Research Article

An Approximation of Ultra-Parabolic Equations

Allaberen Ashyralyev\(^1\),\(^2\) and Serhat Yılmaz\(^1\)

\(^1\) Department of Mathematics, Fatih University, Istanbul, Turkey
\(^2\) Department of Mathematics, ITTU, Ashgabat, Turkmenistan, Turkey

Correspondence should be addressed to Serhat Yılmaz, serhatyilmaz@fatih.edu.tr

Received 7 February 2012; Accepted 3 April 2012

Academic Editor: Hasan Ali Yurtsever

Copyright © 2012 A. Ashyralyev and S. Yılmaz. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The first and second order of accuracy difference schemes for the approximate solution of the initial boundary value problem for ultra-parabolic equations are presented. Stability of these difference schemes is established. Theoretical results are supported by the result of numerical examples.

1. Introduction

Mathematical models that are formulated in terms of ultraparabolic equations are of great importance in various problems for instance in age-dependent population model, in the mathematical model of Brownian motion, in the theory of boundary layers, and so forth, see [1–5]. We refer also to [6–9] and the references therein for existence and uniqueness results and other properties of these models. On the other hand, Akrivis et al. [10] and Ashyralyev and Yılmaz [11, 12] developed numerical methods for ultraparabolic equations. In this paper, our interest is studying the stability of first- and second-order difference schemes for the approximate solution of the initial boundary value problem for ultraparabolic equations

\[
\frac{\partial u(t, s)}{\partial t} + \frac{\partial u(t, s)}{\partial s} + Au(t, s) = f(t, s), \quad 0 < t, s < T,
\]

\[
u(0, s) = \varphi(s), \quad 0 \leq s \leq T,
\]

\[
u(t, 0) = \varphi(t), \quad 0 \leq t \leq T,
\]
in an arbitrary Banach space E with a strongly positive operator A. For approximately solving problem (1.1), the first-order of accuracy difference scheme

\[
\frac{u_{k,m} - u_{k-1,m}}{\tau} + \frac{u_{k-1,m} - u_{k-1,m-1}}{\tau} + Au_{k,m} = f_{k,m},
\]

\[
f_{k,m} = f(t_k, s_m), \quad t_k = k\tau, \quad s_m = m\tau, \quad 1 \leq k, m \leq N, \quad N \tau = 1,
\]

\[
u_{0,m} = \psi_m, \quad 0 \leq m \leq N, \quad u_{k,0} = \varphi_k, \quad 0 \leq k \leq N
\]

and second-order of accuracy difference scheme

\[
\frac{u_{k,m} - u_{k-1,m}}{\tau} + \frac{u_{k-1,m} - u_{k-1,m-1}}{\tau} + \frac{1}{2}A(u_{k,m} + u_{k-1,m-1}) = f_{k,m},
\]

\[
f_{k,m} = f\left(t_k - \frac{\tau}{2}, s_m - \frac{\tau}{2}\right), \quad t_k = k\tau, \quad s_m = m\tau, \quad 1 \leq k, m \leq N, \quad N \tau = 1,
\]

\[
u_{0,m} = \psi_m, \quad 0 \leq m \leq N, \quad u_{k,0} = \varphi_k, \quad 0 \leq k \leq N
\]

are presented. The stability estimates for the solution of difference schemes (1.2) and (1.3) are established. In applications, the stability in maximum norm of difference schemes for multidimensional ultraparabolic equations with Dirichlet condition is established. Applying the difference schemes, the numerical methods are proposed for solving one-dimensional ultraparabolic equations.

Theorem 1.1. For the solution of (1.2), we have the following stability inequality:

\[
\max_{1 \leq k \leq N} \max_{1 \leq m \leq N} \|u_{k,m}\|_E \leq C \left(\max_{0 \leq m \leq N} \|\psi_m\|_E + \max_{0 \leq k \leq N} \|\varphi_k\|_E + \max_{1 \leq k \leq N, 1 \leq m \leq N} \|f_{k,m}\|_E \right),
\]

where C is independent of τ, ψ_m, φ_k, and $f_{k,m}$.

Proof. Using (1.2), we get

\[
\frac{u_{k,m} - u_{k-1,m}}{\tau} + Au_{k,m} = f_{k,m},
\]

From that it follows

\[
u_{k,m} = Ru_{k-1,m-1} + \tau Rf_{k,m},
\]

where $R = (I + \tau A)^{-1}$. By the mathematical induction, we will prove that

\[
u_{k,m} = R^n u_{k-n,m-n} + \sum_{j=1}^{n} \tau R^{n-j+1} f_{k-n+j,m-n+j}
\]
is true for all positive integers \(n \). It is obvious that for \(n = 1, 2 \) formula (1.7) is true. Assume that for \(n = r \)

\[
u_{k,m} = R^r u_{k-r,m-r} + \sum_{j=1}^{r} \tau R^{r-j+1} f_{k-r+j,m-r+j}
\]

(1.8)

is true. In formula (1.6), replacing \(k \) and \(m \) with \(k - r \) and \(m - r \), respectively, we have

\[
u_{k-r,m-r} = Ru_{k-r-1,m-r-1} + \tau R f_{k-r,m-r}.
\]

(1.9)

Then, using (1.8) and (1.9), we get

\[
u_{k,m} = R^{r+1} u_{k-r-1,m-r-1} + \tau R^{r+1} f_{k-r,m-r} + \sum_{j=1}^{r} \tau R^{r-j+1} f_{k-r+j,m-r+j}.
\]

(1.10)

From that it follows

\[
u_{k,m} = R^{r+1} u_{k-r-1,m-r-1} + \sum_{j=1}^{r+1} \tau R^{r-j+2} f_{k-r+1,m-r-1+j}.
\]

(1.11)

is true for \(n = r + 1 \). So, formula (1.7) is proved. For \(m > k \), replacing \(n \) with \(k \) in formula (1.7), we obtain that

\[
u_{k,m} = R^k \psi_{m-k} + \sum_{j=1}^{k} \tau R^{k-j+1} f_{j,m-k+j}.
\]

(1.12)

Using estimate (see [13])

\[
\|R^k\|_{E \rightarrow E} \leq M
\]

(1.13)

and triangle inequality, we get

\[
\|u_{k,m}\|_E \leq \|R^k\|_{E \rightarrow E} \|\psi_{m-k}\|_E + \sum_{j=1}^{k} \|R^{k-j+1}\|_{E \rightarrow E} \|f_{j,m-k+j}\|_E
\]

\[
\leq M \left[\max_{0 \leq k, m \leq N} \|\psi_{m-k}\| + \max_{1 \leq j \leq N, 1 \leq m \leq N} \|f_{j,m}\| \right]
\]

(1.14)

for any \(k \) and \(m \). For \(k > m \), replacing \(n \) with \(m \) in formula (1.7), we get

\[
u_{k,m} = R^m \psi_{k-m} + \sum_{j=1}^{m} \tau R^{m-j+1} f_{k-m+j,j}.
\]

(1.15)
From estimate (1.13) and triangle inequality, it follows that
\[
\|u_{k,m}\|_E \leq \|R^m\|_{E \rightarrow E}\|\varphi_{k-m}\|_E + \sum_{j=1}^{m} \tau \|R^{m-j+1}\|_{E \rightarrow E}\|f_{k-m+j}\|_E
\]
\[
\leq M \left[\max_{0 \leq k, m \leq N} \|\varphi_{k-m}\| + \max_{1 \leq j \leq N} \max_{1 \leq m \leq N} \|f_{j,m}\| \right]
\] (1.16)
for any \(k \) and \(m \). Thus, Theorem 1.1 is proved. \(\Box \)

Theorem 1.2. For the solution of (1.3), we have the following stability inequality:
\[
\max_{1 \leq k \leq N} \max_{1 \leq m \leq N} \left\| \frac{u_{k,m} + u_{k-1,m}}{2} \right\|_E + \max_{1 \leq k \leq N} \max_{1 \leq m \leq N} \left\| \frac{u_{k,m} + u_{k,m-1}}{2} \right\|_E
\]
\[
\leq C \left(\max_{0 \leq m \leq N} \|\varphi_m\|_E + \max_{0 \leq k \leq N} \|\varphi_k\|_E + \max_{1 \leq k \leq N} \max_{1 \leq m \leq N} \|f_{k,m}\|_E \right),
\] (1.17)
where \(C \) is independent of \(\tau, \varphi_m, \varphi_k, \) and \(f_{k,m} \).

The proof of Theorem 1.2 is based on the following formulas:
\[
u_{k,m} = Bu_{k-1,m-1} + \tau BC f_{k,m},
\]
\[
u_{k,m} = B^k \varphi_{m-k} + \sum_{j=1}^{k} \tau B^{k-j} C f_{j,m-k+j}, \quad m > k,
\] (1.18)
\[
u_{k,m} = B^m \varphi_{k-m} + \sum_{j=1}^{m} \tau B^{m-j} C f_{k-m+j}, \quad k > m
\]
for the solution of difference scheme (1.3) and the following estimate [14]:
\[
\|B^k C\|_{E \rightarrow E} \leq M,
\] (1.19)
where \(B = (I - \tau A/2)(I + \tau A/2)^{-1} \) and \(C = (I + \tau A/2)^{-1} \).

2. Application

Let \(\Omega \) be the unit open cube in the \(n \)-dimensional Euclidean space \(\mathbb{R}^n \) \((0 < x_k < 1, 1 \leq k \leq n)\) with boundary \(S, \quad \overline{\Omega} = \Omega \cup S \). In \([0,1] \times [0,1] \times \overline{\Omega}\), we consider the boundary-value problem for the multidimensional parabolic equation
\[
\frac{\partial u(t,s,x)}{\partial t} + \frac{\partial u(t,s,x)}{\partial s} - \sum_{r=1}^{n} a_r(x) \frac{\partial^2 u(t,s,x)}{\partial x_r^2} + \partial u(t,s,x) = f(t,s,x),
\]
\[
x = (x_1, \ldots, x_n) \in \Omega, \quad 0 < t, s < 1,
\] (2.1)
\[
u(0,s,x) = \varphi(s,x), \quad s \in [0,1], \quad \nu(t,0,x) = \varphi(t,x), \quad t \in [0,1], \quad x \in \overline{\Omega},
\]
\[
u(t,s,x) = 0, \quad t, s \in [0,1], \quad x \in \overline{S},
\]
where $\alpha_r(x) > a > 0$ ($x \in \Omega$) and $f(t,s,x) \ (t,s \in (0,1), x \in \Omega)$ are given smooth functions and $\delta > 0$ is a sufficiently large number.

We introduce the Banach spaces $C_{01}^\beta(\overline{\Omega})$ ($\beta = (\beta_1, \ldots, \beta_n)$, $0 < x_k < 1$, $k = 1, \ldots, n$) of all continuous functions satisfying a Hölder condition with the indicator $\beta = (\beta_1, \ldots, \beta_n)$, $\beta_k \in (0,1)$, $1 \leq k \leq n$, and with weight $x_k^\beta(1 - x_k - h_k)^\beta$, $0 \leq x_k < x_k + h_k \leq 1$, $1 \leq k \leq n$, which is equipped with the norm

$$
\|f\|_{C_{01}^\beta(\overline{\Omega})} = \|f\|_{C(\overline{\Omega})} + \sup_{0 \leq x \leq 1} |f(x_1, \ldots, x_n) - f(x_1 + h_1, \ldots, x_n + h_n)|
$$

$$
\times \prod_{k=1}^n h_k^{-\beta_k} x_k^\beta (1 - x_k - h_k)^\beta,
$$

where $C(\overline{\Omega})$ stands for the Banach space of all continuous functions defined on $\overline{\Omega}$, equipped with the norm

$$
\|f\|_{C(\overline{\Omega})} = \max_{x \in \overline{\Omega}} |f(x)|.
$$

It is known that the differential expression

$$
Av = -\sum_{r=1}^n \alpha_r(x) \frac{\partial^2 v(t,s,x)}{\partial x^2} + \delta v(t,s,x)
$$

defines a positive operator A acting on $C_{01}^\beta(\overline{\Omega})$ with domain $D(A) \subset C_{01}^{\beta_1}(\overline{\Omega})$ and satisfying the condition $v = 0$ on $\partial\Omega$.

The discretization of problem (2.1) is carried out in two steps. In the first step, let us define the grid sets

$$
\tilde{\Omega}_h = \{x = x_m = (h_1 m_1, \ldots, h_n m_n), \ m = (m_1, \ldots, m_n),
$$

$$
0 \leq m_r \leq N_r, \ h_r N_r = L, \ r = 1, \ldots, n\},
$$

$$
\Omega_h = \tilde{\Omega}_h \cap \Omega, \ \ S_h = \tilde{\Omega}_h \cap S.
$$

We introduce the Banach spaces $C_h = C_h(\tilde{\Omega}_h)$, $C_{01}^\beta(\tilde{\Omega}_h)$ of grid functions $\varphi^h(x) = \{\varphi(h_1 m_1, \ldots, h_n m_n)\}$ defined on Ω_h, equipped with the norms

$$
\|\varphi^h\|_{C_h(\tilde{\Omega}_h)} = \max_{x \in \tilde{\Omega}_h} |\varphi^h(x)|,
$$

$$
\|\varphi^h\|_{C_{01}^\beta(\tilde{\Omega}_h)} = \|\varphi^h\|_{C(\tilde{\Omega}_h)} + \sup_{0 \leq x \leq 1} |\varphi^h(x_1, \ldots, x_n) - \varphi^h(x_1 + h_1, \ldots, x_n + h_n)|
$$

$$
\times \prod_{k=1}^n h_k^{-\beta_k} x_k^\beta (1 - x_k - h_k)^\beta.
$$
To the differential operator A generated by problem (2.1), we assign the difference operator A_{h}^{x} by the formula

$$A_{h}^{x}u_{x}^{h} = - \sum_{r=1}^{n} a_{r}(x) \left(u_{x}^{h} \right)_{s_{r}j},$$

(2.7)

acting in the space of grid functions $u^{h}(x)$, satisfying the condition $u^{h}(x) = 0$ for all $x \in S_{h}$. With the help of A_{h}^{x}, we arrive at the initial boundary-value problem

$$\frac{\partial u^{h}(t, s, x)}{\partial t} + \frac{\partial u^{h}(t, s, x)}{\partial s} + A_{h}^{x}u^{h}(t, s, x) = f^{h}(t, s, x), \quad 0 < t, s < 1, \quad x \in \Omega_{h},$$

$$u^{h}(0, s, x) = \psi^{h}(s, x), \quad 0 \leq s \leq 1, \quad u^{h}(t, 0, x) = \psi^{h}(t, x), \quad 0 \leq t \leq 1, \quad x \in \tilde{\Omega}_{h}$$

(2.8)

for an infinite system of ordinary differential equations.

In the second step, we replace problem (2.8) by difference scheme(1.2)

$$\frac{u_{k,m}^{h} - u_{k-1,m}^{h}}{\tau} + \frac{u_{k-1,m}^{h} - u_{k-1,m-1}^{h}}{\tau} + A_{h}^{x}u_{k,m}^{h} = f_{k,m}^{h}(x), \quad x \in \Omega_{h},$$

$$f_{k,m}^{h}(x) = f^{h}(t_{k}, s_{m}, x), \quad t_{k} = k\tau, \quad s_{m} = m\tau, \quad 1 \leq k, m \leq N, \quad x \in \tilde{\Omega}_{h},$$

$$u_{0,m}^{h} = \psi_{m}^{h}, \quad 0 \leq m \leq N, \quad u_{k,0}^{h} = \psi_{k}^{h}, \quad 0 \leq k \leq N,$$

(2.9)

and by difference scheme(1.3)

$$\frac{u_{k,m}^{h} - u_{k-1,m}^{h}}{\tau} + \frac{u_{k-1,m}^{h} - u_{k-1,m-1}^{h}}{\tau} + \frac{1}{2} A_{h}^{x}(u_{k,m}^{h} + u_{k-1,m-1}^{h}) = f_{k,m}^{h}(x), \quad x \in \Omega_{h},$$

$$f_{k,m}^{h}(x) = f^{h}(t_{k} - \frac{\tau}{2}, s_{m} - \frac{\tau}{2}, x), \quad t_{k} = k\tau, \quad s_{m} = m\tau, \quad 1 \leq k, m \leq N, \quad x \in \tilde{\Omega}_{h},$$

$$u_{0,m}^{h} = \psi_{m}^{h}, \quad 0 \leq m \leq N, \quad u_{k,0}^{h} = \psi_{k}^{h}, \quad 0 \leq k \leq N.$$

(2.10)

It is known that A_{h}^{x} is a positive operator in $C(\tilde{\Omega}_{h})$ and $C_{01}(\tilde{\Omega}_{h})$. Let us give a number of corollaries of Theorems 1.1 and 1.2.

Theorem 2.1. For the solution of difference scheme (2.9), we have the following stability inequality:

$$\max_{1 \leq k \leq N} \max_{0 \leq m \leq N} \left\| u_{k,m}^{h} \right\|_{C(\tilde{\Omega}_{h})} \leq C_{1} \left(\max_{0 \leq m \leq N} \left\| \psi_{m}^{h} \right\|_{C(\tilde{\Omega}_{h})} + \max_{0 \leq k \leq N} \left\| \psi_{k}^{h} \right\|_{C(\tilde{\Omega}_{h})} + \max_{1 \leq k \leq N} \max_{1 \leq m \leq N} \left\| f_{k,m}^{h} \right\|_{C(\tilde{\Omega}_{h})} \right),$$

(2.11)

where C_{1} is independent of τ, ψ_{m}^{h}, ψ_{k}^{h}, and $f_{k,m}^{h}$.
Theorem 2.2. For the solution of difference scheme (2.10), we have the following stability inequality:

$$
\max_{1 \leq k \leq N} \max_{1 \leq m \leq N} \left\| \frac{u_{k,m}^h - u_{k-1,m-1}^h}{\tau} \right\|_{C(\tilde{\Omega}_h)} \\
\leq C_1 \left(\max_{0 \leq m \leq N} \left\| \psi_m^h \right\|_{C(\tilde{\Omega}_h)} + \max_{0 \leq k \leq N} \left\| \psi_k^h \right\|_{C(\tilde{\Omega}_h)} + \max_{1 \leq k \leq N} \max_{1 \leq m \leq N} \left\| f_{k,m}^h \right\|_{C(\tilde{\Omega}_h)} \right),
$$

(2.12)

where C_1 does not depend on τ, ψ_m^h, ψ_k^h, and $f_{k,m}^h$.

3. Numerical Analysis

In this section, the initial boundary value problem

$$
\frac{\partial u(s, t, x)}{\partial t} + \frac{\partial u(s, t, x)}{\partial s} - \frac{\partial^2 u(s, t, x)}{\partial x^2} + 2u(t, s, x) = f(t, s, x),
$$

with

$$
f(t, s, x) = e^{-(t+s)} \sin \pi x, \quad 0 < t < 1, \quad 0 < x < 1,
$$

$$
u(0, t, x) = e^{-t} \sin \pi x, \quad 0 < t < 1, \quad 0 < x < 1,
$$

$$
u(s, 0, x) = e^{-s} \sin \pi x, \quad 0 < s < 1, \quad 0 < x < 1,
$$

$$
u(s, t, 0) = u(s, t, \pi) = 0, \quad 0 < s, t < 1
$$

for one-dimensional ultraparabolic equations is considered.

The exact solution of problem (3.1) is

$$
u(t, s, x) = e^{-(t+s)} \sin \pi x.
$$

(3.2)

Using the first order of accuracy in t and s implicit difference scheme (2.9), we obtain the difference scheme first order of accuracy in t and s and second-order of accuracy in x
for approximate solutions of initial boundary value problem (3.3). It can be written in the matrix form

\[Au_{n+1} + Bu_n + Cu_{n-1} = \varphi_n, \quad 1 \leq n \leq M - 1, \]
\[u_0 = \vec{0}, \quad u_M = \vec{0}. \] (3.4)

Here

\[
A = \begin{bmatrix}
0 & \cdots & 0 & 0 \\
0 & \cdots & 0 & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & a_0 & 0 \\
0 & \cdots & a_0 & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & a
\end{bmatrix}_{(N+1)^2 \times (N+1)^2},
\]

\[
B = \begin{bmatrix}
1 & 0 & \cdots & \cdots & 0 & 0 & 0 \\
0 & 1 & 0 & \cdots & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & \cdots & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & b & 0 & \cdots & c & d & 0 & \cdots & 0 \\
0 & 0 & b & 0 & \cdots & c & d & 0 & \cdots \\
\vdots & \ddots \\
0 & 0 & \cdots & 0 & b & 0 & \cdots & c & d
\end{bmatrix}_{(N+1)^2 \times (N+1)^2},
\]

\[
C = \begin{bmatrix}
0 & \cdots & 0 & 0 \\
0 & \cdots & 0 & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & a & 0 \\
0 & \cdots & a & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & a
\end{bmatrix}_{(N+1)^2 \times (N+1)^2},
\]

where

\[
a = -\frac{1}{h^2}, \quad b = -\frac{1}{\tau}, \quad c = -\frac{1}{\tau}, \quad d = \frac{1}{\tau} + \frac{1}{\tau} + \frac{2}{h^2} + 2.
\]
\[\varphi_n = \begin{bmatrix} \varphi_{n}^{0,0} \\
1,0 \\
\vdots \\
N,0 \\
\varphi_{n}^{0,1} \\
\varphi_{n}^{1,1} \\
\vdots \\
\varphi_{n}^{N,N} \end{bmatrix}, \quad \varphi_{n}^{k,m} = f(t_k, s_m, x_n) = e^{-\left(t_k + s_m\right)} \sin x_n, \]

\[u_n = \begin{bmatrix} u_{n}^{0,0} \\
1,0 \\
\vdots \\
N,0 \\
\varphi_{n}^{0,1} \\
\varphi_{n}^{1,1} \\
\vdots \\
\varphi_{n}^{N,N} \end{bmatrix}, \quad (N+1)^2 \times 1 \]
This type system was used by Samarskii and Nikolaev [15] for difference equations. For the solution of matrix equation (3.4), we will use the modified Gauss elimination method. We seek a solution of the matrix equation by the following form:

\[u_n = \alpha_{n+1} u_{n+1} + \beta_{n+1}, \quad n = M - 1, \ldots, 2, 1, \tag{3.7} \]

where \(u_M = 0 \), \(\alpha_j (j = 1, \ldots, M-1) \) are \((N + 1)^2 \times (N + 1)^2\) square matrices, \(\beta_j (j = 1, \ldots, M-1) \) are \((N + 1)^2 \times 1\) column matrices, \(\alpha_1, \beta_1 \) are zero matrices, and

\[\alpha_{n+1} = -(B + Ca_n)^{-1} A, \]
\[\beta_{n+1} = (B + Ca_n)^{-1} (\psi_n - C\beta_n), \quad n = 1, 2, 3, \ldots, (M - 1). \tag{3.8} \]

Using the second-order of accuracy in \(t \) and \(s \) implicit difference scheme (2.10), we obtain the difference scheme second-order of accuracy in \(t \) and \(s \) and second-order of accuracy in \(x \)

\[\frac{u_{n+1}^{k,m} - u_n^{k,m}}{\tau} - \frac{u_n^{k-1,m} - u_n^{k-1,m-1}}{\tau} - \frac{1}{2} \left[\frac{u_{n+1}^{k,m} - 2u_n^{k,m} + u_{n-1}^{k,m}}{h^2} + 2u_n^{k,m} + \frac{u_{n+1}^{k-1,m} - 2u_n^{k-1,m-1} + u_{n-1}^{k-1,m-1}}{h^2} + 2u_n^{k-1,m-1} \right] = f_{k,m}^h, \]

\[f_{k,m}^h = f(t_k, s_m, x_n) = e^{-(tk + sm - \tau)} \sin x_n, \quad 1 \leq k, m \leq N, \quad 1 \leq n \leq M - 1, \]

\[u_{n,m}^0 = e^{-sm} \sin x_n, \quad 0 \leq m \leq N, \quad 0 \leq n \leq M, \]

\[u_{n,0}^k = e^{-tk} \sin x_n, \quad 0 \leq k \leq N, \quad 0 \leq n \leq M, \]

\[u_{0,m}^k = u_{M,m}^k = 0, \quad 0 \leq k, m \leq N, \]

\[t_k = k\tau, \quad s_m = m\tau, \quad 1 \leq k, m \leq N, \quad N\tau = 1, \]

\[x_n = nh, \quad 1 \leq n \leq M, \quad Mh = \pi \tag{3.9} \]
for approximate solutions of initial boundary value problem \((3.9)\). The matrix form \((3.4)\) can be written. Here,

\[
A = \begin{bmatrix}
0 & \cdots & \cdots & \cdots & 0 & 0 \\
0 & 0 & \cdots & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
a & 0 & \cdots & a & 0 & \cdots 0 \\
0 & a & 0 & \cdots & a & \cdots \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
0 & \cdots & a & 0 & \cdots & a
\end{bmatrix}_{(N+1)^2 \times (N+1)^2},
\]

\[
B = \begin{bmatrix}
1 & 0 & \cdots & \cdots & 0 & 0 & 0 \\
0 & 1 & 0 & \cdots & \cdots & 0 & 0 \\
0 & 0 & 1 & 0 & \cdots & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
b & 0 & 0 & \cdots & 1 & c & 0 & \cdots 0 \\
0 & b & 0 & 0 & \cdots & 1 & c & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
0 & 0 & \cdots & b & 0 & 0 & \cdots & 1 & c
\end{bmatrix}_{(N+1)^2 \times (N+1)^2},
\]

\[
C = \begin{bmatrix}
0 & \cdots & \cdots & \cdots & 0 & 0 \\
0 & 0 & \cdots & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
a & 0 & \cdots & a & 0 & \cdots 0 \\
0 & a & 0 & \cdots & a & \cdots \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
0 & \cdots & a & 0 & \cdots & a
\end{bmatrix}_{(N+1)^2 \times (N+1)^2},
\]

\((3.10)\)
where

\[
a = -\frac{1}{2h^2}, \quad b = -\frac{1}{\tau} + \frac{1}{h^2} + 1, \quad c = \frac{1}{\tau} + \frac{1}{h^2} + 1,
\]

\[
\phi_n = \begin{bmatrix}
\phi_{0,0}^n \\
\phi_{1,0}^n \\
\vdots \\
\phi_{N,0}^n \\
\phi_{0,1}^n \\
\phi_{1,1}^n \\
\vdots \\
\phi_{N,1}^n \\
\vdots \\
\phi_{0,N}^n \\
\phi_{1,N}^n \\
\vdots \\
\phi_{N,N}^n \\
\end{bmatrix}_{(N+1)^2 \times 1}, \quad \psi_{k,m}^n = f(t_k - \frac{\tau}{2}, s_m - \frac{\tau}{2}, x_n) = e^{-(t_k+s_m)} \sin x_n,
\]

\[
u_n = \begin{bmatrix}
\nu_{0,0}^n \\
\nu_{1,0}^n \\
\vdots \\
\nu_{N,0}^n \\
\nu_{0,1}^n \\
\nu_{1,1}^n \\
\vdots \\
\nu_{N,1}^n \\
\vdots \\
\nu_{0,N}^n \\
\nu_{1,N}^n \\
\vdots \\
\nu_{N,N}^n \\
\end{bmatrix}_{(N+1)^2 \times 1}. \tag{3.11}
\]
We seek a solution of the matrix equation by the same algorithm (3.7) and (3.8).

4. Error Analysis

The errors are computed by

\[E_{N}^{k,M} = \max_{1 \leq k, m \leq N, 1 \leq n \leq M-1} |u(t_k, s_m, x_n) - u_{n}^{k,m}| \]

(4.1)

decrease by a factor of approximately 1/2 and the errors associated with difference scheme (3.9) decrease by a factor of approximately 1/4. This confirms that difference scheme (3.3) is first order and difference scheme (3.9) is second-order as stated in Section 1. Moreover, the results show that the second-order of accuracy difference scheme (3.9) are more accurate comparing with the first order of accuracy difference scheme (3.3).

References

