Research Article

Strong Convergence of a Modified Extragradient Method to the Minimum-Norm Solution of Variational Inequalities

Yonghong Yao,1 Muhammad Aslam Noor,2,3 and Yeong-Cheng Liou4

1 Department of Mathematics, Tianjin Polytechnic University, Tianjin 300387, China
2 Mathematics Department, COMSATS Institute of Information Technology, Islamabad 44000, Pakistan
3 Mathematics Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
4 Department of Information Management, Cheng Shiu University, Kaohsiung 833, Taiwan

Correspondence should be addressed to Yonghong Yao, yaoyonghong@yahoo.cn

Received 18 August 2011; Accepted 14 October 2011

Academic Editor: Khalida Inayat Noor

Copyright © 2012 Yonghong Yao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We suggest and analyze a modified extragradient method for solving variational inequalities, which is convergent strongly to the minimum-norm solution of some variational inequality in an infinite-dimensional Hilbert space.

1. Introduction

Let C be a closed convex subset of a real Hilbert space H. A mapping $A : C \rightarrow H$ is called α-inverse-strongly monotone if there exists a positive real number α such that

$$\langle Au - Av, u - v \rangle \geq \alpha \| Au - Av \|^2, \quad \forall u, v \in C. \quad (1.1)$$

The variational inequality problem is to find $u \in C$ such that

$$\langle Au, v - u \rangle \geq 0, \quad \forall v \in C. \quad (1.2)$$

The set of solutions of the variational inequality problem is denoted by $VI(C, A)$. It is well known that variational inequality theory has emerged as an important tool in studying a wide
Abstract and Applied Analysis

class of obstacle, unilateral, and equilibrium problems, which arise in several branches of pure and applied sciences in a unified and general framework. Several numerical methods have been developed for solving variational inequalities and related optimization problems; see [1–36] and the references therein.

It is well known that variational inequalities are equivalent to the fixed point problem. This alternative formulation has been used to study the existence of a solution of the variational inequality as well as to develop several numerical methods. Using this equivalence, one can suggest the following iterative method.

Algorithm 1.1. For a given \(u_0 \in C \), calculate the approximate solution \(u_{n+1} \) by the iterative scheme

\[
 u_{n+1} = P_C [u_n - \lambda A u_n], \quad n = 0, 1, 2, \ldots
\]

It is well known that the convergence of Algorithm 1.1 requires that the operator \(A \) must be both strongly monotone and Lipschitz continuous. These restrict conditions rules out its applications in several important problems. To overcome these drawbacks, Korpelevič suggested in [8] an algorithm of the form

\[
 y_n = P_C [x_n - \lambda A x_n], \\
 x_{n+1} = P_C [x_n - \lambda A y_n], \quad n \geq 0.
\]

Noor [2] further suggested and analyzed the following new iterative methods for solving the variational inequality (1.2).

Algorithm 1.2. For a given \(u_0 \in C \), calculate the approximate solution \(u_{n+1} \) by the iterative scheme

\[
 w_n = P_C [u_n - \lambda A u_n], \\
 u_{n+1} = P_C [w_n - \lambda A w_n], \quad n = 0, 1, 2, \ldots
\]

which is known as the modified extragradient method. For the convergence analysis of Algorithm 1.2, see Noor [1, 2] and the references therein. We would like to point out that Algorithm 1.2 is quite different from the method of Korpelevič [8]. However, Algorithm 1.2 fails, in general, to converge strongly in the setting of infinite-dimensional Hilbert spaces.

In this paper, we suggest and consider a very simple modified extragradient method which is convergent strongly to the minimum-norm solution of variational inequality (1.2) in an infinite-dimensional Hilbert space. This new method includes the method of Noor [2] as a special case.
2. Preliminaries

Let H be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\| \cdot \|$, and let C be a closed convex subset of H. It is well known that, for any $u \in H$, there exists a unique $u_0 \in C$ such that

$$\|u - u_0\| = \inf\{\|u - x\| : x \in C\}. \quad (2.1)$$

We denote u_0 by $P_C u$, where P_C is called the metric projection of H onto C. The metric projection P_C of H onto C has the following basic properties:

(i) $\|P_C x - P_C y\| \leq \|x - y\|$ for all $x, y \in H$;
(ii) $\langle x - y, P_C x - P_C y \rangle \geq \|P_C x - P_C y\|^2$ for every $x, y \in H$;
(iii) $\langle x - P_C x, y - P_C x \rangle \leq 0$ for all $x \in H, y \in C$.

We need the following lemma for proving our main results.

Lemma 2.1 (see [15]). Assume that $\{\alpha_n\}$ is a sequence of nonnegative real numbers such that

$$\alpha_{n+1} \leq (1 - \gamma_n)\alpha_n + \delta_n, \quad (2.2)$$

where $\{\gamma_n\}$ is a sequence in $(0,1)$ and $\{\delta_n\}$ is a sequence such that

1. $\sum_{n=1}^{\infty} \gamma_n = \infty$;
2. $\limsup_{n \to \infty} \delta_n / \gamma_n \leq 0$ or $\sum_{n=1}^{\infty} |\delta_n| < \infty$.

Then $\lim_{n \to \infty} \alpha_n = 0$.

3. Main Result

In this section we will state and prove our main result.

Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H. Let $A : C \to H$ be an α-inverse-strongly monotone mapping. Suppose that $\text{VI}(C, A) \neq \emptyset$. For given $x_0 \in C$ arbitrarily, define a sequence $\{x_n\}$ iteratively by

$$y_n = P_C[(1 - \alpha_n)(x_n - \lambda Ax_n)],$$

$$x_{n+1} = P_C(y_n - \lambda Ay_n), \quad n \geq 0, \quad (3.1)$$

where $\{\alpha_n\}$ is a sequence in $(0,1)$ and $\lambda \in [a, b] \subset (0, 2\alpha)$ is a constant. Assume the following conditions are satisfied:

(C1) $\lim_{n \to \infty} \alpha_n = 0$;
(C2) $\sum_{n=1}^{\infty} \alpha_n = \infty$;
(C3) $\lim_{n \to \infty} (\alpha_{n+1} / \alpha_n) = 1$.

Then the sequence $\{x_n\}$ generated by (3.1) converges strongly to $P_{\text{VI}(C, A)}(0)$ which is the minimum-norm element in $\text{VI}(C, A)$.
We will divide our detailed proofs into several conclusions.

Proof. Take \(x^* \in \text{VI}(C, A) \). First we need to use the following facts:

1. \(x^* = P_C(x^* - \lambda Ax^*) \) for all \(\lambda > 0 \); in particular,
 \[
 x^* = P_C[x^* - \lambda(1 - \alpha_n)Ax^*] = P_C[\alpha_n x^* + (1 - \alpha_n)(x^* - \lambda Ax^*)], \quad \forall n \geq 0;
 \tag{3.2}
 \]

2. \(I - \lambda A \) is nonexpansive and for all \(x, y \in C \)
 \[
 \| (I - \lambda A)x - (I - \lambda A)y \|^2 \leq \| x - y \|^2 + \lambda(\lambda - 2\alpha_1)\|Ax - Ay\|^2.
 \tag{3.3}
 \]

From (3.1), we have
\[
\begin{align*}
\| y_n - x^* \| & = \| P_C[(1 - \alpha_n)(x_n - \lambda Ax_n)] - P_C[\alpha_n x^* + (1 - \alpha_n)(x^* - \lambda Ax^*)] \| \\
& \leq \| \alpha_n(-x^*) + (1 - \alpha_n)[(x_n - \lambda Ax_n) - (x^* - \lambda Ax^*)] \| \\
& \leq \alpha_n\| x^* \| + (1 - \alpha_n)(I - \lambda A)x_n - (I - \lambda A)x^* \\
& \leq \alpha_n\| x^* \| + (1 - \alpha_n)\| x_n - x^* \|.
\end{align*}
\]

Thus,
\[
\begin{align*}
\| x_{n+1} - x^* \| & = \| P_C(y_n - \lambda Ay_n) - P_C(x^* - \lambda Ax^*) \| \\
& \leq \| (y_n - \lambda Ay_n) - (x^* - \lambda Ax^*) \| \\
& \leq \| y_n - x^* \| \\
& \leq \alpha_n\| x^* \| + (1 - \alpha_n)\| x_n - x^* \| \\
& \leq \max\{\| x^* \|, \| x_0 - x^* \| \}.
\end{align*}
\]

Therefore, \(\{ x_n \} \) is bounded and so are \(\{ y_n \}, \{ Ax_n \}, \text{ and } \{ Ay_n \} \).

From (3.1), we have
\[
\begin{align*}
\| x_{n+1} - x_n \| & = \| P_C(y_n - \lambda Ay_n) - P_C(y_{n-1} - \lambda Ay_{n-1}) \| \\
& \leq \| (y_n - \lambda Ay_n) - (y_{n-1} - \lambda Ay_{n-1}) \| \\
& \leq \| y_n - y_{n-1} \| \\
& = \| P_C[(1 - \alpha_n)(x_n - \lambda Ax_n)] - P_C[(1 - \alpha_{n-1})(x_{n-1} - \lambda Ax_{n-1})] \| \\
& \leq \| (1 - \alpha_n)[(I - \lambda A)x_n - (I - \lambda A)x_{n-1}] - (\alpha_n - \alpha_{n-1})(I - \lambda A)x_{n-1} \| \\
& \leq (1 - \alpha_n)(I - \lambda A)x_n - (I - \lambda A)x_{n-1} \| + |\alpha_n - \alpha_{n-1}|M, \\
& \leq (1 - \alpha_n)\| x_n - x_{n-1} \| + |\alpha_n - \alpha_{n-1}|M,
\end{align*}
\]
where $M > 0$ is a constant such that $\sup_{n} \{ ||(I - \lambda A)x_n||, ||(I - \lambda A)x_n|| \} < M$. Hence, by Lemma 2.1, we obtain

$$\lim_{n \to \infty} ||x_{n+1} - x_n|| = 0. \tag{3.7}$$

From (3.4), (3.5) and the convexity of the norm, we deduce

$$\|x_{n+1} - x^*\|^2 \leq \|\alpha_n (x^* - 1) - (x^* - \alpha_n A x_n)\|^2$$

$$\leq \alpha_n \|x^*\|^2 + (1 - \alpha_n) \| (I - \lambda A)x_n - (I - \lambda A)x^* \|^2$$

$$\leq \alpha_n \|x^*\|^2 + (1 - \alpha_n) \left[\|x_n - x^*\|^2 + \lambda (\lambda - 2\alpha) \|A x_n - A x^*\|^2 \right]$$

$$\leq \alpha_n \|x^*\|^2 + \|x_n - x^*\|^2 + (1 - \alpha_n) a (b - 2\alpha) \|A x_n - A x^*\|^2. \tag{3.8}$$

Therefore, we have

$$(1 - \alpha_n) a (2\alpha - b) \|A x_n - A x^*\|^2 \leq \alpha_n \|x_n - x^*\|^2 + \|x_n - x^*\|^2 - \|x_{n+1} - x^*\|^2$$

$$\leq \alpha_n \|x^*\|^2 + (\|x_n - x^*\|^2 + \|x_{n+1} - x^*\|^2) \times \|x_n - x_{n+1}\|. \tag{3.9}$$

Since $\alpha_n \to 0$ and $\|x_n - x_{n+1}\| \to 0$ as $n \to \infty$, we obtain $\|A x_n - A x^*\| \to 0$ as $n \to \infty$. By the property (ii) of the metric projection P_C, we have

$$\|y_n - x^*\|^2 = \|P_C [(1 - \alpha_n)(x_n - \lambda A x_n) - P_C (x^* - \lambda A x^*)\|^2$$

$$\leq \langle [(1 - \alpha_n)(x_n - \lambda A x_n) - (x^* - \lambda A x^*)], y_n - x^* \rangle$$

$$= \frac{1}{2} \left\{ \| (x_n - \lambda A x_n) - (x^* - \lambda A x^*) - \alpha_n (I - \lambda A) x_n \|^2 + \| y_n - x^* \|^2$$

$$- \| (x_n - \lambda A x_n) - (x^* - \lambda A x^*) - (y_n - x^*) - \alpha_n (I - \lambda A) x_n \|^2 \right\}$$

$$\leq \frac{1}{2} \left\{ \| (x_n - \lambda A x_n) - (x^* - \lambda A x^*) \|^2 + \alpha_n M + \| y_n - x^* \|^2$$

$$- \| (x_n - y_n) - \lambda (A x_n - A x^*) - \alpha_n (I - \lambda A) x_n \|^2 \right\}$$

$$\leq \frac{1}{2} \left\{ \| x_n - x^* \|^2 + \alpha_n M + \| y_n - x^* \|^2 - \| x_n - y_n \|^2$$

$$+ 2 \lambda \langle x_n - y_n, A x_n - A x^* \rangle + 2 \alpha_n (I - \lambda A) x_n - y_n \rangle$$

$$- \| \lambda (A x_n - A x^*) + \alpha_n (I - \lambda A) x_n \|^2 \right\}$$

$$\leq \frac{1}{2} \left\{ \| x_n - x^* \|^2 + \alpha_n M + \| y_n - x^* \|^2 - \| x_n - y_n \|^2$$

$$+ 2 \lambda \| x_n - y_n \| \| A x_n - A x^* \| + 2 \alpha_n \| (I - \lambda A) x_n \| \| x_n - y_n \| \right\}. \tag{3.10}$$
It follows that
\[\| y_n - x^* \|^2 \leq \| x_n - x^* \|^2 + \alpha_n M - \| x_n - y_n \|^2 \]
\[+ 2\lambda \| x_n - y_n \| \| Ax_n - Ax^* \| + 2\alpha_n \| (I - \lambda A)x_n \| \| x_n - y_n \|, \]
(3.11)
and hence
\[\| x_{n+1} - x^* \|^2 \leq \| y_n - x^* \|^2 \]
\[\leq \| x_n - x^* \|^2 + \alpha_n M - \| x_n - y_n \|^2 + 2\lambda \| x_n - y_n \| \| Ax_n - Ax^* \| \]
\[+ 2\alpha_n \| (I - \lambda A)x_n \| \| x_n - y_n \|, \]
(3.12)
which implies that
\[\| x_n - y_n \|^2 \leq (\| x_n - x^* \| + \| x_{n+1} - x^* \|) \| x_{n+1} - x_n \| + \alpha_n M + 2\lambda \| x_n - y_n \| \| Ax_n - Ax^* \| \]
\[+ 2\alpha_n \| (I - \lambda A)x_n \| \| x_n - y_n \|. \]
(3.13)
Since \(\alpha_n \to 0 \), \(\| x_n - x_{n+1} \| \to 0 \), and \(\| Ax_n - Ax^* \| \to 0 \), we derive \(\| x_n - y_n \| \to 0 \).

Next we show that
\[\limsup_{n \to \infty} \langle z_0, z_0 - y_n \rangle \leq 0, \]
(3.14)
where \(z_0 = P_{VI(C,A)}(0) \). To show it, we choose a subsequence \(\{ y_{n_i} \} \) of \(\{ y_n \} \) such that
\[\limsup_{n \to \infty} \langle z_0, z_0 - y_n \rangle = \lim_{i \to \infty} \langle z_0, z_0 - y_{n_i} \rangle. \]
(3.15)
As \(\{ y_n \} \) is bounded, we have that a subsequence \(\{ y_{n_i} \} \) of \(\{ y_n \} \) converges weakly to \(z \).

Next we show that \(z \in VI(C,A) \). We define a mapping \(T \) by
\[Tv = \begin{cases}
Av + N_C v, & v \in C, \\
\emptyset, & v \notin C.
\end{cases} \]
(3.16)
Then \(T \) is maximal monotone (see [16]). Let \((v,w) \in G(T) \). Since \(w - Av \in N_C v \) and \(y_n \in C \), we have \(\langle v - y_n, w - Av \rangle \geq 0 \). On the other hand, from \(y_n = P_{C}[(1 - \alpha_n)(x_n - \lambda Ax_n)] \), we have
\[\langle v - y_n, y_n - (1 - \alpha_n)(x_n - \lambda Ax_n) \rangle \geq 0, \]
(3.17)
that is,
\[\left\langle v - y_n, \frac{y_n - x_n}{\lambda} + Ax_n + \frac{\alpha_n}{\lambda}(I - \lambda A)x_n \right\rangle \geq 0. \]
Therefore, we have
\[
\langle v - y_n, w \rangle \geq \langle v - y_n, Av \rangle
\]
\[
\geq \langle v - y_n, Av \rangle - \left(v - y_n, \frac{y_n - x_n}{\lambda} + Ax_n + \frac{\alpha_n}{\lambda} (I - \lambda A)x_n \right)
\]
\[
= \langle v - y_n, Av - Ax_n - \frac{y_n - x_n}{\lambda} - \frac{\alpha_n}{\lambda} (I - \lambda A)x_n \rangle
\]
\[
= \langle v - y_n, Av - Ay_n \rangle + \langle v - y_n, Ay_n - Ax_n \rangle
\]
\[
- \left(v - y_n, \frac{y_n - x_n}{\lambda} + \frac{\alpha_n}{\lambda} (I - \lambda A)x_n \right)
\]
\[
\geq \langle v - y_n, Ay_n - Ax_n \rangle - \left(v - y_n, \frac{y_n - x_n}{\lambda} + \frac{\alpha_n}{\lambda} (I - \lambda A)x_n \right).
\]
(3.19)

Noting that \(\alpha_n \to 0, \| y_n - x_n \| \to 0 \), and \(A \) is Lipschitz continuous, we obtain \(\langle v - z, w \rangle \geq 0 \). Since \(T \) is maximal monotone, we have \(z \in T^{-1}(0) \), and hence \(z \in VI(C, A) \). Therefore,
\[
\limsup_{n \to \infty} \langle z_0, z_0 - y_n \rangle = \lim_{i \to \infty} \langle z_0, z_0 - y_n \rangle = \langle z_0, z_0 - z \rangle \leq 0.
\]
(3.20)

Finally, we prove \(x_n \to z_0 \). By the property (ii) of metric projection \(P_C \), we have
\[
\| y_n - z_0 \|^2 = \| P_C[(1 - \alpha_n)(x_n - \lambda Ax_n)] - P_C[\alpha_n z_0 + (1 - \alpha_n)(z_0 - \lambda Az_0)] \|^2
\]
\[
\leq \langle \alpha_n(-z_0) + (1 - \alpha_n)(x_n - \lambda Ax_n) - (z_0 - \lambda Az_0), y_n - z_0 \rangle
\]
\[
\leq \alpha_n \langle z_0, z_0 - y_n \rangle + (1 - \alpha_n) \| (x_n - \lambda Ax_n) - (z_0 - \lambda Az_0) \| \| y_n - z_0 \|
\]
\[
\leq \alpha_n \langle z_0, z_0 - y_n \rangle + (1 - \alpha_n) \| x_n - z_0 \| \| y_n - z_0 \|
\]
\[
\leq \alpha_n \langle z_0, z_0 - y_n \rangle + \frac{1 - \alpha_n}{2} \left(\| x_n - z_0 \|^2 + \| y_n - z_0 \|^2 \right).
\]
(3.21)

Hence,
\[
\| y_n - z_0 \|^2 \leq (1 - \alpha_n) \| x_n - z_0 \|^2 + 2\alpha_n \langle z_0, z_0 - y_n \rangle.
\]
(3.22)

Therefore,
\[
\| x_{n+1} - z_0 \|^2 \leq \| y_n - z_0 \|^2 \leq (1 - \alpha_n) \| x_n - z_0 \|^2 + 2\alpha_n \langle z_0, z_0 - y_n \rangle.
\]
(3.23)

We apply Lemma 2.1 to the last inequality to deduce that \(x_0 \to z_0 \). This completes the proof.

\[\Box \]

Remark 3.2. Our Algorithm (3.1) is similar to Noor’s modified extragradient method; see [2]. However, our algorithm has strong convergence in the setting of infinite-dimensional Hilbert spaces.
Acknowledgments

Y. Yao was supported in part by Colleges and Universities Science and Technology Development Foundation (20091003) of Tianjin, NSFC 11071279 and NSFC 71161001-G0105. Y.-C. Liou was partially supported by the Program TH-1-3, Optimization Lean Cycle, of Sub-Projects TH-1 of Spindle Plan Four in Excellence Teaching and Learning Plan of Cheng Shiu University and was supported in part by NSC 100-2221-E-230-012.

References

Abstract and Applied Analysis

Submit your manuscripts at
http://www.hindawi.com