i=m}^{n} \left\{ N\left(k^{i+1} f\left(\frac{x}{k^{i+1}} \right) - k^i f\left(\frac{x}{k^i} \right) , \frac{k^i}{\alpha^{i+1}}t \right) \right\} \\
\geq M_k(x, t).
\]
(2.22)

Let $\epsilon > 0$ and $\delta > 0$ be given. Since $\lim_{k \to \infty} M_k(x, t) = 1$, there is some $t_0 > 0$ such that $M_k(x, t_0) > 1 - \epsilon$. Since $\sum_{n=0}^{\infty} (k^n / \alpha^n) t_0 < \infty$, there is some $n_0 \in \mathbb{N}$ such that $\sum_{n=0}^{n_0} (k^n / \alpha^n) t_0 < \alpha \delta$ for all $n > m \geq n_0$. It follows from (2.22) that
\[
N\left(f(k^{n+1}x) - k^n f\left(\frac{x}{k^n} \right) , \delta \right) \geq N\left(f(k^{n+1}x) - k^n f\left(\frac{x}{k^n} \right) , \sum_{i=m}^{n} \frac{k^i}{\alpha^{i+1}}t_0 \right) \\
\geq M_k(x, t_0) > 1 - \epsilon
\]
(2.23)

for all $x \in X$ and all nonnegative integers n and m with $n > m \geq n_0$. Therefore, the sequence \(\{k^n f(x/k^n)\} \) is a Cauchy sequence in \mathcal{Y} for all $x \in X$. Since \mathcal{Y} is complete, the sequence \(\{k^n f(x/k^n)\} \) converges in \mathcal{Y} for all $x \in X$. So one can define the mapping $T_k : X \to \mathcal{Y}$ by
\[
T_k(x) := \lim_{n \to \infty} k^n f\left(\frac{x}{k^n} \right)
\]
(2.24)

for all $x \in X$. The rest of the proof is similar to the proof of Theorem 2.1.

Theorem 2.3. Let X be a normed space, let (\mathcal{Z}, N') be a fuzzy normed space, and let $\psi : [0, \infty) \to [0, \infty)$ be a function such that
(1) $\psi(ts) = \psi(t)\psi(s)$,
(2) $\psi(t) < t$ for all $t > 1$.

Suppose that a mapping $f : X \to \mathcal{Y}$ satisfies the inequality:
\[
N(Df(x, y), t) \geq N'((\psi(||x||) + \psi(||y||))z_0, t)
\]
(2.25)

for all $x, y \in X$ and all positive real number t, where z_0 is a fixed vector of \mathcal{Z}. Then, there exists a unique additive mapping $T_k : X \to \mathcal{Y}$ satisfying $T_k(x) := \lim_{n \to \infty} f(k^n x/k^n)$ and
\[
N(T_k(x) - f(x), t) \geq N'\left(\psi(||x||)z_0, \frac{k - \psi(k)}{\alpha_k(\psi)}t \right)
\]
(2.26)

for all $x \in X$, where $\alpha_k(\psi) = \max\{1 + \psi(i) : 1 \leq i < k\}$. Moreover, $T_k = T_2$ for all $k \geq 2$.
Proof. Let
\[\varphi(x, y) = (\varphi(\|x\|) + \varphi(\|y\|))z_0 \] (2.27)
for all \(x, y \in X \). So,
\[\varphi(kx, ky) = \varphi(k)\varphi(x, y). \] (2.28)
where \(\varphi(k) < k \). By using Theorem 2.1, we can get (2.26). Now, we show that \(T_k = T_2 \). It follows from (1) that \(\varphi(k^n) = (\varphi(k))^n \). Replacing \(x \) by \(2^n x \) in (2.26), we get
\[N(T_k(2^n x) - f(2^n x), t) \geq N' \left(\varphi(\|2^n x\|)z_0, \frac{k - \varphi(k)}{\sigma_k(\varphi)}t \right) \] (2.29)
for all \(x \in X \). So we have
\[N \left(T_k(x) - \frac{f(2^n x)}{2^n}, t \right) \geq N' \left(\varphi(\|x\|)z_0, \frac{k - \varphi(k)}{\sigma_k(\varphi)}\varphi(2^n)2^n t \right) \] (2.30)
Using (2) and passing the limit \(n \to \infty \) in (2.30), we get \(T_k = T_2 \). □

Theorem 2.4. Let \(X \) be a normed space, let \((Z, N') \) be a fuzzy normed space, and let \(\varphi : [0, \infty) \to [0, \infty) \) be a function such that
1. \(\varphi(ts) = \varphi(t)\varphi(s) \),
2. \(\varphi(t) > t \) for all \(t > 1 \).

Suppose that a mapping \(f : X \to Y \) satisfies the inequality:
\[N(Df(x, y), t) \geq N'((\varphi(\|x\|) + \varphi(\|y\|))z_0, t) \] (2.31)
for all \(x, y \in X \) and all positive real number \(t \), where \(z_0 \) is a fixed vector of \(Z \). Then, there exists a unique additive mapping \(T_k : X \to Y \) satisfying \(T_k(x) := \lim_{n \to \infty} k^n f(x/k^n) \) and
\[N(T_k(x) - f(x), t) \geq N' \left(\varphi(\|x\|)z_0, \frac{\varphi(k) - k}{\sigma_k(\varphi)}t \right) \] (2.32)
for all \(x \in X \), where
\[\sigma_k(\varphi) = \max\{1 + \varphi(i) : 1 \leq i < k\}. \] (2.33)
Moreover, \(T_k = T_2 \) for all \(k \geq 2 \).

Proof. Let
\[\Phi(x, y) = (\varphi(\|x\|) + \varphi(\|y\|))z_0 \] (2.34)
for all $x, y \in X$. So, we have

$$
\Phi\left(k^{-1}x, k^{-1}y \right) = q(k^{-1})\Phi(x, y),
$$

(2.35)

where $q(k^{-1}) = q(k)^{-1} < k^{-1}$. It follows from (1) that $q(k^{-n}) = (q(k))^{-n}$. By using Theorem 2.2, we can get (2.32). Now, we show that $T_k = T_2$. Replacing x by $x/2^n$ in (2.32), we get

$$
N\left(T_k \left(\frac{x}{2^n} \right) - f \left(\frac{x}{2^n} \right), t \right) \geq N\left(q\left(\left\| \frac{x}{2^n} \right\| \right)z_0, \frac{q(k) - k}{\sigma_k(q)}t \right).
$$

(2.36)

for all $x \in X$. So we have

$$
N\left(T_k(x) - 2^nf \left(\frac{x}{2^n} \right), t \right) \geq N\left(q(\|x\|)z_0, \frac{q(k) - k}{2^n\sigma_k(q)q(2^{-n})}t \right).
$$

(2.37)

Using (2) and passing the limit $n \to \infty$ in (2.37), we get $T_k = T_2$. □

Theorem 2.5. Let X be a normed space, let p be a nonnegative real number such that $p \neq 1$, and let $H : [0, \infty) \times [0, \infty) \to [0, \infty)$ be a homogeneous function of degree p. Suppose that (Z, N') be a fuzzy normed space and let $f : X \to Y$ be mapping such that

$$
N(Df(x, y), t) \geq N'(H(\|x\|, \|y\|)z_0, t)
$$

(2.38)

for all $x, y \in X$ and all positive real number t, where z_0 is a fixed vector of Z. Then, there exists a unique additive mapping $T_k : X \to Y$ such that

$$
N(T_k(x) - f(x), t) \geq M_k(x, |k^p - k|t),
$$

(2.39)

where $M_k(x, t) := \min\{ N'(\|x\|^pH(1, t)z_0, t) : 1 \leq i < k \}$.

Proof. The proof follows from Theorems 2.1 and 2.2. □

For the particular cases $H(x, y) = \theta(x^p + y^p)$, $H(x, y) = x^r y^s$, $H(x, y) = x^r y^s + x^{r+s} + y^{r+s} (r + s = p)$, and $H(x, y) = \min\{x^p, y^p\}$, we have the following corollaries.

Corollary 2.6. Let X be a normed space, let p be a nonnegative real number such that $p \neq 1$. Suppose that (Z, N') be a fuzzy normed space and $f : X \to Y$ be mapping such that

$$
N(Df(x, y), t) \geq N'((\|x\|^p + \|y\|^p)\theta, t)
$$

(2.40)

for all $x, y \in X$ and all positive real number t, where θ is a fixed vector of Z. Then, there exists a unique additive mapping $T_k : X \to Y$ such that

$$
N(T_k(x) - f(x), t) \geq N\left(\|x\|^p\theta, \frac{|k^p - k|}{1 + (k - 1)p^t} \right).
$$

(2.41)
Corollary 2.7. Let X be a normed space, r, s be non-negative real numbers such that $p := r + s \neq 1$. Suppose that (Z, N') be a fuzzy normed space and $f : X \to Y$ be mapping such that

$$N(Df(x, y), t) \geq N'(|x|^p \|y\|^s \theta, t)$$

(2.42)

for all $x, y \in X$ and all positive real number t, where θ is a fixed vector of Z. Then there exists a unique additive mapping $T_k : X \to Y$ such that

$$N(T_k(x) - f(x), t) \geq N'\left(\|x\|^p \theta, \frac{|k^p - k|}{(k-1)^p} t\right).$$

(2.43)

Corollary 2.8. Let X be a normed space, and let r, s be nonnegative real numbers such that $p := r + s \neq 1$. Suppose that (Z, N') be a fuzzy normed space and let $f : X \to Y$ be mapping such that

$$N(Df(x, y), t) \geq N'\left(\theta \|x\|^p \|y\|^s + \theta \|x\|^{r+s} + \theta \|y\|^{r+s}, t\right)$$

(2.44)

for all $x, y \in X$ and all positive real number t, where θ is a fixed vector of Z. Then, there exists a unique additive mapping $T_k : X \to Y$ such that

$$N(T_k(x) - f(x), t) \geq N'\left(\|x\|^p \theta, \frac{|k^p - k|}{(k-1)^p + (k-1)^s + 1} t\right).$$

(2.45)

Corollary 2.9. Let X be a normed space, let p be a nonnegative real number such that $p \neq 1$. Suppose that (Z, N') be a fuzzy normed space and let $f : X \to Y$ be mapping such that

$$N(Df(x, y), t) \geq N'(\min\{\|x\|^p, \|y\|^p\} \theta, t)$$

(2.46)

for all $x, y \in X$ and all positive real number t, where θ is a fixed vector of Z. Then, there exists a unique additive mapping $T_k : X \to Y$ such that

$$N(T_k(x) - f(x), t) \geq N'(\|x\|^p \theta, |k^p - k| t).$$

(2.47)

Problem 1. Whether Theorem 2.5 and/or such Corollaries can be proved for $p = 1$?

Problem 2. What is the best possible value of k in Corollaries 2.6 and 2.7?

Acknowledgment

G. H. Kim was partially supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant no. 2011-0005197).
References

Submit your manuscripts at http://www.hindawi.com