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Abstract. 
Recently,  Dere and  Simsek  (2012) have studied the applications of umbral algebra to some special functions. In this paper, we investigate some properties of umbral calculus associated with 
	
		
			

				𝑝
			

		
	
-adic invariant integrals on 
	
		
			

				𝐙
			

			

				𝑝
			

		
	
. From our properties, we can also derive some interesting identities of Bernoulli polynomials.


1. Introduction
 Let  
	
		
			

				𝑝
			

		
	
 be a fixed prime number. Throughout this paper,  
	
		
			

				𝐙
			

			

				𝑝
			

			
				,
				𝐐
			

			

				𝑝
			

		
	
, and 
	
		
			

				𝐂
			

			

				𝑝
			

		
	
 denote the ring of  -adic integers, the field of  -adic rational numbers, and the completion of algebraic closure of  
	
		
			

				𝐐
			

			

				𝑝
			

		
	
, respectively. 
Let  
	
		
			
				𝐍
				∪
				{
				0
				}
			

		
	
. Let 
	
		
			
				𝑈
				𝐷
				(
				𝐙
			

			

				𝑝
			

			

				)
			

		
	
 be space of uniformly differentiable functions on  
	
		
			

				𝐙
			

			

				𝑝
			

		
	
. For  
	
		
			
				𝑓
				∈
				𝑈
				𝐷
				(
				𝐙
			

			

				𝑝
			

			

				)
			

		
	
, the 
	
		
			

				𝑝
			

		
	
-adic invariant integral on  
	
		
			

				𝐙
			

			

				𝑝
			

		
	
  is defined by 
						
	
 		
 			
				(
				1
				.
				1
				)
			
 		
	

	
		
			

				
			

			

				𝐙
			

			

				𝑝
			

			
				𝑓
				(
				𝑥
				)
				𝑑
				𝜇
				(
				𝑥
				)
				=
				l
				i
				m
			

			
				𝑁
				→
				∞
			

			

				1
			

			
				
			
			

				𝑝
			

			
				𝑁
				𝑝
			

			

				𝑁
			

			
				−
				1
			

			

				
			

			
				𝑥
				=
				0
			

			
				𝑓
				(
				𝑥
				)
				,
			

		
	

					see  [1, 2].
 From (1.1), we have 
						
	
 		
 			
				(
				1
				.
				2
				)
			
 		
	

	
		
			

				
			

			

				𝐙
			

			

				𝑝
			

			
				
				𝑓
				(
				𝑥
				+
				𝑛
				)
				𝑑
				𝜇
				(
				𝑥
				)
				−
			

			

				𝐙
			

			

				𝑝
			

			
				𝑓
				(
				𝑥
				)
				𝑑
				𝜇
				(
				𝑥
				)
				=
			

			

				𝑛
			

			

				
			

			
				𝑙
				=
				0
			

			

				𝑓
			

			

				
			

			
				(
				𝑙
				)
				,
				𝑛
				∈
				𝐍
				,
			

		
	

					where  
	
		
			

				𝑓
			

			

				
			

			
				(
				𝑙
				)
				=
				(
				𝑑
				𝑓
				(
				𝑥
				)
				/
				𝑑
				𝑥
				)
				∣
			

			
				𝑥
				=
				𝑙
			

		
	
  (see [1–6]). Let  
	
		
			

				𝐅
			

		
	
 be the set of all formal power series in the variable 
	
		
			

				𝑡
			

		
	
 over  
	
		
			

				𝐂
			

			

				𝑝
			

		
	
 with 
						
	
 		
 			
				(
				1
				.
				3
				)
			
 		
	

	
		
			
				
				𝐅
				=
				𝑓
				(
				𝑡
				)
				=
			

			

				∞
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝑎
			

			

				𝑘
			

			
				
			
			
				𝑡
				𝑘
				!
			

			

				𝑘
			

			
				∣
				𝑎
			

			

				𝑘
			

			
				∈
				𝐂
			

			

				𝑝
			

			
				
				.
			

		
	

					Let  
	
		
			
				ℙ
				=
				𝐂
			

			

				𝑝
			

			
				[
				𝑥
				]
			

		
	
  and let  
	
		
			

				ℙ
			

			

				∗
			

		
	
 denote the vector space of all linear functional on 
	
		
			

				ℙ
			

		
	
. 
The formal power series,
						
	
 		
 			
				(
				1
				.
				4
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑡
				)
				=
			

			

				∞
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝑎
			

			

				𝑘
			

			
				
			
			
				𝑡
				𝑘
				!
			

			

				𝑘
			

			
				∈
				𝐅
				,
			

		
	

					defines a linear functional on  
	
		
			

				ℙ
			

		
	
  by setting 
						
	
 		
 			
				(
				1
				.
				5
				)
			
 		
	

	
		
			
				⟨
				𝑓
				(
				𝑡
				)
				∣
				𝑥
			

			

				𝑛
			

			
				⟩
				=
				𝑎
			

			

				𝑛
			

			
				,
				∀
				𝑛
				≥
				0
				,
			

		
	

					see  [7, 8].
 In particular, by (1.4) and (1.5), we get 
						
	
 		
 			
				(
				1
				.
				6
				)
			
 		
	

	
		
			
				
				𝑡
			

			

				𝑘
			

			
				∣
				𝑥
			

			

				𝑛
			

			
				
				=
				𝑛
				!
				𝛿
			

			
				𝑛
				,
				𝑘
			

			

				,
			

		
	

					where 
	
		
			

				𝛿
			

			
				𝑛
				,
				𝑘
			

		
	
 is the Kronecker symbol (see [7]). Here, 
	
		
			

				𝐅
			

		
	
 denotes both the algebra of formal power series in 
	
		
			

				𝑡
			

		
	
 and the vector space of all linear functional on 
	
		
			

				ℙ
			

		
	
, so an element 
	
		
			
				𝑓
				(
				𝑡
				)
			

		
	
 of  
	
		
			

				𝐅
			

		
	
  will be thought of as both a formal power series and a linear functional. We shall call  
	
		
			

				𝐅
			

		
	
  the umbral algebra. The umbral calculus is the study of umbral algebra. 
The order 
	
		
			
				𝑜
				(
				𝑓
				(
				𝑡
				)
				)
			

		
	
 of power series  
	
		
			
				𝑓
				(
				𝑡
				)
				(
				≠
				0
				)
			

		
	
 is the smallest integer  
	
		
			

				𝑘
			

		
	
  for which  
	
		
			

				𝑎
			

			

				𝑘
			

		
	
  does not vanish. We define 
	
		
			
				𝑜
				(
				𝑓
				(
				𝑡
				)
				)
				=
				∞
			

		
	
 if 
	
		
			
				𝑓
				(
				𝑡
				)
				=
				0
			

		
	
. From the definition of order, we note that 
	
		
			
				𝑜
				(
				𝑓
				(
				𝑡
				)
				𝑔
				(
				𝑡
				)
				)
				=
				𝑜
				(
				𝑓
				(
				𝑡
				)
				)
				+
				𝑜
				(
				𝑔
				(
				𝑡
				)
				)
			

		
	
 and 
	
		
			
				𝑜
				(
				𝑓
				(
				𝑡
				)
				+
				𝑔
				(
				𝑡
				)
				)
				≥
				m
				i
				n
				{
				𝑜
				(
				𝑓
				(
				𝑡
				)
				)
				,
				𝑜
				(
				𝑔
				(
				𝑡
				)
				)
				}
			

		
	
.
The series 
	
		
			
				𝑓
				(
				𝑡
				)
			

		
	
 has a multiplicative inverse, denoted by 
	
		
			
				𝑓
				(
				𝑡
				)
			

			
				−
				1
			

		
	
 or 
	
		
			
				1
				/
				𝑓
				(
				𝑡
				)
			

		
	
, if and only if  
	
		
			
				𝑜
				(
				𝑓
				(
				𝑡
				)
				)
				=
				0
			

		
	
.
Such a series is called invertible series. A series 
	
		
			
				𝑓
				(
				𝑡
				)
			

		
	
 for which 
	
		
			
				𝑜
				(
				𝑓
				(
				𝑡
				)
				)
				=
				1
			

		
	
 is called a delta series  (see [7, 8]). Let  
	
		
			
				𝑓
				(
				𝑡
				)
				,
				𝑔
				(
				𝑡
				)
				∈
				𝐅
			

		
	
.  Then, we have 
						
	
 		
 			
				(
				1
				.
				7
				)
			
 		
	

	
		
			
				⟨
				𝑓
				(
				𝑡
				)
				𝑔
				(
				𝑡
				)
				∣
				𝑝
				(
				𝑥
				)
				⟩
				=
				⟨
				𝑓
				(
				𝑡
				)
				∣
				𝑔
				(
				𝑡
				)
				𝑝
				(
				𝑥
				)
				⟩
				=
				⟨
				𝑔
				(
				𝑡
				)
				∣
				𝑓
				(
				𝑡
				)
				𝑝
				(
				𝑥
				)
				⟩
				.
			

		
	

					By (1.5) and (1.6), we get 
						
	
 		
 			
				(
				1
				.
				8
				)
			
 		
	

	
		
			
				
				𝑒
			

			
				𝑦
				𝑡
			

			
				∣
				𝑥
			

			

				𝑛
			

			
				
				=
				𝑦
			

			

				𝑛
			

			
				,
				
				𝑒
			

			
				𝑦
				𝑡
			

			
				
				∣
				𝑝
				(
				𝑥
				)
				=
				𝑝
				(
				𝑦
				)
				,
			

		
	

					see  [7].
Notice that for all  
	
		
			
				𝑓
				(
				𝑡
				)
			

		
	
  in  
	
		
			

				𝐅
			

		
	
,
						
	
 		
 			
				(
				1
				.
				9
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑡
				)
				=
			

			

				∞
			

			

				
			

			
				𝑘
				=
				0
			

			
				
				𝑓
				(
				𝑡
				)
				∣
				𝑥
			

			

				𝑘
			

			

				
			

			
				
			
			
				𝑡
				𝑘
				!
			

			

				𝑘
			

			

				,
			

		
	

					and for all polynomials  
	
		
			
				𝑝
				(
				𝑥
				)
			

		
	
,
						
	
 		
 			
				(
				1
				.
				1
				0
				)
			
 		
	

	
		
			
				
				𝑝
				(
				𝑥
				)
				=
			

			
				𝑘
				≥
				0
			

			
				
				𝑡
			

			

				𝑘
			

			
				
				∣
				𝑝
				(
				𝑥
				)
			

			
				
			
			
				𝑥
				𝑘
				!
			

			

				𝑘
			

			

				,
			

		
	

					see  [7, 8].
 Let  
	
		
			

				𝑓
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝑓
			

			

				2
			

			
				(
				𝑡
				)
				,
				…
				,
				𝑓
			

			

				𝑚
			

			
				(
				𝑡
				)
				∈
				𝐅
			

		
	
.  Then, we have
						
	
 		
 			
				(
				1
				.
				1
				1
				)
			
 		
	

	
		
			
				⟨
				𝑓
			

			

				1
			

			
				(
				𝑡
				)
				𝑓
			

			

				2
			

			
				(
				𝑡
				)
				⋯
				𝑓
			

			

				𝑚
			

			
				(
				𝑡
				)
				∣
				𝑥
			

			

				𝑛
			

			
				
				⎛
				⎜
				⎜
				⎝
				𝑛
				𝑖
				⟩
				=
			

			

				1
			

			
				,
				…
				,
				𝑖
			

			

				𝑚
			

			
				⎞
				⎟
				⎟
				⎠
				
				𝑓
			

			

				1
			

			
				(
				𝑡
				)
				∣
				𝑥
			

			

				𝑖
			

			

				1
			

			
				
				⋯
				
				𝑓
			

			

				𝑚
			

			
				(
				𝑡
				)
				∣
				𝑥
			

			

				𝑖
			

			

				𝑚
			

			
				
				,
			

		
	

					where the sum is over all nonnegative integers  
	
		
			

				𝑖
			

			

				1
			

			
				,
				𝑖
			

			

				2
			

			
				,
				…
				,
				𝑖
			

			

				𝑚
			

		
	
 such that  
	
		
			

				𝑖
			

			

				1
			

			
				+
				⋯
				+
				𝑖
			

			

				𝑚
			

			
				=
				𝑛
			

		
	
  (see  [8]).
By (1.10), we get 
						
	
 		
 			
				(
				1
				.
				1
				2
				)
			
 		
	

	
		
			

				𝑝
			

			
				(
				𝑘
				)
			

			
				𝑑
				(
				𝑥
				)
				=
			

			

				𝑘
			

			
				𝑝
				(
				𝑥
				)
			

			
				
			
			
				𝑑
				𝑥
			

			

				𝑘
			

			

				=
			

			

				𝑛
			

			

				
			

			
				𝑙
				=
				𝑘
			

			
				
				𝑡
			

			

				𝑙
			

			
				
				∣
				𝑝
				(
				𝑥
				)
			

			
				
			
			
				𝑙
				!
				𝑙
				(
				𝑙
				−
				1
				)
				⋯
				(
				𝑙
				−
				𝑘
				+
				1
				)
				𝑥
			

			
				𝑙
				−
				𝑘
			

			

				.
			

		
	

					Thus, from (1.12), we have 
						
	
 		
 			
				(
				1
				.
				1
				3
				)
			
 		
	

	
		
			

				𝑝
			

			
				(
				𝑘
				)
			

			
				
				𝑡
				(
				0
				)
				=
			

			

				𝑘
			

			
				
				=
				
				∣
				𝑝
				(
				𝑥
				)
				1
				∣
				𝑝
			

			
				(
				𝑘
				)
			

			
				
				,
				(
				𝑥
				)
			

		
	

					see  [7].
 By (1.13), we get 
						
	
 		
 			
				(
				1
				.
				1
				4
				)
			
 		
	

	
		
			

				𝑡
			

			

				𝑘
			

			
				𝑝
				(
				𝑥
				)
				=
				𝑝
			

			
				(
				𝑘
				)
			

			
				𝑑
				(
				𝑥
				)
				=
			

			

				𝑘
			

			
				(
				𝑝
				(
				𝑥
				)
				)
			

			
				
			
			
				𝑑
				𝑥
			

			

				𝑘
			

			

				.
			

		
	

					Thus, by (1.14), we see that 
						
	
 		
 			
				(
				1
				.
				1
				5
				)
			
 		
	

	
		
			

				𝑒
			

			
				𝑦
				𝑡
			

			
				𝑝
				(
				𝑥
				)
				=
				𝑝
				(
				𝑥
				+
				𝑦
				)
				.
			

		
	

					Let us assume that  
	
		
			

				𝑠
			

			

				𝑛
			

			
				(
				𝑥
				)
			

		
	
  is a polynomial of degree 
	
		
			

				𝑛
			

		
	
. Suppose that 
	
		
			
				𝑓
				(
				𝑡
				)
				,
				𝑔
				(
				𝑡
				)
				∈
				𝐅
			

		
	
 with 
	
		
			
				𝑜
				(
				𝑓
				(
				𝑡
				)
				)
				=
				1
			

		
	
 and 
	
		
			
				𝑜
				(
				𝑔
				(
				𝑡
				)
				)
				=
				0
			

		
	
. Then, there exists a unique sequence  
	
		
			

				𝑠
			

			

				𝑛
			

			
				(
				𝑥
				)
			

		
	
 of polynomials satisfying  
	
		
			
				⟨
				𝑔
				(
				𝑡
				)
				𝑓
				(
				𝑡
				)
			

			

				𝑘
			

			
				∣
				𝑠
			

			

				𝑛
			

			
				(
				𝑥
				)
				⟩
				=
				𝑛
				!
				𝛿
			

			
				𝑛
				,
				𝑘
			

		
	
  for all  
	
		
			
				𝑛
				,
				𝑘
				≥
				0
			

		
	
.
The sequence 
	
		
			

				𝑠
			

			

				𝑛
			

			
				(
				𝑥
				)
			

		
	
 is called the Sheffer sequence for  
	
		
			
				(
				𝑔
				(
				𝑡
				)
				,
				𝑓
				(
				𝑡
				)
				)
			

		
	
, which is denoted by  
	
		
			

				𝑠
			

			

				𝑛
			

			
				(
				𝑥
				)
				∼
				(
				𝑔
				(
				𝑡
				)
				,
				𝑓
				(
				𝑡
				)
				)
			

		
	
.
The Sheffer sequence for   is called the Appell sequence for , or  is Appell for , which is indicated by  .
For  , it is known that 
						
	
		
			
				⟨
				𝑓
				(
				𝑡
				)
				∣
				𝑥
				𝑝
				(
				𝑥
				)
				⟩
				=
				⟨
				𝜕
			

			

				𝑡
			

			
				
				𝑓
				𝑓
				(
				𝑡
				)
				∣
				𝑝
				(
				𝑥
				)
				⟩
				=
			

			

				
			

			
				
				,
				
				𝑒
				(
				𝑡
				)
				∣
				𝑝
				(
				𝑥
				)
			

			
				𝑦
				𝑡
			

			
				
				−
				1
				∣
				𝑝
				(
				𝑥
				)
				=
				𝑝
				(
				𝑦
				)
				−
				𝑝
				(
				0
				)
				,
			

		
	

					see  [7, 8].
 Let  .  Then, we have 
						
	
		
			
				ℎ
				(
				𝑡
				)
				=
			

			

				∞
			

			

				
			

			
				𝑘
				=
				0
			

			
				⟨
				ℎ
				(
				𝑡
				)
				∣
				𝑠
			

			

				𝑘
			

			
				(
				𝑥
				)
				⟩
			

			
				
			
			
				𝑘
				!
				𝑔
				(
				𝑡
				)
				𝑓
				(
				𝑡
				)
			

			

				𝑘
			

			
				,
				ℎ
				(
				𝑡
				)
				∈
				𝐅
				,
				𝑝
				(
				𝑥
				)
				=
			

			

				∞
			

			

				
			

			
				𝑘
				=
				0
			

			
				
				𝑔
				(
				𝑡
				)
				𝑓
				(
				𝑡
				)
			

			

				𝑘
			

			
				
				∣
				𝑝
				(
				𝑥
				)
			

			
				
			
			
				𝑠
				𝑘
				!
			

			

				𝑘
			

			
				1
				(
				𝑥
				)
				,
				𝑝
				(
				𝑥
				)
				∈
				ℙ
				,
			

			
				
			
			
				𝑔
				
			

			
				
			
			
				
				𝑒
				𝑓
				(
				𝑡
				)
			

			

				𝑦
			

			
				
			
			
				𝑓
				(
				𝑡
				)
			

			

				=
			

			

				∞
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝑠
			

			

				𝑘
			

			
				(
				𝑦
				)
			

			
				
			
			
				𝑡
				𝑘
				!
			

			

				𝑘
			

			

				,
			

			
				f
				o
				r
				a
				n
				y
			

			
				𝑦
				∈
				𝐂
			

			

				𝑝
			

			

				,
			

		
	

					where  is the compositional inverse of  , and 
						
	
		
			
				𝑓
				(
				𝑡
				)
				𝑠
			

			

				𝑛
			

			
				(
				𝑥
				)
				=
				𝑛
				𝑠
			

			
				𝑛
				−
				1
			

			
				(
				𝑥
				)
				,
			

		
	

					see [7, 8].
We recall that the Bernoulli polynomials are defined by the generating function to be 
						
	
		
			

				𝑡
			

			
				
			
			

				𝑒
			

			

				𝑡
			

			
				𝑒
				−
				1
			

			
				𝑥
				𝑡
			

			
				=
				𝑒
			

			
				𝐵
				(
				𝑥
				)
				𝑡
			

			

				=
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝐵
			

			

				𝑛
			

			
				𝑡
				(
				𝑥
				)
			

			

				𝑛
			

			
				
			
			
				,
				𝑛
				!
			

		
	

					with the usual convention  about replacing   by   (see [1–16]).
In the special case,    are called the th Bernoulli numbers. By (1.21), we easily get 
						
	
		
			

				𝐵
			

			

				𝑛
			

			
				(
				𝑥
				)
				=
				(
				𝐵
				+
				𝑥
				)
			

			

				𝑛
			

			

				=
			

			

				𝑛
			

			

				
			

			
				𝑙
				=
				0
			

			
				⎛
				⎜
				⎜
				⎝
				𝑛
				𝑙
				⎞
				⎟
				⎟
				⎠
				𝐵
			

			

				𝑙
			

			

				𝑥
			

			
				𝑛
				−
				𝑙
			

			

				=
			

			

				𝑛
			

			

				
			

			
				𝑙
				=
				0
			

			
				⎛
				⎜
				⎜
				⎝
				𝑛
				𝑙
				⎞
				⎟
				⎟
				⎠
				𝐵
			

			
				𝑛
				−
				𝑙
			

			

				𝑥
			

			

				𝑙
			

			

				.
			

		
	

					Thus, by (1.22), we see that   is a monic polynomial of degree  . It is easy to show that 
						
	
		
			

				𝐵
			

			

				0
			

			
				=
				1
				,
				𝐵
			

			

				𝑛
			

			
				(
				1
				)
				−
				𝐵
			

			

				𝑛
			

			
				=
				𝛿
			

			
				1
				,
				𝑛
			

			

				,
			

		
	

					see [13–15].
 From (1.2), we can derive the following equation:
						
	
 		
 			
				(
				1
				.
				2
				4
				)
			
 		
	

	
		
			

				
			

			

				𝐙
			

			

				𝑝
			

			
				
				𝑓
				(
				𝑥
				+
				1
				)
				𝑑
				𝜇
				(
				𝑥
				)
				−
			

			

				𝐙
			

			

				𝑝
			

			
				𝑓
				(
				𝑥
				)
				𝑑
				𝜇
				(
				𝑥
				)
				=
				𝑓
			

			

				
			

			
				(
				0
				)
				.
			

		
	

					Let us take 
	
		
			
				𝑓
				(
				𝑥
				)
				=
				𝑒
			

			
				𝑡
				𝑥
			

			
				∈
				𝑈
				𝐷
				(
				𝐙
			

			

				𝑝
			

			

				)
			

		
	
. Then, from (1.21), (1.22), (1.23), and (1.24), we have 
						
	
 		
 			
				(
				1
				.
				2
				5
				)
			
 		
	

	
		
			

				
			

			

				𝐙
			

			

				𝑝
			

			

				𝑥
			

			

				𝑛
			

			
				𝑑
				𝜇
				(
				𝑥
				)
				=
				𝐵
			

			

				𝑛
			

			
				,
				
			

			

				𝐙
			

			

				𝑝
			

			
				(
				𝑥
				+
				𝑦
				)
			

			

				𝑛
			

			
				𝑑
				𝜇
				(
				𝑦
				)
				=
				𝐵
			

			

				𝑛
			

			
				(
				𝑥
				)
				,
			

		
	

					where 
	
		
			
				𝑛
				≥
				0
			

		
	
  (see [1, 2]). Recently, Dere and simsek have studied applications of umbral algebra to some special functions (see [7]). In this paper, we investigate some properties of umbral calculus associated with 
	
		
			

				𝑝
			

		
	
-adic invariant integrals on  
	
		
			

				𝐙
			

			

				𝑝
			

		
	
. From our properties,  we can derive some interesting identities of Bernoulli polynomials. 
2. Applications of Umbral Calculus Associated with 
	
		
			

				𝑝
			

		
	
-Adic Invariant Integrals on 
	
		
			

				𝑍
			

			

				𝑝
			

		
	

 Let 
	
		
			

				𝑠
			

			

				𝑛
			

			
				(
				𝑥
				)
			

		
	
 be an Appell sequence for  
	
		
			
				𝑔
				(
				𝑡
				)
			

		
	
.  By (1.19), we get 
						
	
 		
 			
				(
				2
				.
				1
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				𝑥
				𝑔
				(
				𝑡
				)
			

			

				𝑛
			

			
				=
				𝑠
			

			

				𝑛
			

			
				(
				𝑥
				)
				,
			

			
				i
				ﬀ
			

			

				𝑥
			

			

				𝑛
			

			
				=
				𝑔
				(
				𝑡
				)
				𝑠
			

			

				𝑛
			

			
				(
				𝑥
				)
				.
			

		
	

					Let us take 
	
		
			
				𝑔
				(
				𝑡
				)
				=
				(
				(
				𝑒
			

			

				𝑡
			

			
				−
				1
				)
				/
				𝑡
				)
				∈
				𝐅
			

		
	
. Then,  
	
		
			
				𝑔
				(
				𝑡
				)
			

		
	
  is clearly invertible series. From (1.21) and (2.1), we have 
						
	
 		
 			
				(
				2
				.
				2
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝐵
			

			

				𝑘
			

			
				(
				𝑥
				)
			

			
				
			
			
				𝑡
				𝑘
				!
			

			

				𝑘
			

			
				=
				1
			

			
				
			
			
				𝑒
				𝑔
				(
				𝑡
				)
			

			
				𝑥
				𝑡
			

			

				.
			

		
	

					Thus, by (2.2), we get
						
	
 		
 			
				(
				2
				.
				3
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				𝑥
				𝑔
				(
				𝑡
				)
			

			

				𝑛
			

			
				=
				𝐵
			

			

				𝑛
			

			
				(
				𝑥
				)
				,
				𝑡
				𝐵
			

			

				𝑛
			

			
				(
				𝑥
				)
				=
				𝐵
			

			
				
				𝑛
			

			
				(
				𝑥
				)
				=
				𝑛
				𝐵
			

			
				𝑛
				−
				1
			

			
				(
				𝑥
				)
				,
				(
				𝑛
				≥
				0
				)
				.
			

		
	

					From (1.21), (2.1), and (2.3), we note that  
	
		
			

				𝐵
			

			

				𝑛
			

			
				(
				𝑥
				)
			

		
	
  is an Appell sequence for  
	
		
			
				𝑔
				(
				𝑡
				)
				=
				(
				𝑒
			

			

				𝑡
			

			
				−
				1
				)
				/
				𝑡
			

		
	
.
Let us take the derivative with respect to 
	
		
			

				𝑡
			

		
	
 on both sides of (2.2). Then, we have 
						
	
 		
 			
				(
				2
				.
				4
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝐵
			

			

				𝑘
			

			
				(
				𝑥
				)
			

			
				
			
			
				𝑘
				!
				𝑘
				𝑡
			

			
				𝑘
				−
				1
			

			
				=
				𝑥
				𝑔
				(
				𝑡
				)
				𝑒
			

			
				𝑥
				𝑡
			

			
				−
				𝑒
			

			
				𝑥
				𝑡
			

			

				𝑔
			

			

				
			

			
				(
				𝑡
				)
			

			
				
			
			
				𝑔
				(
				𝑡
				)
			

			

				2
			

			

				=
			

			

				∞
			

			

				
			

			
				𝑘
				=
				0
			

			
				
				𝑥
				𝑥
			

			

				𝑘
			

			
				
			
			
				−
				𝑥
				𝑔
				(
				𝑡
				)
			

			

				𝑘
			

			
				
			
			
				𝑔
				𝑔
				(
				𝑡
				)
			

			

				
			

			
				(
				𝑡
				)
			

			
				
			
			
				
				𝑡
				𝑔
				(
				𝑡
				)
			

			

				𝑘
			

			
				
			
			
				.
				𝑘
				!
			

		
	

					Thus, by (2.4), we get 
						
	
 		
 			
				(
				2
				.
				5
				)
			
 		
	

	
		
			

				𝐵
			

			
				𝑘
				+
				1
			

			
				𝑥
				(
				𝑥
				)
				=
				𝑥
			

			

				𝑘
			

			
				
			
			
				−
				𝑥
				𝑔
				(
				𝑡
				)
			

			

				𝑘
			

			
				
			
			
				𝑔
				𝑔
				(
				𝑡
				)
			

			

				
			

			
				(
				𝑡
				)
			

			
				
			
			
				=
				
				𝑔
				𝑔
				(
				𝑡
				)
				𝑥
				−
			

			

				
			

			
				(
				𝑡
				)
			

			
				
			
			
				
				𝐵
				𝑔
				(
				𝑡
				)
			

			

				𝑘
			

			
				(
				𝑥
				)
				,
			

		
	

					where 
	
		
			
				𝑘
				≥
				0
			

		
	
. 						
	
 		
 			
				(
				2
				.
				6
				)
			
 		
	

	
		
			

				
			

			

				𝐙
			

			

				𝑝
			

			

				𝑒
			

			
				(
				𝑥
				+
				𝑦
				+
				1
				)
				𝑡
			

			
				
				𝑑
				𝜇
				(
				𝑦
				)
				−
			

			

				𝐙
			

			

				𝑝
			

			

				𝑒
			

			
				(
				𝑥
				+
				𝑦
				)
				𝑡
			

			
				𝑑
				𝜇
				(
				𝑦
				)
				=
				𝑡
				𝑒
			

			
				𝑥
				𝑡
			

			

				.
			

		
	

					Thus, by (2.6),  we get 
						
	
 		
 			
				(
				2
				.
				7
				)
			
 		
	

	
		
			

				
			

			

				𝐙
			

			

				𝑝
			

			
				(
				𝑥
				+
				𝑦
				+
				1
				)
			

			

				𝑛
			

			
				
				𝑑
				𝜇
				(
				𝑦
				)
				−
			

			

				𝐙
			

			

				𝑝
			

			
				(
				𝑥
				+
				𝑦
				)
			

			

				𝑛
			

			
				𝜇
				(
				𝑦
				)
				=
				𝑛
				𝑥
			

			
				𝑛
				−
				1
			

			
				,
				(
				𝑛
				≥
				0
				)
				.
			

		
	

					From (1.25) and (2.7), we have 
						
	
 		
 			
				(
				2
				.
				8
				)
			
 		
	

	
		
			

				𝐵
			

			

				𝑛
			

			
				(
				𝑥
				+
				1
				)
				−
				𝐵
			

			

				𝑛
			

			
				(
				𝑥
				)
				=
				𝑛
				𝑥
			

			
				𝑛
				−
				1
			

			
				,
				(
				𝑛
				≥
				0
				)
				.
			

		
	

					By (2.5), we see that 
						
	
 		
 			
				(
				2
				.
				9
				)
			
 		
	

	
		
			
				𝑔
				(
				𝑡
				)
				𝐵
			

			
				𝑘
				+
				1
			

			
				(
				𝑥
				)
				=
				𝑔
				(
				𝑡
				)
				𝑥
				𝐵
			

			

				𝑘
			

			
				(
				𝑥
				)
				−
				𝑔
			

			

				
			

			
				(
				𝑡
				)
				𝐵
			

			

				𝑘
			

			
				(
				𝑥
				)
				,
			

		
	

					Thus, by (2.9), we have 
						
	
 		
 			
				(
				2
				.
				1
				0
				)
			
 		
	

	
		
			
				
				𝑒
			

			

				𝑡
			

			
				
				𝐵
				−
				1
			

			
				𝑘
				+
				1
			

			
				
				𝑒
				(
				𝑥
				)
				=
			

			

				𝑡
			

			
				
				−
				1
				𝑥
				𝐵
			

			

				𝑘
			

			
				
				𝑒
				(
				𝑥
				)
				−
			

			

				𝑡
			

			
				
				𝐵
				−
				𝑔
				(
				𝑡
				)
			

			

				𝑘
			

			
				(
				𝑥
				)
				,
				(
				𝑘
				≥
				0
				)
				,
			

		
	

					and we can derive the following equation.
From (2.3) and (2.10), 
						
	
 		
 			
				(
				2
				.
				1
				1
				)
			
 		
	

	
		
			

				𝐵
			

			
				𝑘
				+
				1
			

			
				(
				𝑥
				+
				1
				)
				−
				𝐵
			

			
				𝑘
				+
				1
			

			
				(
				𝑥
				)
				=
				(
				𝑥
				+
				1
				)
				𝐵
			

			

				𝑘
			

			
				(
				𝑥
				+
				1
				)
				−
				𝑥
				𝐵
			

			

				𝑘
			

			
				(
				𝑥
				)
				−
				𝐵
			

			

				𝑘
			

			
				(
				𝑥
				+
				1
				)
				+
				𝑥
			

			

				𝑘
			

			
				,
				(
				𝑘
				≥
				0
				)
				.
			

		
	

					By (2.8) and (2.11), we see that 
						
	
 		
 			
				(
				2
				.
				1
				2
				)
			
 		
	

	
		
			

				𝐵
			

			
				𝑘
				+
				1
			

			
				(
				𝑥
				+
				1
				)
				=
				𝐵
			

			
				𝑘
				+
				1
			

			
				(
				𝑥
				)
				+
				(
				𝑘
				+
				1
				)
				𝑥
			

			

				𝑘
			

			

				.
			

		
	

					Therefore, by (2.5), we obtain the following theorem. 
Theorem 2.1.   For  
	
		
			
				𝑘
				∈
				𝐙
			

			

				+
			

		
	
, one has
							
	
 		
 			
				(
				2
				.
				1
				3
				)
			
 		
	

	
		
			

				𝐵
			

			
				𝑘
				+
				1
			

			
				
				𝑔
				(
				𝑥
				)
				=
				𝑥
				−
			

			

				
			

			
				(
				𝑡
				)
			

			
				
			
			
				
				𝐵
				𝑔
				(
				𝑡
				)
			

			

				𝑘
			

			

				,
			

		
	

						where 
	
		
			

				𝑔
			

			

				
			

			
				(
				𝑡
				)
				=
				𝑑
				𝑔
				(
				𝑡
				)
				/
				𝑑
				𝑡
			

		
	
. 
Corollary 2.2.  For   
	
		
			
				≥
				0
			

		
	
, one has
							
	
 		
 			
				(
				2
				.
				1
				4
				)
			
 		
	

	
		
			

				𝐵
			

			
				𝑘
				+
				1
			

			
				(
				𝑥
				+
				1
				)
				=
				𝐵
			

			
				𝑘
				+
				1
			

			
				(
				𝑥
				)
				+
				(
				𝑘
				+
				1
				)
				𝑥
			

			

				𝑘
			

			

				.
			

		
	


				Let us consider the linear functional  
	
		
			
				𝑓
				(
				𝑡
				)
			

		
	
  that satisfies
						
	
 		
 			
				(
				2
				.
				1
				5
				)
			
 		
	

	
		
			
				
				⟨
				𝑓
				(
				𝑡
				)
				∣
				𝑝
				(
				𝑥
				)
				⟩
				=
			

			

				𝐙
			

			

				𝑝
			

			
				𝑝
				(
				𝑢
				)
				𝑑
				𝜇
				(
				𝑢
				)
				,
			

		
	

					for all polynomials 
	
		
			
				𝑝
				(
				𝑥
				)
			

		
	
. It can be determined from (1.9) that 
						
	
 		
 			
				(
				2
				.
				1
				6
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑡
				)
				=
			

			

				∞
			

			

				
			

			
				𝑘
				=
				0
			

			
				
				𝑓
				(
				𝑡
				)
				∣
				𝑥
			

			

				𝑘
			

			

				
			

			
				
			
			
				𝑡
				𝑘
				!
			

			

				𝑘
			

			

				=
			

			

				∞
			

			

				
			

			
				𝑘
				=
				0
			

			

				
			

			

				𝐙
			

			

				𝑝
			

			

				𝑢
			

			

				𝑘
			

			
				𝑡
				𝑑
				𝜇
				(
				𝑢
				)
			

			

				𝑘
			

			
				
			
			
				=
				
				𝑘
				!
			

			

				𝐙
			

			

				𝑝
			

			

				𝑒
			

			
				𝑢
				𝑡
			

			
				𝑑
				𝜇
				(
				𝑢
				)
				.
			

		
	

					By (1.24) and (2.16), we get 
						
	
 		
 			
				(
				2
				.
				1
				7
				)
			
 		
	

	
		
			
				
				𝑓
				(
				𝑡
				)
				=
			

			

				𝐙
			

			

				𝑝
			

			

				𝑒
			

			
				𝑢
				𝑡
			

			
				𝑡
				𝑑
				𝜇
				(
				𝑢
				)
				=
			

			
				
			
			

				𝑒
			

			

				𝑡
			

			
				.
				−
				1
			

		
	

					Therefore, by (2.17), we obtain the following theorem.
Theorem 2.3.  For  
	
		
			
				𝑝
				(
				𝑥
				)
				∈
				𝐏
			

		
	
,  one has
							
	
 		
 			
				(
				2
				.
				1
				8
				)
			
 		
	

	
		
			
				
				
			

			

				𝐙
			

			

				𝑝
			

			

				𝑒
			

			
				𝑢
				𝑡
			

			
				
				=
				
				𝑑
				𝜇
				(
				𝑢
				)
				∣
				𝑝
				(
				𝑥
				)
			

			

				𝐙
			

			

				𝑝
			

			
				𝑝
				(
				𝑢
				)
				𝑑
				𝜇
				(
				𝑢
				)
				.
			

		
	

						That is
							
	
 		
 			
				(
				2
				.
				1
				9
				)
			
 		
	

	
		
			
				
				𝑡
			

			
				
			
			

				𝑒
			

			

				𝑡
			

			
				
				=
				
				−
				1
				∣
				𝑝
				(
				𝑥
				)
			

			

				𝐙
			

			

				𝑝
			

			
				𝑝
				(
				𝑢
				)
				𝑑
				𝜇
				(
				𝑢
				)
				.
			

		
	

						In particular, one has 
							
	
 		
 			
				(
				2
				.
				2
				0
				)
			
 		
	

	
		
			

				𝐵
			

			

				𝑛
			

			
				=
				
				
			

			

				𝐙
			

			

				𝑝
			

			

				𝑒
			

			
				𝑢
				𝑡
			

			
				𝑑
				𝜇
				(
				𝑢
				)
				∣
				𝑥
			

			

				𝑛
			

			
				
				.
			

		
	


				From (1.24), one has
						
	
 		
 			
				(
				2
				.
				2
				1
				)
			
 		
	

	
		
			

				
			

			
				𝑛
				=
				0
			

			

				
			

			

				𝐙
			

			

				𝑝
			

			
				(
				𝑥
				+
				𝑦
				)
			

			

				𝑛
			

			
				𝑡
				𝑑
				𝜇
				(
				𝑦
				)
			

			

				𝑛
			

			
				
			
			
				=
				
				𝑛
				!
			

			

				𝐙
			

			

				𝑝
			

			

				𝑒
			

			
				(
				𝑥
				+
				𝑦
				)
				𝑡
			

			
				=
				𝑑
				𝜇
				(
				𝑦
				)
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				
			

			

				𝐙
			

			

				𝑝
			

			

				𝑒
			

			
				𝑦
				𝑡
			

			
				𝑑
				𝜇
				(
				𝑦
				)
				𝑥
			

			

				𝑛
			

			

				𝑡
			

			

				𝑛
			

			
				
			
			
				.
				𝑛
				!
			

		
	

					By (1.25) and (2.21), we get 
						
	
 		
 			
				(
				2
				.
				2
				2
				)
			
 		
	

	
		
			

				𝐵
			

			

				𝑛
			

			
				
				(
				𝑥
				)
				=
			

			

				𝐙
			

			

				𝑝
			

			
				(
				𝑥
				+
				𝑦
				)
			

			

				𝑛
			

			
				
				𝑑
				𝜇
				(
				𝑦
				)
				=
			

			

				𝐙
			

			

				𝑝
			

			

				𝑒
			

			
				𝑦
				𝑡
			

			
				𝑑
				𝜇
				(
				𝑦
				)
				𝑥
			

			

				𝑛
			

			

				,
			

		
	

					where  
	
		
			
				𝑛
				≥
				0
			

		
	
.
Therefore, by (2.22), we obtain the following theorem. 
Theorem 2.4.  For 
	
		
			
				𝑝
				(
				𝑥
				)
				∈
				ℙ
			

		
	
, we have 
							
	
 		
 			
				(
				2
				.
				2
				3
				)
			
 		
	

	
		
			

				
			

			

				𝐙
			

			

				𝑝
			

			
				
				𝑝
				(
				𝑥
				+
				𝑦
				)
				𝑑
				𝜇
				(
				𝑦
				)
				=
			

			

				𝐙
			

			

				𝑝
			

			

				𝑒
			

			
				𝑦
				𝑡
			

			
				=
				𝑡
				𝑑
				𝜇
				(
				𝑦
				)
				𝑝
				(
				𝑥
				)
			

			
				
			
			

				𝑒
			

			

				𝑡
			

			
				−
				1
				𝑝
				(
				𝑥
				)
				.
			

		
	

						In particular, one obtains 
							
	
 		
 			
				(
				2
				.
				2
				4
				)
			
 		
	

	
		
			

				𝐵
			

			

				𝑛
			

			
				
				(
				𝑥
				)
				=
			

			

				𝐙
			

			

				𝑝
			

			
				(
				𝑥
				+
				𝑦
				)
			

			

				𝑛
			

			
				
				𝑑
				𝜇
				(
				𝑦
				)
				=
			

			

				𝐙
			

			

				𝑝
			

			

				𝑒
			

			
				𝑦
				𝑡
			

			
				𝑑
				𝜇
				(
				𝑦
				)
				𝑥
			

			

				𝑛
			

			
				=
				𝑡
			

			
				
			
			

				𝑒
			

			

				𝑡
			

			
				𝑥
				−
				1
			

			

				𝑛
			

			

				.
			

		
	


				The higher order Bernoulli polynomials  
	
		
			

				𝐵
			

			
				𝑛
				(
				𝑟
				)
			

			
				(
				𝑥
				)
			

		
	
  are defined by 
						
	
 		
 			
				(
				2
				.
				2
				5
				)
			
 		
	

	
		
			

				
			

			

				𝐙
			

			

				𝑝
			

			
				⋯
				
			

			

				𝐙
			

			

				𝑝
			

			

				𝑒
			

			
				(
				𝑥
			

			

				1
			

			
				+
				𝑥
			

			

				2
			

			
				+
				⋯
				+
				𝑥
			

			

				𝑟
			

			
				+
				𝑥
				)
				𝑡
			

			
				
				𝑥
				𝑑
				𝜇
			

			

				1
			

			
				
				
				𝑥
				⋯
				𝑑
				𝜇
			

			

				𝑟
			

			
				
				=
				
				𝑡
			

			
				
			
			

				𝑒
			

			

				𝑡
			

			
				
				−
				1
			

			

				𝑟
			

			

				𝑒
			

			
				𝑥
				𝑡
			

			

				=
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝐵
			

			
				𝑛
				(
				𝑟
				)
			

			
				𝑡
				(
				𝑥
				)
			

			

				𝑛
			

			
				
			
			
				.
				𝑛
				!
			

		
	

					In the special case, 
	
		
			
				𝑥
				=
				0
			

		
	
, 
	
		
			

				𝐵
			

			
				𝑛
				(
				𝑟
				)
			

			
				(
				0
				)
				=
				𝐵
			

			
				𝑛
				(
				𝑟
				)
			

		
	
 are called the 
	
		
			

				𝑛
			

		
	
th Bernoulli numbers of order  
	
		
			

				𝑟
			

		
	
 (
	
		
			
				∈
				𝐍
			

		
	
). From (2.25), we note that 
						
	
 		
 			
				(
				2
				.
				2
				6
				)
			
 		
	

	
		
			

				
			

			

				𝐙
			

			

				𝑝
			

			
				⋯
				
			

			

				𝐙
			

			

				𝑝
			

			
				
				𝑥
			

			

				1
			

			
				+
				⋯
				+
				𝑥
			

			

				𝑟
			

			

				
			

			

				𝑛
			

			
				
				𝑥
				𝑑
				𝜇
			

			

				1
			

			
				
				
				𝑥
				⋯
				𝑑
				𝜇
			

			

				𝑟
			

			
				
				=
				
			

			

				𝑖
			

			

				1
			

			
				+
				⋯
				+
				𝑖
			

			

				𝑟
			

			
				=
				𝑛
			

			
				⎛
				⎜
				⎜
				⎝
				𝑛
				𝑖
			

			

				1
			

			
				,
				…
				,
				𝑖
			

			

				𝑟
			

			
				⎞
				⎟
				⎟
				⎠
				
			

			

				𝐙
			

			

				𝑝
			

			

				𝑥
			

			

				𝑖
			

			

				1
			

			

				1
			

			
				
				𝑥
				𝑑
				𝜇
			

			

				1
			

			
				
				
			

			

				𝐙
			

			

				𝑝
			

			

				𝑥
			

			

				𝑖
			

			

				2
			

			

				2
			

			
				
				𝑥
				𝑑
				𝜇
			

			

				2
			

			
				
				⋯
				
			

			

				𝐙
			

			

				𝑝
			

			

				𝑥
			

			

				𝑖
			

			

				𝑟
			

			

				𝑟
			

			
				
				𝑥
				𝑑
				𝜇
			

			

				𝑟
			

			
				
				=
				
			

			

				𝑖
			

			

				1
			

			
				+
				⋯
				+
				𝑖
			

			

				𝑟
			

			
				=
				𝑛
			

			
				⎛
				⎜
				⎜
				⎝
				𝑛
				𝑖
			

			

				1
			

			
				,
				…
				,
				𝑖
			

			

				𝑟
			

			
				⎞
				⎟
				⎟
				⎠
				𝐵
			

			

				𝑖
			

			

				1
			

			
				⋯
				𝐵
			

			

				𝑖
			

			

				𝑟
			

			
				=
				𝐵
			

			
				𝑛
				(
				𝑟
				)
			

			

				.
			

		
	

					By (2.25) and (2.26), we get 
						
	
 		
 			
				(
				2
				.
				2
				7
				)
			
 		
	

	
		
			

				𝐵
			

			
				𝑛
				(
				𝑟
				)
			

			
				(
				𝑥
				)
				=
			

			

				𝑛
			

			

				
			

			
				𝑙
				=
				0
			

			
				⎛
				⎜
				⎜
				⎝
				𝑛
				𝑙
				⎞
				⎟
				⎟
				⎠
				𝐵
			

			
				(
				𝑟
				)
				𝑛
				−
				𝑙
			

			

				𝑥
			

			

				𝑙
			

			

				.
			

		
	

					From (2.26) and (2.27), we note that  
	
		
			

				𝐵
			

			
				𝑛
				(
				𝑟
				)
			

			
				(
				𝑥
				)
			

		
	
  is a monic polynomial of degree 
	
		
			

				𝑛
			

		
	
 with coefficients in  
	
		
			

				𝐐
			

		
	
.  For 
	
		
			
				𝑟
				∈
				𝐍
			

		
	
,  let us assume that 
						
	
 		
 			
				(
				2
				.
				2
				8
				)
			
 		
	

	
		
			

				𝑔
			

			
				(
				𝑟
				)
			

			
				
				
				(
				𝑡
				)
				=
			

			

				𝐙
			

			

				𝑝
			

			
				⋯
				
			

			

				𝐙
			

			

				𝑝
			

			

				𝑒
			

			
				(
				𝑥
			

			

				1
			

			
				+
				⋯
				+
				𝑥
			

			

				𝑟
			

			
				)
				𝑡
			

			
				
				𝑥
				𝑑
				𝜇
			

			

				1
			

			
				
				
				𝑥
				⋯
				𝑑
				𝜇
			

			

				𝑟
			

			
				
				
			

			
				−
				1
			

			
				=
				
				𝑒
			

			

				𝑡
			

			
				−
				1
			

			
				
			
			
				𝑡
				
			

			

				𝑟
			

			

				.
			

		
	

					By (2.28), we easily see that  
	
		
			

				𝑔
			

			
				(
				𝑟
				)
			

			
				(
				𝑡
				)
			

		
	
  is an invertible series. From (2.25) and (2.28), we have 
						
	
 		
 			
				(
				2
				.
				2
				9
				)
			
 		
	

	
		
			

				𝑒
			

			
				𝑥
				𝑡
			

			
				
			
			

				𝑔
			

			
				(
				𝑟
				)
			

			
				(
				=
				
				𝑡
				)
			

			

				𝐙
			

			

				𝑝
			

			
				⋯
				
			

			

				𝐙
			

			

				𝑝
			

			

				𝑒
			

			
				(
				𝑥
			

			

				1
			

			
				+
				⋯
				+
				𝑥
			

			

				𝑟
			

			
				+
				𝑥
				)
				𝑡
			

			
				
				𝑥
				𝑑
				𝜇
			

			

				1
			

			
				
				
				𝑥
				⋯
				𝑑
				𝜇
			

			

				𝑟
			

			
				
				=
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝐵
			

			
				𝑛
				(
				𝑟
				)
			

			
				𝑡
				(
				𝑥
				)
			

			

				𝑛
			

			
				
			
			
				,
				𝑛
				!
				𝑡
				𝐵
			

			
				𝑛
				(
				𝑟
				)
			

			
				(
				𝑥
				)
				=
				𝑛
				𝐵
			

			
				(
				𝑟
				)
				𝑛
				−
				1
			

			
				(
				𝑥
				)
				.
			

		
	

					From (2.29), we note that 
	
		
			

				𝐵
			

			
				𝑛
				(
				𝑟
				)
			

		
	
 is an Appell sequence for  
	
		
			

				𝑔
			

			
				(
				𝑟
				)
			

			
				(
				𝑡
				)
			

		
	
. Therefore, by (2.29), we obtain the following theorem. 
Theorem 2.5.  For 
	
		
			
				𝑝
				(
				𝑥
				)
				∈
				ℙ
			

		
	
 and 
	
		
			
				𝑟
				∈
				𝐍
			

		
	
, one has
							
	
 		
 			
				(
				2
				.
				3
				0
				)
			
 		
	

	
		
			

				
			

			

				𝐙
			

			

				𝑝
			

			
				⋯
				
			

			

				𝐙
			

			

				𝑝
			

			
				𝑝
				
				𝑥
			

			

				1
			

			
				+
				⋯
				+
				𝑥
			

			

				𝑟
			

			
				
				
				𝑥
				+
				𝑥
				𝑑
				𝜇
			

			

				1
			

			
				
				
				𝑥
				⋯
				𝑑
				𝜇
			

			

				𝑟
			

			
				
				=
				
				𝑡
			

			
				
			
			

				𝑒
			

			

				𝑡
			

			
				
				−
				1
			

			

				𝑟
			

			
				𝑝
				(
				𝑥
				)
				.
			

		
	

						In particular, the Bernoulli polynomials of order 
	
		
			

				𝑟
			

		
	
 are given by 
							
	
 		
 			
				(
				2
				.
				3
				1
				)
			
 		
	

	
		
			

				𝐵
			

			
				𝑛
				(
				𝑟
				)
			

			
				
				𝑡
				(
				𝑥
				)
				=
			

			
				
			
			

				𝑒
			

			

				𝑡
			

			
				
				−
				1
			

			

				𝑟
			

			

				𝑥
			

			

				𝑛
			

			
				=
				
			

			

				𝐙
			

			

				𝑝
			

			
				⋯
				
			

			

				𝐙
			

			

				𝑝
			

			

				𝑒
			

			
				(
				𝑥
			

			

				1
			

			
				+
				⋯
				+
				𝑥
			

			

				𝑟
			

			
				)
				𝑡
			

			
				
				𝑥
				𝑑
				𝜇
			

			

				1
			

			
				
				
				𝑥
				⋯
				𝑑
				𝜇
			

			

				𝑟
			

			
				
				𝑥
			

			

				𝑛
			

			

				.
			

		
	

						That is
							
	
 		
 			
				(
				2
				.
				3
				2
				)
			
 		
	

	
		
			

				𝐵
			

			
				𝑛
				(
				𝑟
				)
			

			
				𝑒
				(
				𝑥
				)
				∼
				
				
			

			

				𝑡
			

			
				−
				1
			

			
				
			
			
				𝑡
				
			

			

				𝑟
			

			
				
				.
				,
				𝑡
			

		
	


				Let us consider the linear functional  
	
		
			

				𝑓
			

			
				(
				𝑟
				)
			

			
				(
				𝑡
				)
			

		
	
  that satisfies 
						
	
 		
 			
				(
				2
				.
				3
				3
				)
			
 		
	

	
		
			
				
				𝑓
			

			
				(
				𝑟
				)
			

			
				
				=
				
				(
				𝑡
				)
				∣
				𝑝
				(
				𝑥
				)
			

			

				𝐙
			

			

				𝑝
			

			
				⋯
				
			

			

				𝐙
			

			

				𝑝
			

			
				𝑝
				
				𝑥
			

			

				1
			

			
				+
				⋯
				+
				𝑥
			

			

				𝑟
			

			
				
				
				𝑥
				𝑑
				𝜇
			

			

				1
			

			
				
				
				𝑥
				⋯
				𝑑
				𝜇
			

			

				𝑟
			

			
				
				,
			

		
	

					for all polynomials 
	
		
			
				𝑝
				(
				𝑥
				)
			

		
	
. It can be determined from (1.9) that 
						
	
 		
 			
				(
				2
				.
				3
				4
				)
			
 		
	

	
		
			

				𝑓
			

			
				(
				𝑟
				)
			

			
				(
				𝑡
				)
				=
			

			

				∞
			

			

				
			

			
				𝑘
				=
				0
			

			
				
				𝑓
			

			
				(
				𝑟
				)
			

			
				(
				𝑡
				)
				∣
				𝑥
			

			

				𝑘
			

			

				
			

			
				
			
			
				𝑡
				𝑘
				!
			

			

				𝑘
			

			

				=
			

			

				∞
			

			

				
			

			
				𝑘
				=
				0
			

			

				
			

			

				𝐙
			

			

				𝑝
			

			
				⋯
				
			

			

				𝐙
			

			

				𝑝
			

			
				
				𝑥
			

			

				1
			

			
				+
				⋯
				+
				𝑥
			

			

				𝑟
			

			

				
			

			

				𝑘
			

			
				
				𝑥
				𝑑
				𝜇
			

			

				1
			

			
				
				
				𝑥
				⋯
				𝑑
				𝜇
			

			

				𝑟
			

			
				
				𝑡
			

			

				𝑘
			

			
				
			
			
				=
				
				𝑘
				!
			

			

				𝐙
			

			

				𝑝
			

			
				⋯
				
			

			

				𝐙
			

			

				𝑝
			

			

				𝑒
			

			
				(
				𝑥
			

			

				1
			

			
				+
				⋯
				+
				𝑥
			

			

				𝑟
			

			
				)
				𝑡
			

			
				
				𝑥
				𝑑
				𝜇
			

			

				1
			

			
				
				
				𝑥
				⋯
				𝑑
				𝜇
			

			

				𝑟
			

			
				
				=
				
				𝑡
			

			
				
			
			

				𝑒
			

			

				𝑡
			

			
				
				−
				1
			

			

				𝑟
			

			

				.
			

		
	

					Therefore, by (2.34), we obtain the following theorem.
Theorem 2.6.   For 
	
		
			
				𝑝
				(
				𝑥
				)
				∈
				ℙ
			

		
	
, one has
							
	
 		
 			
				(
				2
				.
				3
				5
				)
			
 		
	

	
		
			
				
				
			

			

				𝐙
			

			

				𝑝
			

			
				⋯
				
			

			

				𝐙
			

			

				𝑝
			

			

				𝑒
			

			
				(
				𝑥
			

			

				1
			

			
				+
				⋯
				+
				𝑥
			

			

				𝑟
			

			
				)
				𝑡
			

			
				
				𝑥
				𝑑
				𝜇
			

			

				1
			

			
				
				
				𝑥
				⋯
				𝑑
				𝜇
			

			

				𝑟
			

			
				
				
				=
				
				∣
				𝑝
				(
				𝑥
				)
			

			

				𝐙
			

			

				𝑝
			

			
				⋯
				
			

			

				𝐙
			

			

				𝑝
			

			
				𝑝
				
				𝑥
			

			

				1
			

			
				+
				⋯
				+
				𝑥
			

			

				𝑟
			

			
				
				
				𝑥
				𝑑
				𝜇
			

			

				1
			

			
				
				
				𝑥
				⋯
				𝑑
				𝜇
			

			

				𝑟
			

			
				
				.
			

		
	

						That is
							
	
 		
 			
				(
				2
				.
				3
				6
				)
			
 		
	

	
		
			
				𝑡
				
				
			

			
				
			
			

				𝑒
			

			

				𝑡
			

			
				
				−
				1
			

			

				𝑟
			

			
				
				=
				
				∣
				𝑝
				(
				𝑥
				)
			

			

				𝐙
			

			

				𝑝
			

			
				⋯
				
			

			

				𝐙
			

			

				𝑝
			

			
				𝑝
				
				𝑥
			

			

				1
			

			
				+
				⋯
				+
				𝑥
			

			

				𝑟
			

			
				
				
				𝑥
				𝑑
				𝜇
			

			

				1
			

			
				
				
				𝑥
				⋯
				𝑑
				𝜇
			

			

				𝑟
			

			
				
				.
			

		
	

						In particular, one gets
							
	
 		
 			
				(
				2
				.
				3
				7
				)
			
 		
	

	
		
			

				𝐵
			

			
				𝑛
				(
				𝑟
				)
			

			
				=
				
				
			

			

				𝐙
			

			

				𝑝
			

			
				⋯
				
			

			

				𝐙
			

			

				𝑝
			

			

				𝑒
			

			
				(
				𝑥
			

			

				1
			

			
				+
				⋯
				+
				𝑥
			

			

				𝑟
			

			
				)
				𝑡
			

			
				
				𝑥
				𝑑
				𝜇
			

			

				1
			

			
				
				
				𝑥
				⋯
				𝑑
				𝜇
			

			

				𝑟
			

			
				
				∣
				𝑥
			

			

				𝑛
			

			
				
				.
			

		
	

Remark 2.7.  From (1.11), we note that 
							
	
 		
 			
				(
				2
				.
				3
				8
				)
			
 		
	

	
		
			
				
				
			

			

				𝐙
			

			

				𝑝
			

			
				⋯
				
			

			

				𝐙
			

			

				𝑝
			

			

				𝑒
			

			
				(
				𝑥
			

			

				1
			

			
				+
				⋯
				+
				𝑥
			

			

				𝑟
			

			
				)
				𝑡
			

			
				
				𝑥
				𝑑
				𝜇
			

			

				1
			

			
				
				
				𝑥
				⋯
				𝑑
				𝜇
			

			

				𝑟
			

			
				
				∣
				𝑥
			

			

				𝑛
			

			
				
				=
				
			

			
				𝑛
				=
				𝑖
			

			

				1
			

			
				+
				⋯
				+
				𝑖
			

			

				𝑟
			

			
				⎛
				⎜
				⎜
				⎝
				𝑛
				𝑖
			

			

				1
			

			
				,
				…
				,
				𝑖
			

			

				𝑟
			

			
				⎞
				⎟
				⎟
				⎠
				
				
			

			

				𝐙
			

			

				𝑝
			

			

				𝑒
			

			

				𝑥
			

			

				1
			

			

				𝑡
			

			
				
				𝑥
				𝑑
				𝜇
			

			

				1
			

			
				
				∣
				𝑥
			

			

				𝑖
			

			

				1
			

			
				
				⋯
				
				
			

			

				𝐙
			

			

				𝑝
			

			

				𝑒
			

			

				𝑥
			

			

				𝑟
			

			

				𝑡
			

			
				
				𝑥
				𝑑
				𝜇
			

			

				𝑟
			

			
				
				∣
				𝑥
			

			

				𝑖
			

			

				𝑟
			

			
				
				.
			

		
	

						By Theorems 2.3 and 2.6 and (2.38), we get 
							
	
 		
 			
				(
				2
				.
				3
				9
				)
			
 		
	

	
		
			

				𝐵
			

			
				𝑛
				(
				𝑟
				)
			

			
				=
				
			

			
				𝑛
				=
				𝑖
			

			

				1
			

			
				+
				⋯
				+
				𝑖
			

			

				𝑟
			

			
				⎛
				⎜
				⎜
				⎝
				𝑛
				𝑖
			

			

				1
			

			
				,
				…
				,
				𝑖
			

			

				𝑟
			

			
				⎞
				⎟
				⎟
				⎠
				𝐵
			

			

				𝑖
			

			

				1
			

			
				⋯
				𝐵
			

			

				𝑖
			

			

				𝑟
			

			

				.
			

		
	

						Let 
	
		
			

				𝑠
			

			

				𝑛
			

			
				(
				𝑥
				)
			

		
	
 be the Sheffer sequence for 
	
		
			
				(
				𝑔
				(
				𝑡
				)
				,
				𝑓
				(
				𝑡
				)
				)
			

		
	
.Then the Sheffer identity is given by 
							
	
 		
 			
				(
				2
				.
				4
				0
				)
			
 		
	

	
		
			

				𝑠
			

			

				𝑛
			

			
				(
				𝑥
				+
				𝑦
				)
				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			
				⎛
				⎜
				⎜
				⎝
				𝑛
				𝑘
				⎞
				⎟
				⎟
				⎠
				𝑝
			

			

				𝑘
			

			
				(
				𝑦
				)
				𝑠
			

			
				𝑛
				−
				𝑘
			

			
				(
				𝑥
				)
				,
			

		
	

						see [7, 8], where 
	
		
			

				𝑝
			

			

				𝑘
			

			
				(
				𝑦
				)
				=
				𝑔
				(
				𝑡
				)
				𝑠
			

			

				𝑘
			

			
				(
				𝑦
				)
			

		
	
. From Theorem 2.5 and (2.40), we have 
							
	
 		
 			
				(
				2
				.
				4
				1
				)
			
 		
	

	
		
			

				𝐵
			

			
				𝑛
				(
				𝑟
				)
			

			
				(
				𝑥
				+
				𝑦
				)
				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			
				⎛
				⎜
				⎜
				⎝
				𝑛
				𝑘
				⎞
				⎟
				⎟
				⎠
				𝐵
			

			
				(
				𝑟
				)
				𝑛
				−
				𝑘
			

			
				(
				𝑥
				)
				𝑥
			

			

				𝑘
			

			

				.
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