Research Article

Some Formulae for the Product of Two Bernoulli and Euler Polynomials

D. S. Kim, 1 D. V. Dolgy, 2 T. Kim, 3 and S.-H. Rim 4

1 Department of Mathematics, Sogang University, Seoul 121-742, Republic of Korea
2 Hanrimwon, Kwangwoon University, Seoul 139-701, Republic of Korea
3 Department of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea
4 Department of Mathematics Education, Kyungpook National University, Taegu 702-701, Republic of Korea

Correspondence should be addressed to T. Kim, tkkim@kw.ac.kr

Received 6 March 2012; Accepted 23 April 2012

Academic Editor: Sung Guen Kim

Copyright © 2012 D. S. Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We investigate some formulae for the product of two Bernoulli and Euler polynomials arising from the Euler and Bernoulli basis polynomials.

1. Introduction

As is well known, the Bernoulli polynomials are defined by the generating function as follows:

\[
\frac{t}{e^t - 1} e^{xt} = e^{B(x)t} = \sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!}
\]

(1.1)

(see [1–21]), with the usual convention about replacing \(B^n(x) \) by \(B_n(x) \). In the special case, \(x = 0 \), \(B_n(0) = B_n \) are called the \(n \)th Bernoulli numbers. The Euler polynomials are also defined by the generating function as follows:

\[
\frac{2}{e^t + 1} e^{xt} = e^{E(x)t} = \sum_{n=0}^{\infty} E_n(x) \frac{t^n}{n!}
\]

(1.2)
Abstract and Applied Analysis

(see [6–11]), with the usual convention about replacing \(E^n(x) \) by \(E_n(x) \). In the special case, \(x = 0, E_n(0) = E_n \) are called the \(n \)th Euler numbers. From (1.1) and (1.2), we can derive the following recurrence relations for the Bernoulli and Euler numbers:

\[
B_0 = 1, \quad B_n(1) - B_n = \delta_{1,n}, \quad E_0 = 1, \quad E_n(1) + E_n = 2\delta_{0,n},
\]

(1.3)

where \(\delta_{k,n} \) is the Kronecker symbol. By (1.1) and (1.2), we get

\[
B_n(x) = \sum_{\ell=0}^{n} x^{n-\ell} \binom{n}{\ell} B_{\ell}, \quad E_n(x) = \sum_{\ell=0}^{n} x^{n-\ell} \binom{n}{\ell} E_{\ell}.
\]

(1.4)

From (1.4), we can derive

\[
\frac{d}{dx} B_n(x) = nB_{n-1}(x), \quad \frac{d}{dx} E_n(x) = nE_{n-1}(x).
\]

(1.5)

By (1.4) and (1.5), we get

\[
\int_{0}^{1} B_n(x)dx = \frac{\delta_{0,n}}{n+1} = \delta_{0,n}, \quad \int_{0}^{1} E_n(x)dx = -2 \frac{E_{n+1}}{n+1}.
\]

(1.6)

It is easy to show that

\[
e^{tx} = \frac{1}{t} \left(\frac{te^{(x+1)t}}{e^t-1} - \frac{te^{xt}}{e^t-1} \right) = \frac{1}{t} \sum_{n=0}^{\infty} (B_n(x+1) - B_n(x)) \frac{t^n}{n!}.
\]

(1.7)

Thus, we have

\[
x^n = \frac{1}{n+1} \sum_{\ell=0}^{n} \binom{n+1}{\ell} B_{\ell}(x)
\]

(1.8)

(see [11–18]). By the definition of the Euler polynomials, we get

\[
e^{tx} = \frac{1}{2} \left(\frac{2e^{(x+1)t}}{e^t+1} + \frac{2e^{xt}}{e^t+1} \right) = \frac{1}{2} \sum_{n=0}^{\infty} (E_n(x+1) + E_n(x)) \frac{t^n}{n!}.
\]

(1.9)

From (1.9), we have

\[
x^n = E_n(x) + \frac{1}{2} \sum_{\ell=0}^{n-1} \binom{n}{\ell} E_{\ell}(x)
\]

(1.10)

(see [1–18]). By (1.8) and (1.10), we see that the set \(\{E_0(x), \ldots, E_n(x)\} \) and \(\{B_0(x), \ldots, B_n(x)\} \) are the basis for the space of polynomials of degree less than or equal to \(n \) with coefficients in \(\mathbb{Q} \) (see [1–21]).
Let us assume that $m, n \in \mathbb{Z}_+ = \mathbb{N} \cup \{0\}$, let $I_{m,n} = \int_0^1 B_m(x)x^n dx$. Then, we note that

$$I_{0,n} = \int_0^1 x^n \, dx = \frac{1}{n+1}, \quad I_{m,0} = \int_0^1 B_m(x) \, dx = \delta_{0,m}. \quad (1.11)$$

Let us assume that $m, n \geq 1$. Then, we have

$$I_{m,n} = \frac{B_{m+1}}{m+1} - \frac{n}{m+1} I_{m+1,n-1} = \frac{B_{m+1}}{m+1} + (-1)^n \frac{n}{(m+1)(m+2)} B_{m+2}$$
$$+ (-1)^{n-1} \frac{n(n-1)}{(m+1)(m+2)} I_{m+2,n-2}. \quad (1.12)$$

Continuing this process, we get

$$I_{m,n} = \sum_{j=1}^{n-1} \frac{(-1)^{j-1}}{(n-j+1) \left(\prod_{\ell=1}^{j} \frac{n-\ell+1}{m+\ell} \right)} B_{m+j}$$
$$+ (-1)^{n-1} \frac{n(n-1) \cdots 2}{(m+1) \cdots (m+n-1)} \int_0^1 B_{m+n-1}(x) x \, dx$$
$$= \sum_{j=1}^{n} \frac{(-1)^{j-1} \binom{n+1}{j}}{(n+1) \binom{m+j}{m}} B_{m+j}. \quad (1.13)$$

Let $J_{m,n} = \int_0^1 E_m(x) x^n \, dx$ for $m, n \in \mathbb{Z}_+$. Then, we have

$$J_{0,n} = \int_0^1 x^n \, dx = \frac{1}{n+1}, \quad J_{m,0} = \int_0^1 E_m(x) \, dx = -\frac{2}{m+1} E_{m+1}. \quad (1.14)$$

Assume that $m, n \geq 1$. Then, we get

$$J_{m,n} = \int_0^1 E_m(x) x^n \, dx = -\frac{E_{m+1}}{m+1} - \frac{n}{m+1} \int_0^1 E_{m+1}(x) x^{n-1} \, dx$$
$$= -\frac{E_{m+1}}{m+1} - \frac{n}{m+1} J_{m+1,n-1}$$
$$= -\frac{E_{m+1}}{m+1} + (-1)^2 \frac{n}{(m+1)(m+2)} E_{m+2} + (-1)^2 \frac{n(n-1)}{(m+1)(m+2)} J_{m+2,n-2}. \quad (1.15)$$
Let us consider the polynomial

Continuing this process, we get

\begin{equation}
J_{m,n} = \sum_{j=1}^{n-1} (-1)^j \frac{1}{n-j+1} \left(\prod_{\ell=1}^{j} \frac{n-\ell+1}{m+\ell} \right) E_{m+j} + (-1)^{n-1} \frac{n(n-1)\cdots 2}{(m+1)\cdots (m+n-1)} J_{m+n-1,1}, \tag{1.16}
\end{equation}

\begin{equation}
J_{m+n-1,1} = \int_{0}^{1} E_{m+n-1}(x) x \, dx = \frac{E_{m+n}}{m+n} + (-1)^2 \frac{2E_{m+n+1}}{(m+n)(m+n+1)}.
\end{equation}

By (1.16), we get

\begin{equation}
J_{m,n} = \frac{1}{n+1} \sum_{j=1}^{n} (-1)^j \left(\frac{n+1}{j} \right) E_{m+j} + 2 \frac{(-1)^{n+1} E_{n+m+1}}{(n+m+1)(n+m)}.
\end{equation}

From the properties of the Bernoulli and Euler basis for the space of the polynomials of degree less than or equal to \(n \) with coefficients in \(\mathbb{Q} \), we derive some identities for the product of two Bernoulli and Euler polynomials.

2. Some Identities for the Bernoulli and Euler Numbers

Let us consider the polynomial \(p(x) = \sum_{k=0}^{n} B_k(x)x^{n-k} \), with \(n \in \mathbb{N} \). Then, we have

\begin{equation}
p^{(k)}(x) = \frac{(n+1)!}{(n-k+1)!} \sum_{\ell=k}^{n} B_{\ell-k}(x)x^{n-\ell} \quad (k = 0, 1, 2, \ldots, n). \tag{2.1}
\end{equation}

From the properties of the Bernoulli basis for the space of polynomials of degree less than or equal to \(n \) with coefficients in \(\mathbb{Q} \), \(p(x) \) is given by

\begin{equation}
p(x) = \sum_{k=0}^{n} a_k B_k(x). \tag{2.2}
\end{equation}

Thus, by (2.2), we get

\begin{equation}
a_0 = \int_{0}^{1} p(t) \, dt = \sum_{k=0}^{n} \int_{0}^{1} B_k(t)x^{n-k} \, dt = \sum_{k=0}^{n} I_{k,n-k} = I_{0,0} + \sum_{k=1}^{n-1} I_{k,n-k} + I_{n,0}
= \frac{1}{n+1} + \sum_{k=1}^{n-1} \sum_{j=1}^{n-k} \frac{(-1)^{j-1}}{(n-k+1)\binom{k+j}{k}} B_{k+j} + \delta_{0,n}.
\end{equation}
Abstract and Applied Analysis

By (2.1) and (2.2), we get

\[a_k = \left(p^{(k-1)}(1) - p^{(k-1)}(0) \right) = \frac{(n+1)!}{k!(n-k+2)!} \sum_{\ell=k-1}^{n} B_{\ell-k+1}(1) - B_{\ell-k+1}0^{n-\ell} \]

\[= \left(\frac{n^2}{n+2} \right) \left(\sum_{\ell=k-1}^{n-1} B_{\ell-k+1} + 1 \right). \]

(2.4)

Therefore, by (2.3) and (2.4), we obtain the following theorem.

Theorem 2.1. For \(n \in \mathbb{N} \), one has

\[\sum_{k=0}^{n} B_k(x)x^{n-k} = \frac{1}{n+1} + \sum_{\ell=1}^{n-1} \frac{(-1)^{j-1}}{(n-\ell+1)} \left(\frac{n-\ell+1}{n+1} \right) B_{\ell+j} \]

\[+ \frac{1}{n+2} \sum_{k=1}^{n} \left(\frac{n+2}{k} \right) \left(\sum_{\ell=k-1}^{n-1} B_{\ell-k+1} + 1 \right) B_k(x). \]

(2.5)

From the properties of the Euler basis for the space of polynomials of degree less than or equal to \(n \) with coefficients in \(\mathbb{Q} \), \(p(x) \) is given by

\[p(x) = \sum_{k=0}^{n} b_k E_k(x). \]

(2.6)

By (2.1) and (2.6), we get

\[b_k = \frac{1}{2k!} \left(p^{(k)}(1) + p^{(k)}(0) \right) \]

\[= \frac{1}{2k!} \left(\frac{(n+1)!}{(n-k+1)!} \sum_{\ell=k}^{n} B_{\ell-k}(1) + B_{\ell-k}0^{n-\ell} \right) \]

\[= \left(\frac{n+1}{k} \right) \left(\sum_{\ell=k}^{n} B_{\ell-k} + 1 - \delta_{k,n} + B_{n-k} \right) \]

\[= \begin{cases} \left(\frac{n+1}{k} \right) \left(\sum_{\ell=k}^{n} B_{\ell-k} + 1 + B_{n-k} \right) & \text{if } k \neq n, \\ n+1 & \text{if } k = n. \end{cases} \]

(2.7)

Therefore, by (2.6) and (2.7), we obtain the following theorem.

Theorem 2.2. For \(n \in \mathbb{Z}_+ \), one has

\[\sum_{k=0}^{n} B_k(x)x^{n-k} = \frac{1}{2} \sum_{k=0}^{n-1} \left(\frac{n+1}{k} \right) \left(\sum_{\ell=k}^{n} B_{\ell-k} + 1 + B_{n-k} \right) E_k(x) + (n+1)E_n(x). \]

(2.8)
Let us take polynomial \(p(x) \) with \(p(x) = \sum_{k=0}^{n} E_k(x)x^{n-k} \). Then, we have

\[
p^{(k)}(x) = \frac{(n+1)!}{(n-k+1)!} \sum_{\ell=k}^{n} E_{\ell-k}(x)x^{n-\ell} \quad (k = 0, 1, 2, \ldots, n). \tag{2.9}
\]

By the basis set \(\{ B_0(x), \ldots, B_n(x) \} \) for the space of polynomials of degree less than or equal to \(n \) with coefficients in \(\mathbb{Q} \), we see that \(p(x) \) is given by

\[
p(x) = \sum_{k=0}^{n} a_k B_k(x). \tag{2.10}
\]

From (2.10), we note that

\[
a_0 = \int_0^1 p(t) dt = \sum_{\ell=0}^{n-1} \int_0^1 E_\ell(t)x^{n-\ell} dt = \sum_{\ell=0}^{n} J_\ell,n-\ell
\]

\[
= J_{0,n} + \sum_{\ell=1}^{n-1} J_{\ell,n-\ell} + J_{n,0} = \frac{1}{n+1} + \sum_{\ell=1}^{n-1} J_{\ell,n-\ell} - \frac{2\ell}{n+1} E_{n+1}
\]

\[
= \left(\sum_{j=1}^{n} (-1)^j \frac{(n+1)}{n+1} E_j + \frac{2(-1)^{n+1}}{n+1} E_{n+1} \right)
\]

\[
+ \sum_{\ell=1}^{n-1} \left\{ \sum_{j=1}^{n-\ell} (-1)^j \frac{\binom{n-\ell+1}{j}}{(n-\ell+1)\binom{\ell+1}{j}} E_\ell j + \frac{2(-1)^{n-\ell+1}}{(n+1)(n)} E_{n+1} \right\} - \frac{2\ell}{n+1} E_{n+1}
\]

\[
= \sum_{\ell=0}^{n} \left\{ \sum_{j=1}^{n-\ell} (-1)^j \frac{\binom{n-\ell+1}{j}}{(n-\ell+1)\binom{\ell+1}{j}} E_\ell j + \frac{2(-1)^{n-\ell+1}}{(n+1)(n)} E_{n+1} \right\}.
\]

Note that

\[
\sum_{\ell=0}^{n} \frac{(-1)^{\ell-1}}{(n+1)\binom{n}{\ell}} = -\sum_{\ell=0}^{n} \frac{(n-\ell)!\ell!}{(n+1)!} (-1)^\ell = -\sum_{\ell=0}^{n} B(n-\ell+1, \ell+1)(-1)^\ell
\]

\[
= 1 + (-1)^n \frac{n}{n+2}, \tag{2.12}
\]

where \(B(\alpha, \beta) \) is the beta function.

From (2.11) and (2.12), we have

\[
a_0 = \sum_{\ell=0}^{n} \sum_{j=1}^{n-\ell} \frac{(-1)^j \binom{n-\ell+1}{j}}{(n-\ell+1)\binom{\ell+1}{j}} E_\ell j + \frac{4(-1)^{n+1}}{n+2} E_{n+1}. \tag{2.13}
\]
For $k = 1, 2, \ldots, n$, by (2.9) and (2.10), we get

$$a_k = \frac{1}{k!} \left(p^{(k-1)}(1) - p^{(k-1)}(0) \right) = \frac{(n + 1)!}{k!(n-k+2)!} \sum_{\ell=k}^{n} \left\{ E_{\ell-k+1}(1) - E_{\ell-k+1}0^{n-\ell} \right\}$$

$$= \frac{1}{n+2} \binom{n+2}{k} \left\{ - \sum_{\ell=k}^{n} E_{\ell-k+1} + 2 - E_{n-k+1} \right\}.$$ \hspace{1cm} (2.14)

Therefore, by (2.13) and (2.14), we obtain the following theorem.

Theorem 2.3. For $n \in \mathbb{N}$, one has

$$\sum_{k=0}^{n} E_k(x)x^{n-k} = \sum_{\ell=0}^{n-1} \sum_{j=1}^{\ell} \frac{(-1)^j}{(n-\ell+1)} \binom{\ell+j}{\ell} E_{\ell+j} + \frac{4(-1)^{n+1}}{n+2} E_{n+1}$$

$$+ \frac{1}{n+2} \sum_{k=1}^{n} \binom{n+2}{k} \left\{ - \sum_{\ell=k}^{n} E_{\ell-k+1} + 2 - E_{n-k+1} \right\} B_k(x).$$ \hspace{1cm} (2.15)

From the Euler basis $\{E_0(x), E_1(x), \ldots, E_n(x)\}$ for the space of polynomials of degree less than or equal to n with coefficients in \mathbb{Q}, we note that $p(x)$ can be written as follows:

$$p(x) = \sum_{k=0}^{n} b_k E_k(x).$$ \hspace{1cm} (2.16)

Thus, we have

$$b_k = \frac{1}{2k!} \left(p^{(k)}(1) + p^{(k)}(0) \right) = \frac{1}{2k!} \frac{(n + 1)!}{(n-k+1)!} \sum_{\ell=k}^{n} \left(E_{\ell-k}(1) + E_{\ell-k}0^{n-\ell} \right)$$

$$= \frac{1}{2} \binom{n+1}{k} \left\{ - \sum_{\ell=k}^{n} E_{\ell-k} + 2 \right\}.$$ \hspace{1cm} (2.17)

Therefore, by (2.16) and (2.17), we obtain the following theorem.

Theorem 2.4. For $n \in \mathbb{N}$, one has

$$\sum_{k=0}^{n} E_k(x)x^{n-k} = \frac{1}{2} \sum_{k=0}^{n-1} \binom{n+1}{k} \left\{ - \sum_{\ell=k}^{n-1} E_{\ell-k} + 2 \right\} E_k(x) + (n+1)E_n(x).$$ \hspace{1cm} (2.18)
Let us consider the polynomial \(p(x) = \sum_{k=0}^{n} (B_k(x)x^{n-k})/(k!(n-k)!) = \sum_{k=0}^{n} a_k B_k(x) \). Then, we have

\[
a_0 = \int_0^1 p(t)dt = \sum_{\ell=0}^{n-1} \frac{1}{\ell!(n-\ell)!} I_{\ell,n-\ell} = \frac{1}{n!} I_{0,n} + \sum_{\ell=1}^{n-1} \frac{I_{\ell,n-\ell}}{(n-\ell)!} + \frac{I_{n,0}}{n!}
\]

\[
= \frac{1}{(n+1)!} + \frac{1}{(n+1)!} \sum_{\ell=1}^{n-1} \sum_{j=1}^{n-\ell} (-1)^{j-1} \binom{n+1}{\ell+j} B_{\ell+j}.
\]

(2.19)

It is easy to show that

\[
p^{(k)}(x) = 2^k \sum_{\ell=k}^{n} \frac{1}{(\ell-k)!(n-\ell)!} B_{\ell-k}(x)x^{n-\ell}.
\]

(2.20)

For \(k = 1, 2, \ldots, n \), we have

\[
a_k = \frac{1}{k!} \left(p^{(k-1)}(1) - p^{(k-1)}(0) \right)
\]

\[
= \frac{2^{k-1}}{k!} \sum_{\ell=k-1}^{n} \frac{1}{(\ell-k+1)!(n-\ell)!} \left(B_{\ell-k+1}(1) - B_{\ell-k+1}0^{n-\ell} \right)
\]

\[
= \frac{2^{k-1}}{k!} \left\{ \sum_{\ell=k-1}^{n-1} \frac{B_{\ell-k+1}}{(\ell-k+1)!(n-\ell)!} - \frac{B_{n-k+1}}{(n-k+1)!} \right\}
\]

\[
= \frac{2^{k-1}}{k!} \left(\sum_{\ell=k-1}^{n-1} \frac{B_{\ell-k+1}}{(\ell-k+1)!(n-\ell)!} + \frac{1}{(n-k)!} \right).
\]

(2.21)

Therefore, by (2.19) and (2.21), we obtain the following theorem.

Theorem 2.5. For \(n \in \mathbb{Z}_+ \), one has

\[
\sum_{k=0}^{n} \frac{B_k(x)}{k!(n-k)!} x^{n-k} = \frac{1}{(n+1)!} + \frac{1}{(n+1)!} \sum_{\ell=1}^{n} \sum_{j=1}^{n-\ell} (-1)^{j-1} \binom{n+1}{\ell+j} B_{\ell+j}
\]

\[
+ \sum_{k=1}^{n} \frac{2^{k-1}}{k!} \left(\sum_{\ell=k-1}^{n-1} \frac{B_{\ell-k+1}}{(\ell-k+1)!(n-\ell)!} + \frac{1}{(n-k)!} \right) B_k(x).
\]

(2.22)

Remark 2.6. If \(p(x) = \sum_{k=0}^{n} b_k E_k(x) \), by the same method, we get

\[
\sum_{k=0}^{n} \frac{B_k(x)x^{n-k}}{k!(n-k)!} = \sum_{k=0}^{n} \frac{2^{k-1}}{k!} \left\{ \sum_{\ell=k}^{n} \frac{B_{\ell-k}}{\ell!(n-\ell)!} + \frac{1}{(n-k-1)!} + \frac{B_{n-k}}{(n-k)!} \right\} E_k(x)
\]

\[
+ \frac{2^n}{n!} E_n(x).
\]

(2.23)
Let us consider the polynomial $p(x) = \sum_{k=0}^{n} a_{k-1}(x) x^{n-k} / (k! (n-k)!)$, where $a_{k-1}(x) = \sum_{k=0}^{n} a_{k} B_{k}(x)$. Then, we have

$$a_{0} = \int_{0}^{1} p(t) \, dt = \sum_{\ell=0}^{n} \frac{1}{\ell! (n-\ell)!} J_{\ell, n-\ell} \left[\sum_{j=1}^{n-\ell} \frac{(-1)^{j}}{(n-\ell)!} \frac{\binom{n-\ell+1}{j}}{(n-\ell+1)} E_{\ell+j} + \frac{2(-1)^{n-\ell+1}}{(n+1) E_{n+1}} \right]$$

$$= \sum_{\ell=0}^{n} \frac{(-1)^{\ell} E_{\ell+j}}{(n+1)! (n-k)(n-\ell)!} + \frac{2E_{n+1}(-1)^{n+1}}{(n+1)!} \sum_{\ell=0}^{n} (-1)^{\ell}$$

$$= \sum_{\ell=0}^{n} \frac{(-1)^{\ell} E_{\ell+j}}{(n+1)! (n-k)(n-\ell)!} + \frac{2E_{n+1}(-1)^{n+1}}{(n+1)!}.$$

It is easy to show that

$$p^{(k)}(x) = 2^{k} \sum_{\ell=k}^{n} \frac{1}{(\ell-k)! (n-\ell)!} E_{\ell-k}(x) x^{n-\ell}.$$

For $k = 1, 2, \ldots, n$, we have

$$a_{k} = \frac{1}{k!} \left(p^{(k-1)}(1) - p^{(k-1)}(0) \right)$$

$$= \frac{2^{k-1}}{k!} \sum_{\ell=k}^{n} \frac{(-1)^{\ell}}{(\ell-k+1)! (n-\ell)!} \left(E_{\ell-k+1}(1) - E_{\ell-k+1}(0) \right)$$

$$= \frac{2^{k-1}}{k!} \left\{ - \sum_{\ell=k-1}^{n} \frac{E_{\ell-k+1}}{(\ell-k+1)! (n-\ell)!} + \frac{2}{(n-k+1)!} \right\}.$$

Therefore, by (2.24) and (2.26), we obtain the following theorem.

Theorem 2.7. For $n \in \mathbb{Z}_{+}$, one has

$$\sum_{k=0}^{n} \binom{n}{k} E_{k}(x) x^{n-k} = \sum_{\ell=0}^{n-\ell} \frac{(-1)^{\ell}}{(n+1)!} \frac{\binom{n+1}{\ell+1}}{(n-\ell+1)} E_{\ell+j} + \frac{2(-1)^{n+1}}{(n+1)!} E_{n+1}$$

$$+ \sum_{k=1}^{n} \left\{ - \frac{1}{n+1} \sum_{\ell=k-1}^{n} 2^{k-1} \binom{n+1}{\ell} \binom{n-k+1}{\ell-k+1} E_{\ell-k+1} + \frac{2}{(n+1)!} \binom{n+1}{k} - \frac{2^{k-1}}{n+1} \binom{n+1}{k} E_{n-k+1} \right\} B_{k}(x).$$
Let us consider the polynomial \(p(x) = \sum_{k=0}^{n} (E_k(x)x^{n-k})/(k!(n-k)!) = \sum_{k=0}^{n} b_k E_k(x). \) By the same method, we obtain the following identity:

\[
\sum_{k=0}^{n} E_k(x)x^{n-k} k!(n-k)! = \sum_{k=0}^{n} \frac{2^{k-1}}{k!} \left\{-\frac{n}{\ell} E_{\ell-k}(x)(n-\ell) + \frac{2}{(n-k)!} + \frac{E_{n-k}}{(n-k)!}\right\} E_k(x).
\]

(2.28)

Let us take \(p(x) = \sum_{k=1}^{n-1} (1/(k(n-k)))B_k(x)x^{n-k}. \) Then, the kth derivative of \(p(x) \) is given by

\[
p^{(k)}(x) = C_k \left(x^{n-k} + B_{n-k}(x) \right) + (n-1) \cdots (n-k) \sum_{\ell=k+1}^{n-1} B_{\ell-k}(x)x^{n-\ell} \frac{1}{(n-\ell)(\ell-k)}. \]

(2.29)

where

\[
C_k = \sum_{j=1}^{k} \frac{(n-1) \cdots (n-j+1)(n-j-1) \cdots (n-k)}{n-k} \quad (k = 1, 2, \ldots, n-1), \quad C_0 = 0.
\]

(2.30)

Note that

\[
p^{(n)}(x) = (p^{(n-1)}(x))' = C_{n-1}(x + B_1(x))' = 2C_{n-1} = 2(n-1)!H_{n-1}.
\]

(2.31)

where \(H_{n-1} = \sum_{j=1}^{n-1} (1/j). \)

By the properties of the Bernoulli basis for the space of polynomials of degree less than or equal to \(n \) with coefficients in \(\mathbb{Q} \), \(p(x) \) is given by

\[
p(x) = \sum_{k=0}^{n} a_k B_k(x).
\]

(2.32)

Thus, by (2.32), we get

\[
a_0 = \sum_{\ell=1}^{n-1} \frac{1}{\ell(n-\ell)} \int_{0}^{1} B_\ell(t)x^{n-\ell} dt = \frac{1}{\ell(n-\ell)} I_{\ell,n-\ell}
\]

\[
= \sum_{\ell=0}^{n-1} \frac{1}{\ell(n-\ell)} \sum_{j=1}^{n-\ell} \frac{(-1)^{j-1} \binom{n-\ell+1}{j}}{(n-\ell+1) \binom{\ell+j}{\ell}}
\]

(2.33)

\[
= \frac{1}{n(n^2-1)} \sum_{\ell=1}^{n-1} \sum_{j=1}^{n-\ell} \frac{(-1)^{j-1} \binom{n+1}{\ell+j}}{(n-\ell+1) \binom{n}{\ell}} B_{\ell+j}.
\]
From (2.29), (2.31), and (2.32), we note that

\[
\alpha_k = \frac{1}{k!} \left(p^{(k-1)}(1) - p^{(k-1)}(0) \right)
\]

\[
= \frac{C_{k-1}}{k!} \left\{ B_{n-k+1}(1) - B_{n-k} \right\} + \left\{ 1 - 0^{n-k+1} \right\}
\]

\[
+ \frac{n^{-1}}{n} \sum_{\ell=k}^{n-1} \frac{1}{(n-\ell)(\ell-k+1)} \left\{ B_{\ell-k+1}(1) - B_{\ell-k+1}0^{n-\ell} \right\}
\]

\[
= \frac{C_{k-1}}{k!} \left(\delta_{1,n-k+1} + 1 \right) + \frac{n}{n} \sum_{\ell=k}^{n-1} \frac{B_{\ell-k+1} + \delta_{1,\ell-k+1}}{(\ell-k+1)(n-\ell)}
\]

\[
= \frac{C_{k-1}}{k!} \left(\delta_{1,n-k+1} + 1 \right) + \frac{n}{n} \left\{ \sum_{\ell=k}^{n-1} \frac{B_{\ell-k+1}}{(\ell-k+1)(n-\ell)} + \frac{1}{n-k} \right\}
\]

\[
= \begin{cases}
\frac{C_{k-1}}{k!} + \frac{n}{n} \left\{ \sum_{\ell=k}^{n-1} \frac{B_{\ell-k+1}}{(\ell-k+1)(n-\ell)} + \frac{1}{n-k} \right\} & \text{if } 1 \leq k \leq n-1, \\
2H_{n-1} & \text{if } k = n.
\end{cases}
\]

From (2.30), we have

\[
\frac{C_{k-1}}{k!} = \frac{1}{n} \sum_{j=1}^{k-1} \frac{(n-1)!}{(n-k+1)(n-k)(n-j)}
\]

\[
= \left(\frac{n!}{k!(n-k)!} \right) \left(\frac{1}{n(n-k+1)} \right) \sum_{j=1}^{k-1} \frac{1}{n-j}
\]

\[
= \left(\frac{n}{k} \right) \frac{1}{n(n-k+1)} \left(\sum_{j=1}^{n-1} \frac{1}{j} - \sum_{j=1}^{n-k} 1 \right)
\]

\[
= \frac{(n)}{n(n-k+1)} (H_{n-1} - H_{n-k}).
\]

Therefore, by (2.32), (2.34), and (2.35), we obtain the following theorem.

Theorem 2.8. For \(n \in \mathbb{N} \), one has

\[
\sum_{k=1}^{n-1} \frac{1}{k(n-k)} B_k(x)x^{n-k} = \frac{1}{n(n^2-1)} \sum_{\ell=1}^{n-1} \sum_{j=1}^{n-\ell} \frac{(-1)^j-1}{(n-\ell)} \left(\frac{n-j}{n} \right)^{\ell-1} B_{\ell+j} + \frac{1}{n} \sum_{k=1}^{n-1} \binom{n}{k}
\]

\[
\times \left(\frac{H_{n-1} - H_{n-k}}{n - k + 1} + \sum_{\ell=k}^{n-1} \frac{B_{\ell-k+1}}{(\ell-k+1)(n-\ell)} + \frac{1}{n-k} \right)
\]

\[
\times B_k(x) + \frac{2H_{n-1}B_n(x)}{n}.
\]
We assume that \(p(x) = \sum_{k=0}^{n-1} (1/k(n-k))B_k(x)x^{n-k} = \sum_{k=0}^{n} b_k E_k(x) \). For \(k = 0, 1, 2, \ldots, n-1 \), we have

\[
b_k = \frac{1}{2k!} \left(p^{(k)}(1) + p^{(k)}(0) \right)
\]

\[
+ \frac{(n-1) \cdots (n-k)}{2k!} \sum_{\ell=k+1}^{n-1} \frac{1}{(\ell-k)(n-\ell)} \left\{ B_{\ell-k}(1) + B_{\ell-k}0^{n-\ell} \right\}
\]

\[
= \begin{cases}
\frac{C_k}{2k!} (2B_{n-k} + 1) + \frac{(n-1)}{2} \left(\sum_{\ell=k+1}^{n-1} \frac{B_{\ell-k}}{(\ell-k)(n-\ell)} + \frac{1}{n-k-1} \right) & \text{if } 0 \leq k \leq n-2, \\
\frac{C_{n-1}}{2(n-1)!} = \frac{1}{2} H_{n-1} & \text{if } k = n-1.
\end{cases}
\]

Finally,

\[
b_n = \frac{1}{2n!} \left(p^{(n)}(1) + p^{(n)}(0) \right) = \frac{4C_{n-1}}{2n!} = \frac{2C_{n-1}}{n!} = \frac{2H_{n-1}}{n}.
\]

By the same method, we obtain the following identity:

\[
\sum_{k=1}^{n-1} \frac{1}{k(n-k)} B_k(x)x^{n-k}
\]

\[
= \frac{1}{2} \sum_{k=0}^{n-2} \left\{ \frac{(n)}{n} (H_{n-1} - H_{n-k-1})(2B_{n-k} + 1) + \binom{n-1}{k} \left(\sum_{\ell=k+1}^{n-1} \frac{B_{\ell-k}}{(\ell-k)(n-\ell)} + \frac{1}{n-k-1} \right) \right\}
\]

\[
\times E_k(x) + \frac{1}{2} H_{n-1} E_{n-1}(x) + \frac{2H_{n-1}}{n} E_n(x).
\]

(2.39)

Let us take \(p(x) = \sum_{k=1}^{n-1} (1/k(n-k))E_k(x)x^{n-k} \). Then, for \(k = 0, 1, 2, \ldots, n-1 \), we have

\[
p^{(k)}(x) = C_k \left(E_{n-k}(x) + x^{n-k} \right) + (n-1) \cdots (n-k) \sum_{\ell=k+1}^{n-1} \frac{E_{\ell-k}(x)x^{n-\ell}}{(\ell-k)(n-\ell)}
\]

(2.40)

where \(C_k = (\sum_{j=1}^{k} (n-1) \cdots (n-j+1)(n-j-1) \cdots (n-k)) / (n-k) \).

Note that

\[
p^{(n)}(x) = \left(p^{(n-1)}(x) \right)' = (C_{n-1}(E_1(x) + x))' = 2C_{n-1} = 2(n-1)!H_{n-1}.
\]

(2.41)
By the properties of the Bernoulli basis for the space of polynomials of degree less than or equal to n with coefficients in \mathbb{Q}, $p(x)$ can be written as

$$p(x) = \sum_{k=0}^{n} a_k B_k(x). \quad (2.42)$$

Thus, by (2.42), we get

$$a_0 = \int_0^1 p(t)dt = \sum_{\ell=1}^{n-1} \frac{1}{\ell(n-\ell)} \int_0^1 E_{\ell}(t) t^{n-\ell} dt = \sum_{\ell=1}^{n-1} \frac{1}{\ell(n-\ell)} J_{\ell,n-\ell}$$

$$= \frac{1}{n(n^2-1)} \sum_{\ell=1}^{n-1} \sum_{j=1}^{n-\ell} (-1)^{j} \binom{n+1}{j+\ell} E_{\ell+j} + \frac{2(-1)^{n+1}}{n(n^2-1)} E_{n+1} \sum_{\ell=1}^{n-1} (-1)^{\ell}. \quad (2.43)$$

It is easy to show that

$$\sum_{\ell=1}^{n-1} \frac{(-1)^{\ell}}{(n-1)(\frac{n^2}{\ell}-1)} = \sum_{\ell=1}^{n-1} (-1)^{\ell} B(\ell, n-\ell)$$

$$= \left(\frac{4}{n(n+1)(n+2)} - \frac{2(n-1)}{n^2(n+1)^2}\right) E_{n+1}. \quad (2.44)$$

For $k = 1, 2, \ldots, n$, one has

$$a_k = \frac{1}{k!} \left(p^{(k-1)}(1) - p^{(k-1)}(0)\right)$$

$$= \frac{C_{k-1}}{k!} \left(E_{n-k+1}(1) + 1 - E_{n-k+1} - 0^{n-k+1}\right)$$

$$+ \frac{(n-1)\cdots(n-k+1)}{k!} \sum_{\ell=k}^{n-1} \frac{1}{(\ell-k+1)(n-\ell)} \left(E_{\ell-k+1}(1) - E_{\ell-k+1}0^{n-\ell}\right)$$

$$= \frac{1}{k!} C_{k-1}(-2E_{n-k+1} + 1) - \frac{(n-1)\cdots(n-k+1)}{k!} \sum_{\ell=k}^{n-1} \frac{E_{\ell-k+1}}{(\ell-k+1)(n-\ell)}$$

$$= \left(\frac{n}{n-k+1}\right) (H_{n-k} - H_{n-k-1}) (-2E_{n-k+1} + 1) - \left(\frac{n}{n-k+1}\right) \sum_{\ell=k}^{n-1} \frac{E_{\ell-k+1}}{(\ell-k+1)(n-\ell)}.$$

Therefore, by (2.42), (2.44), and (2.45), we obtain the following theorem.
Theorem 2.9. For \(n \in \mathbb{N} \), one has
\[
\sum_{k=1}^{n} \frac{E_k(x)x^{n-k}}{k(n-k)}
\]
\[
= \frac{1}{n(n^2-1)} \sum_{k=1}^{n-1} \frac{(-1)^k}{(\ell+1)} \sum_{k=1}^{n} \frac{n+1}{\ell+1} E_{\ell+j} + \frac{2(-1)^{n+1}}{n(n+1)(n+2)} \left(\frac{4}{n(n+1)(n+2)} - \frac{2(n-1)}{n^2(n+1)^2} \right) E_{n+1}
\]
\[
+ \frac{1}{n} \left(\sum_{k=1}^{n} \left(\frac{n}{k} \right) \frac{H_{n-1} - H_{n-k}}{n-k+1} \right) \left(1 - 2E_{n-k+1} \right) - \frac{1}{n} \sum_{\ell=1}^{n-1} \sum_{k=1}^{n} \frac{E_{\ell-k+1}}{(\ell-k+1)(n-\ell)} B_{k}(x).
\]
(2.46)

We may assume that \(p(x) = \sum_{k=0}^{n}(1/(k(n-k)))E_k(x)x^{n-k} = \sum_{k=0}^{n} b_k E_k(x) \). Then, we note that
\[
b_k = \frac{1}{2k!} \left(p^{(k)}(1) + p^{(k)}(0) \right) \quad (k = 0, 1, 2, \ldots, n-1).
\]
(2.47)

Thus, we have
\[
b_k = \frac{C_k}{2k!} \left\{ E_{n-k}(1) + 1 + E_{n-k} + 0^{n-k} \right\}
\]
\[
+ \frac{1}{2} \sum_{\ell=k+1}^{n-1} \frac{1}{(\ell-k)(n-\ell)} \left\{ E_{\ell-k}(1) + E_{\ell-k} + 0^{n-k} \right\}
\]
\[
= \frac{C_k}{2k!} + \frac{1}{2} \sum_{\ell=k+1}^{n-1} \frac{-E_{\ell-k}}{(\ell-k)(n-\ell)}
\]
\[
= \frac{C_k}{2k!} - \frac{1}{2} \sum_{\ell=k+1}^{n-1} \frac{E_{\ell-k}}{(\ell-k)(n-\ell)}
\]
(2.48)

\[
b_n = \frac{1}{2n!} \left(p^{(n)}(1) + p^{(n)}(0) \right) = \frac{1}{2n!} \left(\frac{2C_{n-1}}{n!} \right) = \frac{2H_{n-1}}{n}.
\]

By the same method, we obtain the following identity:
\[
\sum_{k=1}^{n} \frac{1}{k(n-k)} E_k(x)x^{n-k} = \sum_{k=0}^{n} \left\{ \frac{n}{2k} \binom{n}{k} (H_{n-1} - H_{n-k-1}) - \frac{1}{2} \sum_{\ell=k+1}^{n-1} \frac{E_{\ell-k}}{(\ell-k)(n-\ell)} \right\}
\]
(2.49)
\[
\times E_k(x) + \frac{2}{n} H_n E_n(x).
\]

References

