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Abstract. 
This paper is concerned with the periodic solutions for a class of Nicholson-type delay systems with nonlinear density-dependent mortality terms. By using coincidence degree theory, some criteria are obtained to guarantee the existence of positive periodic solutions of the model. Moreover, an example and a numerical simulation are given to illustrate our main results.


1. Introduction 
In the last twenty years, the delay differential equations have been widely studied both in a theoretical context and in that of related applications [1–4]. As a famous and common delay dynamic system, Nicholson’s blowflies model and its modifications have made remarkable progress that has been collected in [5] and the references cited there in. Recently, to describe the dynamics for the models of marine protected areas and B-cell chronic lymphocytic leukemia dynamics which belong to the Nicholson-type delay differential systems, Berezansky et al. [6], Wang et al. [7], and Liu [8] studied the problems on the permanence, stability, and periodic solution of the following Nicholson-type delay systems: 
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In [5], Berezansky et al. also pointed out that a new study indicates that a linear model of density-dependent mortality will be most accurate for populations at low densities and marine ecologists are currently in the process of constructing new fishery models with nonlinear density-dependent mortality rates. Consequently, Berezansky et al. [5] presented an open problem: to reveal the dynamics of the following Nicholson’s blowflies model with a nonlinear density-dependent mortality term: 
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Most recently, based upon the ideas in [5–8], Liu and Gong [9] established the results on the permanence for the Nicholson-type delay system with nonlinear density-dependent mortality terms. Consequently, the problem on periodic solutions of Nicholson-type system with 
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. Motivated by this, the main purpose of this paper is to give the conditions to guarantee the existence of positive periodic solutions of the following Nicholson-type delay system with nonlinear density-dependent mortality terms: 
						
	
 		
 			
				(
				1
				.
				3
				)
			
 		
	

	
		
			

				𝑁
			

			
				
				1
			

			
				(
				𝑡
				)
				=
				−
				𝐷
			

			
				1
				1
			

			
				
				𝑡
				,
				𝑁
			

			

				1
			

			
				
				(
				𝑡
				)
				+
				𝐷
			

			
				1
				2
			

			
				
				𝑡
				,
				𝑁
			

			

				2
			

			
				
				+
				(
				𝑡
				)
			

			

				𝑙
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑐
			

			
				1
				𝑗
			

			
				(
				𝑡
				)
				𝑁
			

			

				1
			

			
				
				𝑡
				−
				𝜏
			

			
				1
				𝑗
			

			
				
				𝑒
				(
				𝑡
				)
			

			
				−
				𝛾
			

			
				1
				𝑗
			

			
				(
				𝑡
				)
				𝑁
			

			

				1
			

			
				(
				𝑡
				−
				𝜏
			

			
				1
				𝑗
			

			
				(
				𝑡
				)
				)
			

			
				,
				𝑁
			

			
				
				2
			

			
				(
				𝑡
				)
				=
				−
				𝐷
			

			
				2
				2
			

			
				
				𝑡
				,
				𝑁
			

			

				2
			

			
				
				(
				𝑡
				)
				+
				𝐷
			

			
				2
				1
			

			
				
				𝑡
				,
				𝑁
			

			

				1
			

			
				
				+
				(
				𝑡
				)
			

			

				𝑙
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑐
			

			
				2
				𝑗
			

			
				(
				𝑡
				)
				𝑁
			

			

				2
			

			
				
				𝑡
				−
				𝜏
			

			
				2
				𝑗
			

			
				
				𝑒
				(
				𝑡
				)
			

			
				−
				𝛾
			

			
				2
				𝑗
			

			
				(
				𝑡
				)
				𝑁
			

			

				2
			

			
				(
				𝑡
				−
				𝜏
			

			
				2
				𝑗
			

			
				(
				𝑡
				)
				)
			

			

				,
			

		
	

					under the admissible initial conditions 
						
	
 		
 			
				(
				1
				.
				4
				)
			
 		
	

	
		
			

				𝑥
			

			

				𝑡
			

			

				0
			

			
				=
				𝜑
				,
				𝜑
				∈
				𝐶
			

			

				+
			

			
				=
				𝐶
				
				
				−
				𝑟
			

			

				1
			

			
				
				,
				0
				,
				𝑅
			

			
				1
				+
			

			
				
				×
				𝐶
				
				
				−
				𝑟
			

			

				2
			

			
				
				,
				0
				,
				𝑅
			

			
				1
				+
			

			
				
				,
				𝜑
			

			

				𝑖
			

			
				(
				0
				)
				>
				0
				,
			

		
	

					where 
	
		
			

				𝐷
			

			
				𝑖
				𝑗
			

			
				(
				𝑡
				,
				𝑁
				)
				=
				𝑎
			

			
				𝑖
				𝑗
			

			
				(
				𝑡
				)
				𝑁
				/
				(
				𝑏
			

			
				𝑖
				𝑗
			

			
				(
				𝑡
				)
				+
				𝑁
				)
			

		
	
, 
	
		
			

				𝑎
			

			
				𝑖
				𝑗
			

			
				,
				𝑏
			

			
				𝑖
				𝑗
			

			
				,
				𝑐
			

			
				𝑖
				𝑘
			

			
				,
				𝛾
			

			
				𝑖
				𝑘
			

			
				∶
				𝑅
				→
				(
				0
				,
				+
				∞
				)
			

		
	
 and 
	
		
			

				𝜏
			

			
				𝑖
				𝑘
			

			
				∶
				𝑅
				→
				[
				0
				,
				+
				∞
				)
			

		
	
 are all bounded continuous functions, and 
	
		
			

				𝑟
			

			

				𝑖
			

			
				=
				m
				a
				x
			

			
				1
				≤
				𝑘
				≤
				𝑙
			

			
				{
				s
				u
				p
			

			
				𝑡
				∈
				𝑅
			

			

				1
			

			

				𝜏
			

			
				𝑖
				𝑘
			

			
				(
				𝑡
				)
				}
			

		
	
, 
	
		
			
				𝑖
				,
				𝑗
				=
				1
				,
				2
			

		
	
, 
	
		
			
				𝑘
				=
				1
				,
				…
				,
				𝑙
			

		
	
.
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The organization of this paper is as follows. In the next section, some sufficient conditions for the existence of the positive periodic solutions of model (1.3) are given by using the method of coincidence degree. In Section 3, an example and numerical simulation are given to illustrate our results obtained in the previous section.
2.   Existence of Positive Periodic Solutions 
In order to study the existence of positive periodic solutions, we first introduce the continuation theorem as follows.
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Our main result is given in the following theorem.
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				1
				2
			

			
				(
				𝑡
				)
				+
				𝑒
			

			

				𝑥
			

			

				2
			

			
				(
				𝑡
				)
			

			

				+
			

			

				𝑙
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑐
			

			
				1
				𝑗
			

			
				(
				𝑡
				)
				𝑒
			

			

				𝑥
			

			

				1
			

			
				(
				𝑡
				−
				𝜏
			

			
				1
				𝑗
			

			
				(
				𝑡
				)
				)
				−
				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				−
				𝛾
			

			
				1
				𝑗
			

			
				(
				𝑡
				)
				𝑒
			

			
				𝑥
				1
				(
				𝑡
				−
				𝜏
				1
				𝑗
				(
				𝑡
				)
				)
			

			
				∶
				=
				Δ
			

			

				1
			

			
				𝑥
				(
				𝑥
				,
				𝑡
				)
				,
			

			
				
				2
			

			
				𝑎
				(
				𝑡
				)
				=
				−
			

			
				2
				2
			

			
				(
				𝑡
				)
			

			
				
			
			

				𝑏
			

			
				2
				2
			

			
				(
				𝑡
				)
				+
				𝑒
			

			

				𝑥
			

			

				2
			

			
				(
				𝑡
				)
			

			
				+
				𝑎
			

			
				2
				1
			

			
				(
				𝑡
				)
				𝑒
			

			

				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				−
				𝑥
			

			

				2
			

			
				(
				𝑡
				)
			

			
				
			
			

				𝑏
			

			
				2
				1
			

			
				(
				𝑡
				)
				+
				𝑒
			

			

				𝑥
			

			

				1
			

			
				(
				𝑡
				)
			

			

				+
			

			

				𝑙
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑐
			

			
				2
				𝑗
			

			
				(
				𝑡
				)
				𝑒
			

			

				𝑥
			

			

				2
			

			
				(
				𝑡
				−
				𝜏
			

			
				2
				𝑗
			

			
				(
				𝑡
				)
				)
				−
				𝑥
			

			

				2
			

			
				(
				𝑡
				)
				−
				𝛾
			

			
				2
				𝑗
			

			
				(
				𝑡
				)
				𝑒
			

			
				𝑥
				2
				(
				𝑡
				−
				𝜏
				2
				𝑗
				(
				𝑡
				)
				)
			

			
				∶
				=
				Δ
			

			

				2
			

			
				(
				𝑥
				,
				𝑡
				)
				.
			

		
	

						As usual, let 
	
		
			
				𝑋
				=
				𝑍
				=
				{
				𝑥
				=
				(
				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝑥
			

			

				2
			

			
				(
				𝑡
				)
				)
			

			

				𝑇
			

			
				∈
				𝐶
				(
				𝑅
				,
				𝑅
			

			

				2
			

			
				)
				∶
				𝑥
				(
				𝑡
				+
				𝜔
				)
				=
				𝑥
				(
				𝑡
				)
			

		
	
 for all 
	
		
			
				𝑡
				∈
				𝑅
				}
			

		
	
 be Banach spaces equipped with the supremum norm 
	
		
			
				|
				|
				⋅
				|
				|
			

		
	
. For any 
	
		
			
				𝑥
				∈
				𝑋
			

		
	
, because of periodicity, it is easy to see that 
	
		
			
				Δ
				(
				𝑥
				,
				⋅
				)
				=
				(
				Δ
			

			

				1
			

			
				(
				𝑥
				,
				⋅
				)
				,
				Δ
			

			

				2
			

			
				(
				𝑥
				,
				⋅
				)
				)
			

			

				𝑇
			

			
				∈
				𝐶
				(
				𝑅
				,
				𝑅
			

			

				2
			

			

				)
			

		
	
 is 
	
		
			

				𝜔
			

		
	
-periodic. Let 
							
	
 		
 			
				(
				2
				.
				5
				)
			
 		
	

	
		
			
				
				𝐿
				∶
				𝐷
				(
				𝐿
				)
				=
				𝑥
				∈
				𝑋
				∶
				𝑥
				∈
				𝐶
			

			

				1
			

			
				
				𝑅
				,
				𝑅
			

			

				2
			

			
				
				
				∋
				𝑥
				↦
				𝑥
			

			

				
			

			
				=
				
				𝑥
			

			
				
				1
			

			
				,
				𝑥
			

			
				
				2
			

			

				
			

			

				𝑇
			

			
				
				1
				∈
				𝑍
				,
				𝑃
				∶
				𝑋
				∋
				𝑥
				↦
			

			
				
			
			
				𝜔
				
			

			
				𝜔
				0
			

			

				𝑥
			

			

				1
			

			
				1
				(
				𝑠
				)
				𝑑
				𝑠
				,
			

			
				
			
			
				𝜔
				
			

			
				𝜔
				0
			

			

				𝑥
			

			

				2
			

			
				
				(
				𝑠
				)
				𝑑
				𝑠
			

			

				𝑇
			

			
				
				1
				∈
				𝑋
				,
				𝑄
				∶
				𝑍
				∋
				𝑧
				↦
			

			
				
			
			
				𝜔
				
			

			
				𝜔
				0
			

			

				𝑧
			

			

				1
			

			
				1
				(
				𝑠
				)
				𝑑
				𝑠
				,
			

			
				
			
			
				𝜔
				
			

			
				𝜔
				0
			

			

				𝑧
			

			

				2
			

			
				
				(
				𝑠
				)
				𝑑
				𝑠
			

			

				𝑇
			

			
				
				∈
				𝑍
				,
				𝑁
				∶
				𝑋
				∋
				𝑥
				↦
				Δ
				(
				𝑥
				,
				⋅
				)
				∈
				𝑍
				.
			

		
	

						It is easy to see that
							
	
 		
 			
				(
				2
				.
				6
				)
			
 		
	

	
		
			
				
				
				I
				m
				𝐿
				=
				𝑥
				∣
				𝑥
				∈
				𝑍
				,
			

			
				𝜔
				0
			

			
				𝑥
				(
				𝑠
				)
				𝑑
				𝑠
				=
				(
				0
				,
				0
				)
			

			

				𝑇
			

			
				
				,
				K
				e
				r
				𝐿
				=
				𝑅
			

			

				2
			

			
				,
				I
				m
				𝑃
				=
				K
				e
				r
				𝐿
				,
				K
				e
				r
				𝑄
				=
				I
				m
				𝐿
				.
			

		
	
Thus, the operator 
	
		
			

				𝐿
			

		
	
 is a Fredholm operator with index zero. Furthermore, denoting by 
	
		
			

				𝐿
			

			
				𝑃
				−
				1
			

			
				∶
				I
				m
				𝐿
				→
				𝐷
				(
				𝐿
				)
				∩
				K
				e
				r
				𝑃
			

		
	
 the inverse of 
	
		
			
				𝐿
				|
			

			
				𝐷
				(
				𝐿
				)
				∩
				K
				e
				r
				𝑃
			

		
	
, we have 
							
	
 		
 			
				(
				2
				.
				7
				)
			
 		
	

	
		
			

				𝐿
			

			
				𝑃
				−
				1
			

			
				1
				𝑦
				(
				𝑡
				)
				=
				−
			

			
				
			
			
				𝜔
				
			

			
				𝜔
				0
			

			

				
			

			
				𝑡
				0
			

			
				
				𝑦
				(
				𝑠
				)
				𝑑
				𝑠
				𝑑
				𝑡
				+
			

			
				𝑡
				0
			

			
				=
				
				−
				1
				𝑦
				(
				𝑠
				)
				𝑑
				𝑠
			

			
				
			
			
				𝜔
				
			

			
				𝜔
				0
			

			

				
			

			
				𝑡
				0
			

			

				𝑦
			

			

				1
			

			
				(
				
				𝑠
				)
				𝑑
				𝑠
				𝑑
				𝑡
				+
			

			
				𝑡
				0
			

			

				𝑦
			

			

				1
			

			
				(
				1
				𝑠
				)
				𝑑
				𝑠
				,
				−
			

			
				
			
			
				𝜔
				
			

			
				𝜔
				0
			

			

				
			

			
				𝑡
				0
			

			

				𝑦
			

			

				2
			

			
				(
				
				𝑠
				)
				𝑑
				𝑠
				𝑑
				𝑡
				+
			

			
				𝑡
				0
			

			

				𝑦
			

			

				2
			

			
				(
				
				𝑠
				)
				𝑑
				𝑠
			

			

				𝑇
			

			

				.
			

		
	

						It follows that 
							
	
 		
 			
				(
				2
				.
				8
				)
			
 			
				(
				2
				.
				9
				)
			
 		
	

	
		
			
				𝑄
				
				1
				𝑁
				𝑥
				=
			

			
				
			
			
				𝜔
				
			

			
				𝜔
				0
			

			
				
				
				1
				𝑁
				𝑥
				(
				𝑡
				)
				𝑑
				𝑡
				=
			

			
				
			
			
				𝜔
				
			

			
				𝜔
				0
			

			

				Δ
			

			

				1
			

			
				1
				(
				𝑥
				(
				𝑡
				)
				,
				𝑡
				)
				𝑑
				𝑡
				,
			

			
				
			
			
				𝜔
				
			

			
				𝜔
				0
			

			

				Δ
			

			

				2
			

			
				
				(
				𝑥
				(
				𝑡
				)
				,
				𝑡
				)
				𝑑
				𝑡
			

			

				𝑇
			

			
				,
				𝐿
			

			
				𝑃
				−
				1
			

			
				
				
				(
				𝐼
				−
				𝑄
				)
				𝑁
				𝑥
				=
			

			
				𝑡
				0
			

			
				
				𝑡
				𝑁
				𝑥
				(
				𝑠
				)
				𝑑
				𝑠
				−
			

			
				
			
			
				𝜔
				
			

			
				𝜔
				0
			

			
				
				1
				𝑁
				𝑥
				(
				𝑠
				)
				𝑑
				𝑠
				−
			

			
				
			
			
				𝜔
				
			

			
				𝜔
				0
			

			

				
			

			
				𝑡
				0
			

			
				
				+
				1
				𝑁
				𝑥
				(
				𝑠
				)
				𝑑
				𝑠
				𝑑
				𝑡
			

			
				
			
			
				𝜔
				
			

			
				𝜔
				0
			

			

				
			

			
				𝑡
				0
			

			
				𝑄
				
				𝑁
				𝑥
				(
				𝑠
				)
				𝑑
				𝑠
				𝑑
				𝑡
				.
			

		
	

						Obviously, 
	
		
			
				𝑄
				
				𝑁
			

		
	
 and 
	
		
			

				𝐿
			

			
				𝑃
				−
				1
			

			
				
				𝑁
				(
				𝐼
				−
				𝑄
				)
			

		
	
 are continuous. It is not difficult to show that 
	
		
			

				𝐿
			

			
				𝑃
				−
				1
			

			
				
				(
				𝐼
				−
				𝑄
				)
				𝑁
				(
			

			
				
			
			
				Ω
				)
			

		
	
 is compact for any open bounded set 
	
		
			
				Ω
				⊂
				𝑋
			

		
	
 by using the Arzela-Ascoli theorem. Moreover, 
	
		
			
				𝑄
				
				𝑁
				(
			

			
				
			
			
				Ω
				)
			

		
	
 is clearly bounded. Thus 
	
		
			
				
				𝑁
			

		
	
 is 
	
		
			

				𝐿
			

		
	
-compact on 
	
		
			
				
			
			

				Ω
			

		
	
 with any open bounded set 
	
		
			
				Ω
				⊂
				𝑋
			

		
	
.Considering the operator equation 
	
		
			
				
				𝐿
				𝑥
				=
				𝜆
				𝑁
				𝑥
				,
				𝜆
				∈
				(
				0
				,
				1
				)
			

		
	
, we have 
							
	
 		
 			
				(
				2
				.
				1
				0
				)
			
 		
	

	
		
			

				𝑥
			

			

				
			

			
				
				𝑥
				(
				𝑡
				)
				=
			

			
				
				1
			

			
				(
				𝑡
				)
				,
				𝑥
			

			
				
				2
			

			
				
				(
				𝑡
				)
			

			

				𝑇
			

			
				
				=
				𝜆
				Δ
				(
				𝑥
				,
				𝑡
				)
				=
				𝜆
				Δ
			

			

				1
			

			
				(
				𝑥
				,
				𝑡
				)
				,
				𝜆
				Δ
			

			

				2
			

			
				
				(
				𝑥
				,
				𝑡
				)
			

			

				𝑇
			

			

				.
			

		
	

						Suppose that 
	
		
			
				𝑥
				=
				(
				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝑥
			

			

				2
			

			
				(
				𝑡
				)
				)
			

			

				𝑇
			

			
				∈
				𝑋
			

		
	
 is a solution of (2.10) for some 
	
		
			
				𝜆
				∈
				(
				0
				,
				1
				)
			

		
	
.Firstly, we claim that there exists a positive number 
	
		
			

				𝐻
			

		
	
 such that 
	
		
			
				|
				|
				𝑥
				|
				|
				<
				𝐻
			

		
	
. Integrating the first equation of (2.10) and in view of 
	
		
			
				𝑥
				∈
				𝑋
			

		
	
, it results that 
							
	
 		
 			
				(
				2
				.
				1
				1
				)
			
 		
	

	
		
			
				
				0
				=
			

			
				𝜔
				0
			

			

				𝑥
			

			
				
				1
			

			
				
				(
				𝑡
				)
				𝑑
				𝑡
				=
				𝜆
			

			
				𝜔
				0
			

			

				Δ
			

			

				1
			

			
				(
				𝑥
				,
				𝑡
				)
				𝑑
				𝑡
				,
			

		
	

						which together with (2.4) implies that 
							
	
 		
 			
				(
				2
				.
				1
				2
				)
			
 		
	

	
		
			

				
			

			
				𝜔
				0
			

			
				|
				|
				|
				|
				|
			

			

				𝑙
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑐
			

			
				1
				𝑗
			

			
				(
				𝑡
				)
				𝑒
			

			

				𝑥
			

			

				1
			

			
				(
				𝑡
				−
				𝜏
			

			
				1
				𝑗
			

			
				(
				𝑡
				)
				)
				−
				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				−
				𝛾
			

			
				1
				𝑗
			

			
				(
				𝑡
				)
				𝑒
			

			
				𝑥
				1
				(
				𝑡
				−
				𝜏
				1
				𝑗
				(
				𝑡
				)
				)
			

			
				+
				𝑎
			

			
				1
				2
			

			
				(
				𝑡
				)
				𝑒
			

			

				𝑥
			

			

				2
			

			
				(
				𝑡
				)
				−
				𝑥
			

			

				1
			

			
				(
				𝑡
				)
			

			
				
			
			

				𝑏
			

			
				1
				2
			

			
				(
				𝑡
				)
				+
				𝑒
			

			

				𝑥
			

			

				2
			

			
				(
				𝑡
				)
			

			
				|
				|
				|
				|
				|
				=
				
				𝑑
				𝑡
			

			
				𝜔
				0
			

			

				𝑎
			

			
				1
				1
			

			
				(
				𝑡
				)
			

			
				
			
			

				𝑏
			

			
				1
				1
			

			
				(
				𝑡
				)
				+
				𝑒
			

			

				𝑥
			

			

				1
			

			
				(
				𝑡
				)
			

			
				<
				
				𝑑
				𝑡
			

			
				𝜔
				0
			

			

				𝑎
			

			
				1
				1
			

			
				(
				𝑡
				)
			

			
				
			
			

				𝑏
			

			
				1
				1
			

			
				(
				𝑡
				)
				𝑑
				𝑡
				.
			

		
	

						Similarly, we have 
							
	
 		
 			
				(
				2
				.
				1
				3
				)
			
 		
	

	
		
			

				
			

			
				𝜔
				0
			

			
				|
				|
				|
				|
				|
			

			

				𝑙
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑐
			

			
				2
				𝑗
			

			
				(
				𝑡
				)
				𝑒
			

			

				𝑥
			

			

				2
			

			
				(
				𝑡
				−
				𝜏
			

			
				2
				𝑗
			

			
				(
				𝑡
				)
				)
				−
				𝑥
			

			

				2
			

			
				(
				𝑡
				)
				−
				𝛾
			

			
				2
				𝑗
			

			
				(
				𝑡
				)
				𝑒
			

			
				𝑥
				2
				(
				𝑡
				−
				𝜏
				2
				𝑗
				(
				𝑡
				)
				)
			

			
				+
				𝑎
			

			
				2
				1
			

			
				(
				𝑡
				)
				𝑒
			

			

				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				−
				𝑥
			

			

				2
			

			
				(
				𝑡
				)
			

			
				
			
			

				𝑏
			

			
				2
				1
			

			
				(
				𝑡
				)
				+
				𝑒
			

			

				𝑥
			

			

				1
			

			
				(
				𝑡
				)
			

			
				|
				|
				|
				|
				|
				=
				
				𝑑
				𝑡
			

			
				𝜔
				0
			

			

				𝑎
			

			
				2
				2
			

			
				(
				𝑡
				)
			

			
				
			
			

				𝑏
			

			
				2
				2
			

			
				(
				𝑡
				)
				+
				𝑒
			

			

				𝑥
			

			

				2
			

			
				(
				𝑡
				)
			

			
				<
				
				𝑑
				𝑡
			

			
				𝜔
				0
			

			

				𝑎
			

			
				2
				2
			

			
				(
				𝑡
				)
			

			
				
			
			

				𝑏
			

			
				2
				2
			

			
				(
				𝑡
				)
				𝑑
				𝑡
				.
			

		
	

						It follows from (2.12) and (2.13) that 
							
	
 		
 			
				(
				2
				.
				1
				4
				)
			
 			
				(
				2
				.
				1
				5
				)
			
 		
	

	
		
			

				
			

			
				𝜔
				0
			

			
				|
				|
				𝑥
			

			
				
				1
			

			
				(
				|
				|
				
				𝑡
				)
				𝑑
				𝑡
				≤
				𝜆
			

			
				𝜔
				0
			

			
				|
				|
				|
				|
				|
			

			

				𝑙
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑐
			

			
				1
				𝑗
			

			
				(
				𝑡
				)
				𝑒
			

			

				𝑥
			

			

				1
			

			
				(
				𝑡
				−
				𝜏
			

			
				1
				𝑗
			

			
				(
				𝑡
				)
				)
				−
				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				−
				𝛾
			

			
				1
				𝑗
			

			
				(
				𝑡
				)
				𝑒
			

			
				𝑥
				1
				(
				𝑡
				−
				𝜏
				1
				𝑗
				(
				𝑡
				)
				)
			

			
				+
				𝑎
			

			
				1
				2
			

			
				(
				𝑡
				)
				𝑒
			

			

				𝑥
			

			

				2
			

			
				(
				𝑡
				)
				−
				𝑥
			

			

				1
			

			
				(
				𝑡
				)
			

			
				
			
			

				𝑏
			

			
				1
				2
			

			
				(
				𝑡
				)
				+
				𝑒
			

			

				𝑥
			

			

				2
			

			
				(
				𝑡
				)
			

			
				|
				|
				|
				|
				|
				
				𝑑
				𝑡
				+
				𝜆
			

			
				𝜔
				0
			

			
				|
				|
				|
				|
				𝑎
			

			
				1
				1
			

			
				(
				𝑡
				)
			

			
				
			
			

				𝑏
			

			
				1
				1
			

			
				(
				𝑡
				)
				+
				𝑒
			

			

				𝑥
			

			

				1
			

			
				(
				𝑡
				)
			

			
				|
				|
				|
				|
				
				𝑑
				𝑡
				<
				2
			

			
				𝜔
				0
			

			

				𝑎
			

			
				1
				1
			

			
				(
				𝑡
				)
			

			
				
			
			

				𝑏
			

			
				1
				1
			

			
				(
				𝑡
				)
				𝑑
				𝑡
				=
				𝐴
			

			

				1
			

			
				,
				
			

			
				𝜔
				0
			

			
				|
				|
				𝑥
			

			
				
				2
			

			
				|
				|
				
				(
				𝑡
				)
				𝑑
				𝑡
				≤
				𝜆
			

			
				𝜔
				0
			

			
				|
				|
				|
				|
				|
			

			

				𝑙
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑐
			

			
				2
				𝑗
			

			
				(
				𝑡
				)
				𝑒
			

			

				𝑥
			

			

				2
			

			
				(
				𝑡
				−
				𝜏
			

			
				2
				𝑗
			

			
				(
				𝑡
				)
				)
				−
				𝑥
			

			

				2
			

			
				(
				𝑡
				)
				−
				𝛾
			

			
				2
				𝑗
			

			
				(
				𝑡
				)
				𝑒
			

			
				𝑥
				2
				(
				𝑡
				−
				𝜏
				2
				𝑗
				(
				𝑡
				)
				)
			

			
				+
				𝑎
			

			
				2
				1
			

			
				(
				𝑡
				)
				𝑒
			

			

				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				−
				𝑥
			

			

				2
			

			
				(
				𝑡
				)
			

			
				
			
			

				𝑏
			

			
				2
				1
			

			
				(
				𝑡
				)
				+
				𝑒
			

			

				𝑥
			

			

				1
			

			
				(
				𝑡
				)
			

			
				|
				|
				|
				|
				|
				
				𝑑
				𝑡
				+
				𝜆
			

			
				𝜔
				0
			

			
				|
				|
				|
				|
				𝑎
			

			
				2
				2
			

			
				(
				𝑡
				)
			

			
				
			
			

				𝑏
			

			
				2
				2
			

			
				(
				𝑡
				)
				+
				𝑒
			

			

				𝑥
			

			

				2
			

			
				(
				𝑡
				)
			

			
				|
				|
				|
				|
				
				𝑑
				𝑡
				<
				2
			

			
				𝜔
				0
			

			

				𝑎
			

			
				2
				2
			

			
				(
				𝑡
				)
			

			
				
			
			

				𝑏
			

			
				2
				2
			

			
				(
				𝑡
				)
				𝑑
				𝑡
				=
				𝐴
			

			

				2
			

			

				.
			

		
	
Since 
	
		
			
				𝑥
				∈
				𝑋
			

		
	
, there exist 
	
		
			

				𝜉
			

			

				1
			

			
				,
				𝜉
			

			

				2
			

			
				,
				𝜂
			

			

				1
			

			
				,
				𝜂
			

			

				2
			

			
				∈
				[
				0
				,
				𝜔
				]
			

		
	
 such that 
							
	
 		
 			
				(
				2
				.
				1
				6
				)
			
 		
	

	
		
			

				𝑥
			

			

				𝑖
			

			
				
				𝜉
			

			

				𝑖
			

			
				
				=
				m
				i
				n
			

			
				[
				]
				𝑡
				∈
				0
				,
				𝜔
			

			

				𝑥
			

			

				𝑖
			

			
				(
				𝑡
				)
				,
				𝑥
			

			

				𝑖
			

			
				
				𝜂
			

			

				𝑖
			

			
				
				=
				m
				a
				x
			

			
				[
				]
				𝑡
				∈
				0
				,
				𝜔
			

			

				𝑥
			

			

				𝑖
			

			
				(
				𝑡
				)
				,
				𝑥
			

			
				
				𝑖
			

			
				
				𝜉
			

			

				𝑖
			

			
				
				=
				𝑥
			

			
				
				𝑖
			

			
				
				𝜂
			

			

				𝑖
			

			
				
				=
				0
				,
				𝑖
				=
				1
				,
				2
				.
			

		
	

						It follows from (2.12) and (2.14) that 
							
	
 		
 			
				(
				2
				.
				1
				7
				)
			
 		
	

	
		
			

				𝐴
			

			

				1
			

			
				
			
			
				2
				=
				
			

			
				𝜔
				0
			

			

				𝑎
			

			
				1
				1
			

			
				(
				𝑡
				)
			

			
				
			
			

				𝑏
			

			
				1
				1
			

			
				
				(
				𝑡
				)
				𝑑
				𝑡
				>
			

			
				𝜔
				0
			

			

				𝑎
			

			
				1
				1
			

			
				(
				𝑡
				)
			

			
				
			
			

				𝑏
			

			
				1
				1
			

			
				(
				𝑡
				)
				+
				𝑒
			

			

				𝑥
			

			

				1
			

			
				(
				𝑡
				)
			

			
				=
				
				𝑑
				𝑡
			

			
				𝜔
				0
				𝑙
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑐
			

			
				1
				𝑗
			

			
				(
				𝑡
				)
				𝑒
			

			

				𝑥
			

			

				1
			

			
				(
				𝑡
				−
				𝜏
			

			
				1
				𝑗
			

			
				(
				𝑡
				)
				)
				−
				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				−
				𝛾
			

			
				1
				𝑗
			

			
				(
				𝑡
				)
				𝑒
			

			
				𝑥
				1
				(
				𝑡
				−
				𝜏
				1
				𝑗
				(
				𝑡
				)
				)
			

			
				
				𝑑
				𝑡
				+
			

			
				𝜔
				0
			

			

				𝑎
			

			
				1
				2
			

			
				(
				𝑡
				)
				𝑒
			

			

				𝑥
			

			

				2
			

			
				(
				𝑡
				)
				−
				𝑥
			

			

				1
			

			
				(
				𝑡
				)
			

			
				
			
			

				𝑏
			

			
				1
				2
			

			
				(
				𝑡
				)
				+
				𝑒
			

			

				𝑥
			

			

				2
			

			
				(
				𝑡
				)
			

			
				𝑑
				𝑡
				>
				𝑒
			

			

				𝑥
			

			

				1
			

			
				(
				𝜉
			

			

				1
			

			
				)
				−
				𝑥
			

			

				1
			

			
				(
				𝜂
			

			

				1
			

			
				)
				−
				𝛾
			

			
				+
				1
			

			

				𝑒
			

			
				𝑥
				1
				1
				)
				(
				𝜂
			

			

				𝑙
			

			

				
			

			
				𝑗
				=
				1
			

			

				
			

			
				𝜔
				0
			

			

				𝑐
			

			
				1
				𝑗
			

			
				(
				𝑡
				)
				𝑑
				𝑡
				=
				𝐵
			

			

				1
			

			

				𝑒
			

			

				𝑥
			

			

				1
			

			
				(
				𝜉
			

			

				1
			

			
				)
				−
				𝑥
			

			

				1
			

			
				(
				𝜂
			

			

				1
			

			
				)
				−
				𝛾
			

			
				+
				1
			

			

				𝑒
			

			
				𝑥
				1
				1
				)
				(
				𝜂
			

			

				,
			

		
	

						which implies that 
							
	
 		
 			
				(
				2
				.
				1
				8
				)
			
 		
	

	
		
			

				𝑥
			

			

				1
			

			
				
				𝜉
			

			

				1
			

			
				
				𝐴
				<
				l
				n
			

			

				1
			

			
				
			
			
				2
				𝐵
			

			

				1
			

			
				+
				𝑥
			

			

				1
			

			
				
				𝜂
			

			

				1
			

			
				
				+
				𝛾
			

			
				+
				1
			

			

				𝑒
			

			

				𝑥
			

			

				1
			

			
				(
				𝜂
			

			

				1
			

			

				)
			

			

				.
			

		
	

						Using (2.14) yields 
							
	
 		
 			
				(
				2
				.
				1
				9
				)
			
 		
	

	
		
			

				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				≤
				𝑥
			

			

				1
			

			
				
				𝜉
			

			

				1
			

			
				
				+
				
			

			
				𝜔
				0
			

			
				|
				|
				𝑥
			

			
				
				1
			

			
				|
				|
				𝐴
				(
				𝑡
				)
				𝑑
				𝑡
				<
				l
				n
			

			

				1
			

			
				
			
			
				2
				𝐵
			

			

				1
			

			
				+
				𝑥
			

			

				1
			

			
				
				𝜂
			

			

				1
			

			
				
				+
				𝛾
			

			
				+
				1
			

			

				𝑒
			

			

				𝑥
			

			

				1
			

			
				(
				𝜂
			

			

				1
			

			

				)
			

			
				+
				𝐴
			

			

				1
			

			
				[
				]
				.
				,
				𝑡
				∈
				0
				,
				𝜔
			

		
	

						In particular, 
							
	
 		
 			
				(
				2
				.
				2
				0
				)
			
 		
	

	
		
			

				𝑥
			

			

				1
			

			
				
				𝜂
			

			

				1
			

			
				
				<
				𝑥
			

			

				1
			

			
				
				𝜉
			

			

				1
			

			
				
				+
				
			

			
				𝜔
				0
			

			
				|
				|
				𝑥
			

			
				
				1
			

			
				|
				|
				𝐴
				(
				𝑡
				)
				𝑑
				𝑡
				<
				l
				n
			

			

				1
			

			
				
			
			
				2
				𝐵
			

			

				1
			

			
				+
				𝑥
			

			

				1
			

			
				
				𝜂
			

			

				1
			

			
				
				+
				𝛾
			

			
				+
				1
			

			

				𝑒
			

			

				𝑥
			

			

				1
			

			
				(
				𝜂
			

			

				1
			

			

				)
			

			
				+
				𝐴
			

			

				1
			

			

				.
			

		
	

						It follows that 
							
	
 		
 			
				(
				2
				.
				2
				1
				)
			
 		
	

	
		
			

				𝑥
			

			

				1
			

			
				
				𝜂
			

			

				1
			

			
				
				
				1
				>
				l
				n
			

			
				
			
			

				𝛾
			

			
				+
				1
			

			
				
				l
				n
				2
				𝐵
			

			

				1
			

			
				
			
			

				𝐴
			

			

				1
			

			
				−
				𝐴
			

			

				1
			

			
				
				
				.
			

		
	

						Again from (2.14), we have 
							
	
 		
 			
				(
				2
				.
				2
				2
				)
			
 		
	

	
		
			

				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				≥
				𝑥
			

			

				1
			

			
				
				𝜂
			

			

				1
			

			
				
				−
				
			

			
				𝜔
				0
			

			
				|
				|
				𝑥
			

			
				
				1
			

			
				|
				|
				
				1
				(
				𝑡
				)
				𝑑
				𝑡
				>
				l
				n
			

			
				
			
			

				𝛾
			

			
				+
				1
			

			
				
				l
				n
				2
				𝐵
			

			

				1
			

			
				
			
			

				𝐴
			

			

				1
			

			
				−
				𝐴
			

			

				1
			

			
				
				
				−
				𝐴
			

			

				1
			

			
				∶
				=
				𝐻
			

			
				1
				1
			

			
				[
				]
				.
				,
				𝑡
				∈
				0
				,
				𝜔
			

		
	

						Similarly, we can obtain 
							
	
 		
 			
				(
				2
				.
				2
				3
				)
			
 		
	

	
		
			

				𝑥
			

			

				2
			

			
				(
				𝑡
				)
				≥
				𝑥
			

			

				2
			

			
				
				𝜂
			

			

				2
			

			
				
				−
				
			

			
				𝜔
				0
			

			
				|
				|
				𝑥
			

			
				
				2
			

			
				|
				|
				
				1
				(
				𝑡
				)
				𝑑
				𝑡
				>
				l
				n
			

			
				
			
			

				𝛾
			

			
				+
				2
			

			
				
				l
				n
				2
				𝐵
			

			

				2
			

			
				
			
			

				𝐴
			

			

				2
			

			
				−
				𝐴
			

			

				2
			

			
				
				
				−
				𝐴
			

			

				2
			

			
				∶
				=
				𝐻
			

			
				2
				1
			

			
				[
				]
				.
				,
				𝑡
				∈
				0
				,
				𝜔
			

		
	

						Since 
	
		
			

				𝑥
			

			
				
				1
			

			
				(
				𝜉
			

			

				1
			

			
				)
				=
				0
			

		
	
, from (2.10), we have 
							
	
 		
 			
				(
				2
				.
				2
				4
				)
			
 		
	

	
		
			

				𝑎
			

			
				1
				1
			

			
				
				𝜉
			

			

				1
			

			

				
			

			
				
			
			

				𝑏
			

			
				1
				1
			

			
				
				𝜉
			

			

				1
			

			
				
				+
				𝑒
			

			

				𝑥
			

			

				1
			

			
				(
				𝜉
			

			

				1
			

			

				)
			

			

				=
			

			

				𝑙
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑐
			

			
				1
				𝑗
			

			
				
				𝜉
			

			

				1
			

			
				
				𝑒
			

			

				𝑥
			

			

				1
			

			
				(
				𝜉
			

			

				1
			

			
				−
				𝜏
			

			
				1
				𝑗
			

			
				(
				𝜉
			

			

				1
			

			
				)
				)
				−
				𝑥
			

			

				1
			

			
				(
				𝜉
			

			

				1
			

			
				)
				−
				𝛾
			

			
				1
				𝑗
			

			
				(
				𝜉
			

			

				1
			

			
				)
				𝑒
			

			
				𝑥
				1
				1
				1
				(
				𝜉
				−
				𝜏
				1
				𝑗
				(
				𝜉
				)
				)
			

			
				+
				𝑎
			

			
				1
				2
			

			
				
				𝜉
			

			

				1
			

			
				
				𝑒
			

			

				𝑥
			

			

				2
			

			
				(
				𝜉
			

			

				1
			

			
				)
				−
				𝑥
			

			

				1
			

			
				(
				𝜉
			

			

				1
			

			

				)
			

			
				
			
			

				𝑏
			

			
				1
				2
			

			
				
				𝜉
			

			

				1
			

			
				
				+
				𝑒
			

			

				𝑥
			

			

				2
			

			
				(
				𝜉
			

			

				1
			

			

				)
			

			

				.
			

		
	

						Hence, from (2.24) and the fact that 
	
		
			
				s
				u
				p
			

			
				𝑢
				≥
				0
			

			
				𝑢
				𝑒
			

			
				−
				𝑢
			

			
				=
				1
				/
				𝑒
			

		
	
, we have 
							
	
 		
 			
				(
				2
				.
				2
				5
				)
			
 		
	

	
		
			

				𝑒
			

			

				𝑥
			

			

				1
			

			
				(
				𝜉
			

			

				1
			

			

				)
			

			
				
			
			

				𝑏
			

			
				+
				1
				1
			

			
				+
				𝑒
			

			

				𝑥
			

			

				1
			

			
				(
				𝜉
			

			

				1
			

			

				)
			

			
				≤
				𝑒
			

			

				𝑥
			

			

				1
			

			
				(
				𝜉
			

			

				1
			

			

				)
			

			
				
			
			

				𝑏
			

			
				1
				1
			

			
				
				𝜉
			

			

				1
			

			
				
				+
				𝑒
			

			

				𝑥
			

			

				1
			

			
				(
				𝜉
			

			

				1
			

			

				)
			

			

				=
			

			

				𝑙
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑐
			

			
				1
				𝑗
			

			
				
				𝜉
			

			

				1
			

			

				
			

			
				
			
			

				𝑎
			

			
				1
				1
			

			
				
				𝜉
			

			

				1
			

			
				
				𝛾
			

			
				1
				𝑗
			

			
				
				𝜉
			

			

				1
			

			
				
				𝛾
			

			
				1
				𝑗
			

			
				
				𝜉
			

			

				1
			

			
				
				𝑒
			

			

				𝑥
			

			

				1
			

			
				(
				𝜉
			

			

				1
			

			
				−
				𝜏
			

			
				1
				𝑗
			

			
				(
				𝜉
			

			

				1
			

			
				)
				)
			

			

				𝑒
			

			
				−
				𝛾
			

			
				1
				𝑗
			

			
				(
				𝜉
			

			

				1
			

			
				)
				𝑒
			

			
				𝑥
				1
				1
				1
				(
				𝜉
				−
				𝜏
				1
				𝑗
				(
				𝜉
				)
				)
			

			
				+
				𝑎
			

			
				1
				2
			

			
				
				𝜉
			

			

				1
			

			

				
			

			
				
			
			

				𝑎
			

			
				1
				1
			

			
				
				𝜉
			

			

				1
			

			
				
				
				1
				+
				𝑏
			

			
				1
				2
			

			
				
				𝜉
			

			

				1
			

			
				
				𝑒
			

			
				−
				𝑥
			

			

				2
			

			
				(
				𝜉
			

			

				1
			

			

				)
			

			
				
				<
			

			

				𝑙
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑐
			

			
				+
				1
				𝑗
			

			
				
			
			

				𝑎
			

			
				−
				1
				1
			

			

				𝛾
			

			
				−
				1
				𝑗
			

			
				𝑒
				+
				𝑎
			

			
				+
				1
				2
			

			
				
			
			

				𝑎
			

			
				−
				1
				1
			

			

				.
			

		
	

						Noting that 
	
		
			
				𝑢
				/
				(
				𝑏
			

			
				+
				1
				1
			

			
				+
				𝑢
				)
			

		
	
 is strictly monotone increasing on 
	
		
			
				[
				0
				,
				+
				∞
				)
			

		
	
 and 
							
	
 		
 			
				(
				2
				.
				2
				6
				)
			
 		
	

	
		
			
				s
				u
				p
			

			
				𝑢
				≥
				0
			

			

				𝑢
			

			
				
			
			

				𝑏
			

			
				+
				1
				1
			

			
				+
				𝑢
				=
				1
				>
			

			

				𝑙
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑐
			

			
				+
				1
				𝑗
			

			
				
			
			

				𝑎
			

			
				−
				1
				1
			

			

				𝛾
			

			
				−
				1
				𝑗
			

			
				𝑒
				+
				𝑎
			

			
				+
				1
				2
			

			
				
			
			

				𝑎
			

			
				−
				1
				1
			

			

				,
			

		
	
it is clear that there exists a constant 
	
		
			

				𝑘
			

			

				1
			

			
				>
				0
			

		
	
 such that 
							
	
 		
 			
				(
				2
				.
				2
				7
				)
			
 		
	

	
		
			

				𝑢
			

			
				
			
			

				𝑏
			

			
				+
				1
				1
			

			
				>
				+
				𝑢
			

			

				𝑙
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑐
			

			
				+
				1
				𝑗
			

			
				
			
			

				𝑎
			

			
				−
				1
				1
			

			

				𝛾
			

			
				−
				1
				𝑗
			

			
				𝑒
				+
				𝑎
			

			
				+
				1
				2
			

			
				
			
			

				𝑎
			

			
				−
				1
				1
			

			
				
				𝑘
				∀
				𝑢
				∈
			

			

				1
			

			
				
				.
				,
				+
				∞
			

		
	

						In view of (2.25) and (2.27), we get 
							
	
 		
 			
				(
				2
				.
				2
				8
				)
			
 		
	

	
		
			

				𝑒
			

			

				𝑥
			

			

				1
			

			
				(
				𝜉
			

			

				1
			

			

				)
			

			
				≤
				𝑘
			

			

				1
			

			
				,
				𝑥
			

			

				1
			

			
				
				𝜉
			

			

				1
			

			
				
				≤
				l
				n
				𝑘
			

			

				1
			

			

				.
			

		
	

						In the same way, there exists a constant 
	
		
			

				𝑘
			

			

				2
			

			
				>
				0
			

		
	
 such that
							
	
 		
 			
				(
				2
				.
				2
				9
				)
			
 		
	

	
		
			

				𝑥
			

			

				2
			

			
				
				𝜉
			

			

				2
			

			
				
				≤
				l
				n
				𝑘
			

			

				2
			

			

				.
			

		
	

						Again from (2.14), (2.15), (2.28), and (2.29), we get 
							
	
 		
 			
				(
				2
				.
				3
				0
				)
			
 		
	

	
		
			

				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				≤
				𝑥
			

			

				1
			

			
				
				𝜉
			

			

				1
			

			
				
				+
				
			

			
				𝜔
				0
			

			
				|
				|
				𝑥
			

			
				
				1
			

			
				|
				|
				(
				𝑡
				)
				𝑑
				𝑡
				<
				l
				n
				𝑘
			

			

				1
			

			
				+
				𝐴
			

			

				1
			

			
				,
				𝑥
			

			

				2
			

			
				(
				𝑡
				)
				≤
				𝑥
			

			

				2
			

			
				
				𝜉
			

			

				1
			

			
				
				+
				
			

			
				𝜔
				0
			

			
				|
				|
				𝑥
			

			
				
				2
			

			
				|
				|
				(
				𝑡
				)
				𝑑
				𝑡
				<
				l
				n
				𝑘
			

			

				1
			

			
				+
				𝐴
			

			

				2
			

			

				.
			

		
	

						Then, we can choose two sufficiently large positive constants 
	
		
			

				𝐻
			

			
				1
				2
			

			
				>
				l
				n
				𝑘
			

			

				1
			

			
				+
				𝐴
			

			

				1
			

		
	
 and 
	
		
			

				𝐻
			

			
				2
				2
			

			
				>
				l
				n
				𝑘
			

			

				2
			

			
				+
				𝐴
			

			

				2
			

		
	
 such that 
							
	
 		
 			
				(
				2
				.
				3
				1
				)
			
 		
	

	
		
			

				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				<
				𝐻
			

			
				1
				2
			

			
				,
				𝑥
			

			

				2
			

			
				(
				𝑡
				)
				<
				𝐻
			

			
				2
				2
			

			
				,
				l
				n
				𝑏
			

			
				+
				1
				1
			

			
				<
				𝐻
			

			
				1
				2
			

			
				,
				l
				n
				𝑏
			

			
				+
				2
				2
			

			
				<
				𝐻
			

			
				2
				2
			

			

				.
			

		
	
Let 
	
		
			
				𝐻
				>
				m
				a
				x
				{
				|
				𝐻
			

			
				1
				1
			

			
				|
				,
				|
				𝐻
			

			
				2
				1
			

			
				|
				,
				𝐻
			

			
				1
				2
			

			
				,
				𝐻
			

			
				2
				2
			

			

				}
			

		
	
 be a fix constant such that 
							
	
 		
 			
				(
				2
				.
				3
				2
				)
			
 		
	

	
		
			

				𝑒
			

			

				𝐻
			

			
				>
				1
			

			
				
			
			

				𝛾
			

			
				−
				1
			

			
				
				𝐶
				𝐻
				−
				l
				n
			

			

				1
			

			
				−
				2
				𝐷
			

			

				1
			

			
				
			
			
				2
				𝐵
			

			

				1
			

			
				
				,
				𝑒
			

			

				𝐻
			

			
				>
				1
			

			
				
			
			

				𝛾
			

			
				−
				2
			

			
				
				𝐶
				𝐻
				−
				l
				n
			

			

				2
			

			
				−
				2
				𝐷
			

			

				2
			

			
				
			
			
				2
				𝐵
			

			

				2
			

			
				
				.
			

		
	

						Then (2.22), (2.23), and (2.31) imply that 
	
		
			
				|
				|
				𝑥
				|
				|
				<
				𝐻
			

		
	
, if 
	
		
			
				𝑥
				∈
				𝑋
			

		
	
 is solution of (2.10). So we can define an open bounded set as 
	
		
			
				Ω
				=
				{
				𝑥
				∈
				𝑋
				∶
				|
				|
				𝑥
				|
				|
				<
				𝐻
				}
			

		
	
 such that there is no 
	
		
			
				𝜆
				∈
				(
				0
				,
				1
				)
			

		
	
 and 
	
		
			
				𝑥
				∈
				𝜕
				Ω
			

		
	
 such that 
	
		
			
				
				𝐿
				𝑥
				=
				𝜆
				𝑁
				𝑥
			

		
	
. That is to say 
	
		
			
				
				𝐿
				𝑥
				≠
				𝜆
				𝑁
				𝑥
			

		
	
 for all 
	
		
			
				𝑥
				∈
				𝜕
				Ω
				∩
				𝐷
				(
				𝐿
				)
				,
				𝜆
				∈
				(
				0
				,
				1
				)
			

		
	
.Secondly, we prove that 
	
		
			
				
				𝑁
				𝑥
				∉
				I
				m
				𝐿
			

		
	
 for all 
	
		
			
				𝑥
				∈
				𝜕
				Ω
				∩
				K
				e
				r
				𝐿
			

		
	
. That is 
	
		
			
				
				(
				(
				𝑄
				𝑁
				(
				𝑥
				)
				)
			

			

				1
			

			
				
				,
				(
				𝑄
				𝑁
				(
				𝑥
				)
				)
			

			

				2
			

			

				)
			

			

				𝑇
			

			
				≠
				(
				0
				,
				0
				)
			

			

				𝑇
			

		
	
 for all 
	
		
			
				𝑥
				∈
				𝜕
				Ω
				∩
				K
				e
				r
				𝐿
			

		
	
.If 
	
		
			
				𝑥
				(
				𝑡
				)
				=
				(
				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝑥
			

			

				2
			

			
				(
				𝑡
				)
				)
			

			

				𝑇
			

			
				∈
				𝜕
				Ω
				∩
				K
				e
				r
				𝐿
			

		
	
, then 
	
		
			
				𝑥
				(
				𝑡
				)
			

		
	
 is a constant vector in 
	
		
			

				𝑅
			

			

				2
			

		
	
, and there exists some 
	
		
			
				𝑖
				∈
				{
				1
				,
				2
				}
			

		
	
 such that 
	
		
			
				|
				𝑥
			

			

				𝑖
			

			
				|
				=
				𝐻
			

		
	
. Assume 
	
		
			
				|
				𝑥
			

			

				1
			

			
				|
				=
				𝐻
			

		
	
, so that 
	
		
			

				𝑥
			

			

				1
			

			
				=
				±
				𝐻
			

		
	
. Then, we claim 
							
	
 		
 			
				(
				2
				.
				3
				3
				)
			
 		
	

	
		
			
				
				𝑄
				
				
				𝑁
				(
				𝑥
				)
			

			

				1
			

			
				>
				0
				f
				o
				r
				𝑥
			

			

				1
			

			
				
				𝑄
				
				
				=
				−
				𝐻
				,
				𝑁
				(
				𝑥
				)
			

			

				1
			

			
				<
				0
				f
				o
				r
				𝑥
			

			

				1
			

			
				=
				𝐻
				.
			

		
	

						If 
	
		
			
				
				(
				𝑄
				𝑁
				(
				𝑥
				)
				)
			

			

				1
			

			
				≤
				0
			

		
	
 for 
	
		
			

				𝑥
			

			

				1
			

			
				=
				−
				𝐻
			

		
	
, it follows from (2.2) and (2.8) that 
							
	
 		
 			
				(
				2
				.
				3
				4
				)
			
 		
	

	
		
			

				
			

			
				𝜔
				0
			

			

				Δ
			

			

				1
			

			
				(
				𝑥
				,
				𝑡
				)
				𝑑
				𝑡
				≤
				0
				,
				f
				o
				r
				𝑥
			

			

				1
			

			
				=
				−
				𝐻
				.
			

		
	

						Hence, 
							
	
 		
 			
				(
				2
				.
				3
				5
				)
			
 		
	

	
		
			

				𝐴
			

			

				1
			

			
				
			
			
				2
				=
				
			

			
				𝜔
				0
			

			

				𝑎
			

			
				1
				1
			

			
				(
				𝑡
				)
			

			
				
			
			

				𝑏
			

			
				1
				1
			

			
				>
				
				(
				𝑡
				)
				𝑑
				𝑡
			

			
				𝜔
				0
			

			

				𝑎
			

			
				1
				1
			

			
				(
				𝑡
				)
			

			
				
			
			

				𝑏
			

			
				1
				1
			

			
				(
				𝑡
				)
				+
				𝑒
			

			
				−
				𝐻
			

			
				≥
				
				𝑑
				𝑡
			

			
				𝜔
				0
			

			

				
			

			

				𝑙
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑐
			

			
				1
				𝑗
			

			
				(
				𝑡
				)
				𝑒
			

			
				−
				𝛾
			

			
				1
				𝑗
			

			
				(
				𝑡
				)
				𝑒
			

			
				−
				𝐻
			

			
				+
				𝑎
			

			
				1
				2
			

			
				(
				𝑡
				)
				𝑒
			

			

				𝑥
			

			

				2
			

			
				+
				𝐻
			

			
				
			
			

				𝑏
			

			
				1
				2
			

			
				(
				𝑡
				)
				+
				𝑒
			

			

				𝑥
			

			

				2
			

			
				
				>
				
				𝑑
				𝑡
			

			
				𝜔
				0
				𝑙
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑐
			

			
				1
				𝑗
			

			
				(
				𝑡
				)
				𝑒
			

			
				−
				𝛾
			

			
				+
				1
				𝑗
			

			

				𝑒
			

			
				−
				𝐻
			

			
				𝑑
				𝑡
				≥
				𝑒
			

			
				−
				𝛾
			

			
				+
				1
			

			

				𝑒
			

			
				−
				𝐻
			

			

				𝑙
			

			

				
			

			
				𝑗
				=
				1
			

			

				
			

			
				𝜔
				0
			

			

				𝑐
			

			
				1
				𝑗
			

			
				(
				𝑡
				)
				𝑑
				𝑡
				=
				𝐵
			

			

				1
			

			

				𝑒
			

			
				−
				𝛾
			

			
				+
				1
			

			

				𝑒
			

			
				−
				𝐻
			

			

				,
			

		
	

						which implies 
							
	
 		
 			
				(
				2
				.
				3
				6
				)
			
 		
	

	
		
			
				
				1
				−
				𝐻
				>
				l
				n
			

			
				
			
			

				𝛾
			

			
				+
				1
			

			
				l
				n
				2
				𝐵
			

			

				1
			

			
				
			
			

				𝐴
			

			

				1
			

			
				
				
				1
				>
				l
				n
			

			
				
			
			

				𝛾
			

			
				+
				1
			

			
				
				l
				n
				2
				𝐵
			

			

				1
			

			
				
			
			

				𝐴
			

			

				1
			

			
				−
				𝐴
			

			

				1
			

			
				
				
				−
				𝐴
			

			

				1
			

			
				=
				𝐻
			

			
				1
				1
			

			

				.
			

		
	

						This is a contradiction and implies that 
	
		
			
				
				(
				𝑄
				𝑁
				(
				𝑥
				)
				)
			

			

				1
			

			
				>
				0
			

		
	
 for 
	
		
			

				𝑥
			

			

				1
			

			
				=
				−
				𝐻
			

		
	
.If 
	
		
			
				
				(
				𝑄
				𝑁
				(
				𝑥
				)
				)
			

			

				1
			

			
				≥
				0
			

		
	
 for 
	
		
			

				𝑥
			

			

				1
			

			
				=
				𝐻
			

		
	
, it follows from (2.2) and (2.8) that 
							
	
 		
 			
				(
				2
				.
				3
				7
				)
			
 		
	

	
		
			

				
			

			
				𝜔
				0
			

			

				Δ
			

			

				1
			

			
				(
				𝑥
				,
				𝑡
				)
				𝑑
				𝑡
				≥
				0
				,
				f
				o
				r
				𝑥
			

			

				1
			

			
				𝐶
				=
				𝐻
				,
			

			

				1
			

			
				
			
			
				2
				𝑒
			

			
				−
				𝐻
			

			
				=
				
			

			
				𝜔
				0
			

			

				𝑎
			

			
				1
				1
			

			
				(
				𝑡
				)
			

			
				
			
			
				2
				𝑒
			

			

				𝐻
			

			
				<
				
				𝑑
				𝑡
			

			
				𝜔
				0
			

			

				𝑎
			

			
				1
				1
			

			
				(
				𝑡
				)
			

			
				
			
			

				𝑏
			

			
				1
				1
			

			
				(
				𝑡
				)
				+
				𝑒
			

			

				𝐻
			

			
				≤
				
				𝑑
				𝑡
			

			
				𝜔
				0
				𝑙
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑐
			

			
				1
				𝑗
			

			
				(
				𝑡
				)
				𝑒
			

			
				−
				𝛾
			

			
				1
				𝑗
			

			
				(
				𝑡
				)
				𝑒
			

			

				𝐻
			

			
				
				𝑑
				𝑡
				+
			

			
				𝜔
				0
			

			

				𝑎
			

			
				1
				2
			

			
				(
				𝑡
				)
				𝑒
			

			

				𝑥
			

			

				2
			

			
				−
				𝐻
			

			
				
			
			

				𝑏
			

			
				1
				2
			

			
				(
				𝑡
				)
				+
				𝑒
			

			

				𝑥
			

			

				2
			

			
				≤
				
				𝑑
				𝑡
			

			
				𝜔
				0
				𝑙
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑐
			

			
				1
				𝑗
			

			
				(
				𝑡
				)
				𝑒
			

			
				−
				𝛾
			

			
				−
				1
			

			

				𝑒
			

			

				𝐻
			

			
				
				𝑑
				𝑡
				+
			

			
				𝜔
				0
			

			

				𝑎
			

			
				1
				2
			

			
				(
				𝑡
				)
			

			
				
			
			

				𝑏
			

			
				1
				2
			

			
				(
				𝑡
				)
				𝑒
			

			
				𝐻
				−
				𝑥
			

			

				2
			

			
				+
				𝑒
			

			

				𝐻
			

			
				𝑑
				𝑡
				<
				𝑒
			

			
				−
				𝛾
			

			
				−
				1
			

			

				𝑒
			

			

				𝐻
			

			

				𝑙
			

			

				
			

			
				𝑗
				=
				1
			

			

				
			

			
				𝜔
				0
			

			

				𝑐
			

			
				1
				𝑗
			

			
				
				(
				𝑡
				)
				𝑑
				𝑡
				+
			

			
				𝜔
				0
			

			

				𝑎
			

			
				1
				2
			

			
				(
				𝑡
				)
			

			
				
			
			

				𝑒
			

			

				𝐻
			

			
				𝑑
				𝑡
				=
				𝐵
			

			

				1
			

			

				𝑒
			

			
				−
				𝛾
			

			
				−
				1
			

			

				𝑒
			

			

				𝐻
			

			
				+
				𝐷
			

			

				1
			

			

				𝑒
			

			
				−
				𝐻
			

			

				.
			

		
	

						Consequently, 
							
	
 		
 			
				(
				2
				.
				3
				8
				)
			
 		
	

	
		
			

				𝑒
			

			

				𝐻
			

			
				<
				1
			

			
				
			
			

				𝛾
			

			
				−
				1
			

			
				
				𝐶
				𝐻
				−
				l
				n
			

			

				1
			

			
				−
				2
				𝐷
			

			

				1
			

			
				
			
			
				2
				𝐵
			

			

				1
			

			
				
				,
			

		
	

						a contradiction to the choice of 
	
		
			

				𝐻
			

		
	
. Thus, 
	
		
			
				
				(
				𝑄
				𝑁
				(
				𝑥
				)
				)
			

			

				1
			

			
				<
				0
			

		
	
 for 
	
		
			

				𝑥
			

			

				1
			

			
				=
				𝐻
			

		
	
.Similarly, if 
	
		
			
				|
				𝑥
			

			

				2
			

			
				|
				=
				𝐻
			

		
	
, we obtain 
							
	
 		
 			
				(
				2
				.
				3
				9
				)
			
 		
	

	
		
			
				
				𝑄
				
				
				𝑁
				(
				𝑥
				)
			

			

				2
			

			
				>
				0
				f
				o
				r
				𝑥
			

			

				2
			

			
				
				𝑄
				
				
				=
				−
				𝐻
				,
				𝑁
				(
				𝑥
				)
			

			

				2
			

			
				<
				0
				f
				o
				r
				𝑥
			

			

				2
			

			
				=
				𝐻
				.
			

		
	

						Consequently, (2.33) and (2.39) imply that 
	
		
			
				
				𝑁
				𝑥
				∉
				I
				m
				𝐿
			

		
	
 for all 
	
		
			
				𝑥
				∈
				𝜕
				Ω
				∩
				K
				e
				r
				𝐿
			

		
	
.Furthermore, let 
	
		
			
				0
				≤
				𝜇
				≤
				1
			

		
	
 and define continuous function 
	
		
			
				𝐻
				(
				𝑥
				,
				𝜇
				)
			

		
	
 by setting 
							
	
 		
 			
				(
				2
				.
				4
				0
				)
			
 		
	

	
		
			
				
				𝐻
				(
				𝑥
				,
				𝜇
				)
				=
				−
				(
				1
				−
				𝜇
				)
				𝑥
				+
				𝜇
				𝑄
				𝑁
				𝑥
				.
			

		
	
For all 
	
		
			
				𝑥
				(
				𝑡
				)
				=
				(
				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝑥
			

			

				2
			

			
				(
				𝑡
				)
				)
			

			

				𝑇
			

			
				∈
				𝜕
				Ω
				∩
				K
				e
				r
				𝐿
			

		
	
, then there exists some 
	
		
			
				𝑖
				∈
				{
				1
				,
				2
				}
			

		
	
 such that 
	
		
			
				|
				𝑥
			

			

				𝑖
			

			
				|
				=
				𝐻
			

		
	
. There are two cases: 
	
		
			

				𝑥
			

			

				1
			

			
				=
				±
				𝐻
			

		
	
 or 
	
		
			

				𝑥
			

			

				2
			

			
				=
				±
				𝐻
			

		
	
. When 
	
		
			

				𝑥
			

			

				1
			

			
				=
				𝐻
			

		
	
 or 
	
		
			

				𝑥
			

			

				2
			

			
				=
				𝐻
			

		
	
, from (2.33) and (2.39), it is obvious that 
	
		
			
				(
				𝐻
				(
				𝑥
				,
				𝜇
				)
				)
			

			

				1
			

			
				<
				0
			

		
	
 or 
	
		
			
				(
				𝐻
				(
				𝑥
				,
				𝜇
				)
				)
			

			

				2
			

			
				<
				0
			

		
	
. Similarly, if 
	
		
			

				𝑥
			

			

				1
			

			
				=
				−
				𝐻
			

		
	
 or 
	
		
			

				𝑥
			

			

				2
			

			
				=
				−
				𝐻
			

		
	
, it results that 
	
		
			
				(
				𝐻
				(
				𝑥
				,
				𝜇
				)
				)
			

			

				1
			

			
				>
				0
			

		
	
 or 
	
		
			
				(
				𝐻
				(
				𝑥
				,
				𝜇
				)
				)
			

			

				2
			

			
				>
				0
			

		
	
. Hence 
	
		
			
				𝐻
				(
				𝑥
				,
				𝜇
				)
				≠
				(
				0
				,
				0
				)
			

			

				𝑇
			

		
	
 for all 
	
		
			
				𝑥
				∈
				𝜕
				Ω
				∩
				k
				e
				r
				𝐿
			

		
	
.Finally, using the homotopy invariance theorem, we obtain 
							
	
 		
 			
				(
				2
				.
				4
				1
				)
			
 		
	

	
		
			
				
				𝑄
				
				d
				e
				g
				𝑁
				,
				Ω
				∩
				k
				e
				r
				𝐿
				,
				(
				0
				,
				0
				)
			

			

				𝑇
			

			
				
				
				=
				d
				e
				g
				−
				𝑥
				,
				Ω
				∩
				k
				e
				r
				𝐿
				,
				(
				0
				,
				0
				)
			

			

				𝑇
			

			
				
				≠
				0
				.
			

		
	

						It then follows from the continuation theorem that 
	
		
			
				
				𝐿
				𝑥
				=
				𝑁
				𝑥
			

		
	
 has a solution 
							
	
 		
 			
				(
				2
				.
				4
				2
				)
			
 		
	

	
		
			

				𝑥
			

			

				∗
			

			
				
				𝑥
				(
				𝑡
				)
				=
			

			
				∗
				1
			

			
				(
				𝑡
				)
				,
				𝑥
			

			
				∗
				2
			

			
				
				(
				𝑡
				)
			

			

				𝑇
			

			
				
				∈
				D
				o
				m
				𝐿
			

			
				
			
			
				Ω
				,
			

		
	

						which is an 
	
		
			

				𝜔
			

		
	
-periodic solution to (2.4). Therefore 
	
		
			

				𝑁
			

			

				∗
			

			
				(
				𝑡
				)
				=
				(
				𝑁
			

			
				∗
				1
			

			
				(
				𝑡
				)
				,
				𝑁
			

			
				∗
				2
			

			
				(
				𝑡
				)
				)
			

			

				𝑇
			

			
				=
				(
				𝑒
			

			

				𝑥
			

			
				∗
				1
			

			
				(
				𝑡
				)
			

			
				,
				𝑒
			

			

				𝑥
			

			
				∗
				2
			

			
				(
				𝑡
				)
			

			

				)
			

			

				𝑇
			

		
	
 is a positive 
	
		
			

				𝜔
			

		
	
-periodic solution of (1.3) and the proof is complete. 
3. An Example 
In this section, we give an example to demonstrate the results obtained in the previous section.
Example 3.1. Consider the following Nicholson-type delay system with nonlinear density-dependent mortality terms: 
							
	
 		
 			
				(
				3
				.
				1
				)
			
 		
	

	
		
			

				𝑁
			

			
				
				1
			

			
				(
				𝑡
				)
				=
				−
				(
				5
				+
				s
				i
				n
				𝑡
				)
				𝑁
			

			

				1
			

			
				(
				𝑡
				)
			

			
				
			
			
				5
				+
				s
				i
				n
				𝑡
				+
				𝑁
			

			

				1
			

			
				+
				(
				𝑡
				)
				(
				2
				+
				c
				o
				s
				𝑡
				)
				𝑁
			

			

				2
			

			
				(
				𝑡
				)
			

			
				
			
			
				2
				+
				c
				o
				s
				𝑡
				+
				𝑁
			

			

				2
			

			
				(
				𝑡
				)
				+
				𝑒
			

			
				4
				𝜋
			

			
				
				1
				+
				c
				o
				s
				𝑡
			

			
				
			
			
				4
				
				𝑁
			

			

				1
			

			
				
				|
				|
				|
				|
				
				𝑒
				𝑡
				−
				2
				+
				c
				o
				s
				𝑡
			

			
				−
				𝑒
			

			
				4
				𝜋
				+
				|
				s
				i
				n
				𝑡
				|
			

			

				𝑁
			

			

				1
			

			
				(
				𝑡
				−
				|
				2
				+
				c
				o
				s
				𝑡
				|
				)
			

			
				+
				𝑒
			

			
				4
				𝜋
			

			
				
				1
				+
				s
				i
				n
				𝑡
			

			
				
			
			
				4
				
				𝑁
			

			

				1
			

			
				
				|
				|
				|
				|
				
				𝑒
				𝑡
				−
				2
				+
				s
				i
				n
				𝑡
			

			
				−
				𝑒
			

			
				4
				𝜋
				+
				|
				c
				o
				s
				𝑡
				|
			

			

				𝑁
			

			

				1
			

			
				(
				𝑡
				−
				|
				2
				+
				s
				i
				n
				𝑡
				|
				)
			

			
				,
				𝑁
			

			
				
				2
			

			
				(
				(
				𝑡
				)
				=
				−
				5
				+
				c
				o
				s
				𝑡
				)
				𝑁
			

			

				2
			

			
				(
				𝑡
				)
			

			
				
			
			
				5
				+
				c
				o
				s
				𝑡
				+
				𝑁
			

			

				2
			

			
				+
				(
				(
				𝑡
				)
				2
				+
				s
				i
				n
				𝑡
				)
				𝑁
			

			

				1
			

			
				(
				𝑡
				)
			

			
				
			
			
				2
				+
				s
				i
				n
				𝑡
				+
				𝑁
			

			

				1
			

			
				(
				𝑡
				)
				+
				𝑒
			

			
				4
				𝜋
			

			
				
				1
				+
				s
				i
				n
				𝑡
			

			
				
			
			
				4
				
				𝑁
			

			

				2
			

			
				
				|
				|
				|
				|
				
				𝑒
				𝑡
				−
				2
				+
				s
				i
				n
				𝑡
			

			
				−
				𝑒
			

			
				4
				𝜋
				+
				|
				c
				o
				s
				𝑡
				|
			

			

				𝑁
			

			

				2
			

			
				(
				𝑡
				−
				|
				2
				+
				s
				i
				n
				𝑡
				|
				)
			

			
				+
				𝑒
			

			
				4
				𝜋
			

			
				
				1
				+
				c
				o
				s
				𝑡
			

			
				
			
			
				4
				
				𝑁
			

			

				2
			

			
				
				|
				|
				|
				|
				
				𝑒
				𝑡
				−
				2
				+
				c
				o
				s
				𝑡
			

			
				−
				𝑒
			

			
				4
				𝜋
				+
				|
				s
				i
				n
				𝑡
				|
			

			

				𝑁
			

			

				2
			

			
				(
				𝑡
				−
				|
				2
				+
				c
				o
				s
				𝑡
				|
				)
			

			

				.
			

		
	

						Obviously, 
	
		
			

				𝐴
			

			

				𝑖
			

			
				=
				4
				𝜋
			

		
	
, 
	
		
			

				𝐵
			

			

				𝑖
			

			
				=
				4
				𝜋
				𝑒
			

			
				4
				𝜋
			

		
	
, 
	
		
			

				𝐶
			

			

				𝑖
			

			
				=
				1
				0
				𝜋
			

		
	
, 
	
		
			

				𝐷
			

			

				𝑖
			

			
				=
				4
				𝜋
			

		
	
  
	
		
			
				(
				𝑖
				=
				1
				,
				2
				)
			

		
	
, 
	
		
			

				𝑐
			

			
				+
				𝑖
				𝑗
			

			
				=
				(
				5
				/
				4
				)
				𝑒
			

			
				4
				𝜋
			

		
	
, 
	
		
			

				𝛾
			

			
				−
				𝑖
				𝑗
			

			
				=
				𝑒
			

			
				4
				𝜋
			

			
				(
				𝑖
				,
				𝑗
				=
				1
				,
				2
				)
			

		
	
, 
	
		
			

				𝑎
			

			
				+
				1
				2
			

			
				=
				𝑎
			

			
				+
				2
				1
			

			
				=
				3
			

		
	
, 
	
		
			

				𝑎
			

			
				−
				1
				1
			

			
				=
				𝑎
			

			
				−
				2
				2
			

			
				=
				4
			

		
	
, then 
							
	
 		
 			
				(
				3
				.
				2
				)
			
 		
	

	
		
			
				l
				n
				2
				𝐵
			

			

				𝑖
			

			
				
			
			

				𝐴
			

			

				𝑖
			

			
				=
				l
				n
				2
				+
				4
				𝜋
				>
				4
				𝜋
				=
				𝐴
			

			

				𝑖
			

			
				,
				𝐶
			

			

				𝑖
			

			
				=
				1
				0
				𝜋
				>
				8
				𝜋
				=
				2
				𝐷
			

			

				𝑖
			

			
				,
				𝑖
				=
				1
				,
				2
				,
			

			

				𝑙
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑐
			

			
				+
				1
				𝑗
			

			
				
			
			

				𝑎
			

			
				−
				1
				1
			

			

				𝛾
			

			
				−
				1
				𝑗
			

			
				𝑒
				+
				𝑎
			

			
				+
				1
				2
			

			
				
			
			

				𝑎
			

			
				−
				1
				1
			

			
				=
				5
			

			
				
			
			
				+
				3
				8
				𝑒
			

			
				
			
			
				4
				≈
				0
				.
				9
				7
				9
				9
				<
				1
				,
			

			

				𝑙
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑐
			

			
				+
				2
				𝑗
			

			
				
			
			

				𝑎
			

			
				−
				2
				2
			

			

				𝛾
			

			
				−
				2
				𝑗
			

			
				𝑒
				+
				𝑎
			

			
				+
				2
				1
			

			
				
			
			

				𝑎
			

			
				−
				2
				2
			

			
				=
				5
			

			
				
			
			
				+
				3
				8
				𝑒
			

			
				
			
			
				4
				≈
				0
				.
				9
				7
				9
				9
				<
				1
				,
			

		
	

						which means the conditions in Theorem 2.2 hold. Hence, the model (3.1) has a positive 
	
		
			
				2
				𝜋
			

		
	
-periodic solution in 
	
		
			
				
			
			

				Ω
			

		
	
, where 
	
		
			
				Ω
				=
				{
				𝑥
				∈
				𝑋
				∶
				|
				|
				𝑥
				|
				|
				<
				1
				0
				0
				0
				0
				}
			

		
	
. The fact is verified by the numerical simulation in Figure 1.


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
	
		
			
		
	
	
		
			
			
		
	
	
		
			
			
		
	
	
		
			
			
		
	
	
		
			
			
		
	
	
		
			
			
		
	
	
		
			
			
		
	
	
		
			
			
		
	
	
		
			
			
		
	
	
		
			
			
		
	


	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	


	
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	

(a)


	
	
		
			
		
	
	
	
		
			
			
		
	
	
	
		
			
			
		
	
	
	
		
			
			
		
	
	
	
		
			
			
		
	
	
	
		
			
			
		
	
	
	
		
			
			
		
	
	
	
		
			
			
		
	
	
	
		
			
			
		
	
	
		
			
			
		
	
	
	
	
	
	
	
	
	
	
		
	


	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
		
		
	


	
		
	


	
		
		
		
	


	
		
		
		
	


	

(b)
Figure 1: Numerical solution 
	
		
			
				𝑁
				(
				𝑡
				)
				=
				(
				𝑁
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝑁
			

			

				2
			

			
				(
				𝑡
				)
				)
			

			

				𝑇
			

		
	
 of systems (3.1) for initial value 
	
		
			
				𝜑
				(
				𝑡
				)
				≡
				(
				1
				,
				2
				)
			

			

				𝑇
			

		
	
.


Remark 3.2. Equation (3.1) is a form of Nicholson’s blowflies delayed systems with nonlinear density-dependent mortality terms, but as far as we know there are no that results can be applicable to (3.1) to obtain the existence of positive 
	
		
			
				2
				𝜋
			

		
	
-periodic solutions. This implies the results of this paper are essentially new.
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