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Abstract. 
we show the existence and multiplicity of positive solutions of the nonlinear
discrete fourth-order boundary value problem 
	
		
			

				Δ
			

			

				4
			

			
				𝑢
				(
				𝑡
				−
				2
				)
				=
				𝜆
				ℎ
				(
				𝑡
				)
				𝑓
				(
				𝑢
				(
				𝑡
				)
				)
			

		
	
, 
	
		
			
				𝑡
				∈
				𝕋
			

			

				2
			

		
	
, 
	
		
			
				𝑢
				(
				1
				)
				=
				𝑢
				(
				𝑇
				+
				1
				)
				=
				Δ
			

			

				2
			

			
				𝑢
				(
				0
				)
				=
				Δ
			

			

				2
			

			
				𝑢
				(
				𝑇
				)
				=
				0
			

		
	
, where 
	
		
			
				𝜆
				>
				0
			

		
	
, 
	
		
			
				ℎ
				∶
				𝕋
			

			

				2
			

			
				→
				(
				0
				,
				∞
				)
			

		
	
 is continuous, and 
	
		
			
				𝑓
				∶
				ℝ
				→
				[
				0
				,
				∞
				)
			

		
	
 is continuous, 
	
		
			
				𝑇
				>
				4
			

		
	
, 
	
		
			

				𝕋
			

			

				2
			

			
				=
				{
				2
				,
				3
				,
				…
				,
				𝑇
				}
			

		
	
. The main tool is the Dancer's global bifurcation theorem.


1. Introduction
It's well known that the fourth order boundary value problem 
	
 		
 			
				(
				1
				.
				1
				)
			
 		
	

	
		
			

				𝑢
			

			
				
				
				
				
			

			
				(
				𝑡
				)
				=
				𝑓
				(
				𝑡
				,
				𝑢
				(
				𝑡
				)
				)
				,
				𝑡
				∈
				(
				0
				,
				1
				)
				,
				𝑢
				(
				0
				)
				=
				𝑢
				(
				1
				)
				=
				𝑢
			

			
				
				
			

			
				(
				0
				)
				=
				𝑢
			

			
				
				
			

			
				(
				1
				)
				=
				0
			

		
	

					can describe the stationary states of the deflection of an elastic beam with both ends hinged, (it also models a rotating shaft). The existence and multiplicity of positive solutions of the boundary value problem (1.1) have been considered extensively in the literature, see [1–10]. The existence and multiplicity of positive solutions of the parameterized boundary value problem 
	
 		
 			
				(
				1
				.
				2
				)
			
 		
	

	
		
			

				𝑢
			

			
				
				
				
				
			

			
				(
				𝑡
				)
				=
				𝜆
				ℎ
				(
				𝑡
				)
				𝑓
				(
				𝑢
				(
				𝑡
				)
				)
				,
				𝑡
				∈
				(
				0
				,
				1
				)
				,
				𝑢
				(
				0
				)
				=
				𝑢
				(
				1
				)
				=
				𝑢
			

			
				
				
			

			
				(
				0
				)
				=
				𝑢
			

			
				
				
			

			
				(
				1
				)
				=
				0
			

		
	

					have also been studied by several authors, see Bai and Wang [11], Cid et al. [12], and the references therein.
However, relatively little is known about the corresponding discrete fourth-order problems. Let 
	
 		
 			
				(
				1
				.
				3
				)
			
 		
	

	
		
			
				𝑇
				>
				4
				,
				𝕋
			

			

				0
			

			
				=
				{
				0
				,
				1
				,
				…
				,
				𝑇
				+
				2
				}
				,
				𝕋
			

			

				1
			

			
				=
				{
				1
				,
				2
				,
				…
				,
				𝑇
				+
				1
				}
				,
				𝕋
			

			

				2
			

			
				=
				{
				2
				,
				3
				,
				…
				,
				𝑇
				}
				.
			

		
	


				 Zhang et al. [13], and He and Yu [14] used the fixed point index theory in cones to study the following discrete analogue
	
 		
 			
				(
				1
				.
				4
				)
			
 			
				(
				1
				.
				5
				)
			
 		
	

	
		
			

				Δ
			

			

				4
			

			
				𝑢
				(
				𝑡
				−
				2
				)
				=
				𝜆
				ℎ
				(
				𝑡
				)
				𝑓
				(
				𝑢
				(
				𝑡
				)
				)
				,
				𝑡
				∈
				𝕋
			

			

				2
			

			
				,
				𝑢
				(
				0
				)
				=
				𝑢
				(
				𝑇
				+
				2
				)
				=
				Δ
			

			

				2
			

			
				𝑢
				(
				0
				)
				=
				Δ
			

			

				2
			

			
				𝑢
				(
				𝑇
				)
				=
				0
				,
			

		
	

					where 
	
		
			

				Δ
			

			

				4
			

			
				𝑢
				(
				𝑡
				−
				2
				)
			

		
	
 denote the fourth forward difference operator and 
	
		
			
				Δ
				𝑢
				(
				𝑡
				)
				=
				𝑢
				(
				𝑡
				+
				1
				)
				−
				𝑢
				(
				𝑡
				)
			

		
	
. It has been pointed out in [13, 14] that (1.4), (1.5) are equivalent to the equation of the form: 
	
 		
 			
				(
				1
				.
				6
				)
			
 		
	

	
		
			
				𝑢
				(
				𝑡
				)
				=
				𝜆
			

			
				𝑇
				+
				1
			

			

				
			

			
				𝑠
				=
				1
			

			
				𝐺
				(
				𝑡
				,
				𝑠
				)
			

			

				𝑇
			

			

				
			

			
				𝑗
				=
				2
			

			

				𝐺
			

			

				1
			

			
				(
				𝑠
				,
				𝑗
				)
				ℎ
				(
				𝑗
				)
				𝑓
				(
				𝑢
				(
				𝑗
				)
				)
				=
				∶
				𝐴
			

			

				0
			

			
				𝑢
				(
				𝑡
				)
				,
				𝑡
				∈
				𝕋
			

			

				0
			

			

				,
			

		
	

					where 
	
 		
 			
				(
				1
				.
				7
				)
			
 		
	

	
		
			
				1
				𝐺
				(
				𝑡
				,
				𝑠
				)
				=
			

			
				
			
			
				
				𝐺
				𝑇
				+
				2
				𝑠
				(
				𝑇
				+
				2
				−
				𝑡
				)
				,
				1
				≤
				𝑠
				≤
				𝑡
				≤
				𝑇
				+
				2
				,
				𝑡
				(
				𝑇
				+
				2
				−
				𝑠
				)
				,
				0
				≤
				𝑡
				≤
				𝑠
				≤
				𝑇
				+
				1
				,
			

			

				1
			

			
				1
				(
				𝑠
				,
				𝑗
				)
				=
			

			
				
			
			
				𝑇
				
				(
				𝑇
				+
				1
				−
				𝑠
				)
				(
				𝑗
				−
				1
				)
				,
				2
				≤
				𝑗
				≤
				𝑠
				≤
				𝑇
				+
				1
				,
				(
				𝑇
				+
				1
				−
				𝑗
				)
				(
				𝑠
				−
				1
				)
				,
				1
				≤
				𝑠
				≤
				𝑗
				≤
				𝑇
				.
			

		
	


				Notice that two distinct Green's functions used in  (1.6) make the construction of cones and the verification of strong positivity of 
	
		
			

				𝐴
			

			

				0
			

		
	
 become more complex and difficult. Therefore, Ma and Xu [15] considered (1.4) with the boundary condition 
	
 		
 			
				(
				1
				.
				8
				)
			
 		
	

	
		
			
				𝑢
				(
				1
				)
				=
				𝑢
				(
				𝑇
				+
				1
				)
				=
				Δ
			

			

				2
			

			
				𝑢
				(
				0
				)
				=
				Δ
			

			

				2
			

			
				𝑢
				(
				𝑇
				)
				=
				0
				,
			

		
	

					and introduced the definition of  generalized positive solutions:
Definition 1.1. A function 
	
		
			
				𝑦
				∶
				𝕋
			

			

				0
			

			
				→
				ℝ
			

			

				+
			

		
	
 is called a  generalized positive solution of (1.4), (1.8), if 
	
		
			

				𝑦
			

		
	
 satisfies (1.4), (1.8), and 
	
		
			
				𝑦
				(
				𝑡
				)
				≥
				0
			

		
	
 on 
	
		
			

				𝕋
			

			

				1
			

		
	
 and 
	
		
			
				𝑦
				(
				𝑡
				)
				>
				0
			

		
	
 on 
	
		
			

				𝕋
			

			

				2
			

		
	
.
Remark 1.2. Notice that the fact 
	
		
			
				𝑦
				∶
				𝕋
			

			

				0
			

			
				→
				ℝ
			

			

				+
			

		
	
 is a generalized positive solution of (1.4), (1.8) does not means that 
	
		
			
				𝑦
				(
				𝑡
				)
				≥
				0
			

		
	
 on 
	
		
			

				𝕋
			

			

				0
			

		
	
. In fact, 
	
		
			

				𝑦
			

		
	
 satisfies(1) 
	
		
			
				𝑦
				(
				𝑡
				)
				≥
				0
			

		
	
 for 
	
		
			
				𝑡
				∈
				𝕋
			

			

				2
			

		
	
;(2) 
	
		
			
				𝑦
				(
				1
				)
				=
				𝑦
				(
				𝑇
				+
				1
				)
				=
				0
			

		
	
;(3) 
	
		
			
				𝑦
				(
				0
				)
				=
				−
				𝑦
				(
				2
				)
				,
				𝑦
				(
				𝑇
				+
				2
				)
				=
				−
				𝑦
				(
				𝑇
				)
			

		
	
.
Ma and Xu [15] also applied the fixed point theorem in cones to obtain some results on the existence of generalized positive solutions.
It is the purpose of this paper to show some new results on the existence and multiplicity of generalized positive solutions of (1.4), (1.8) by Dancer's global bifurcation theorem. To wit, we get the following.
Theorem 1.3.  Let 
	
		
			
				ℎ
				∶
				𝕋
			

			

				2
			

			
				→
				(
				0
				,
				∞
				)
				,
				𝑓
				∈
				𝐶
				(
				ℝ
				,
				[
				0
				,
				∞
				)
				)
			

		
	
, and 
	
 		
 			
				(
				1
				.
				9
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑠
				→
				0
			

			

				+
			

			
				𝑓
				(
				𝑠
				)
			

			
				
			
			
				𝑠
				=
				𝑓
			

			

				0
			

			
				∈
				(
				0
				,
				∞
				)
				,
				l
				i
				m
			

			
				𝑠
				→
				∞
			

			
				𝑓
				(
				𝑠
				)
			

			
				
			
			
				𝑠
				=
				𝑓
			

			

				∞
			

			
				=
				+
				∞
				.
			

		
	

						Assume that there exists 
	
		
			
				𝐵
				∈
				[
				0
				,
				+
				∞
				]
			

		
	
  such that f is nondecreasing on 
	
		
			
				[
				0
				,
				𝐵
				)
			

		
	
. Then (i)(1.4), (1.8) have at least one generalized positive solution if 
	
		
			
				0
				<
				𝜆
				<
				𝜆
			

			

				1
			

			
				/
				𝑓
			

			

				0
			

		
	
;(ii) (1.4), (1.8) have at least two generalized positive solutions if
										
	
 		
 			
				(
				1
				.
				1
				0
				)
			
 		
	

	
		
			

				𝜆
			

			

				1
			

			
				
			
			

				𝑓
			

			

				0
			

			
				<
				𝜆
				<
				s
				u
				p
			

			
				𝑠
				∈
				(
				0
				,
				𝐵
				)
			

			

				𝑠
			

			
				
			
			

				𝛾
			

			

				∗
			

			
				𝑓
				,
				(
				𝑠
				)
			

		
	

									where 
	
		
			

				𝛾
			

			

				∗
			

			
				=
				m
				a
				x
			

			
				𝑡
				∈
				𝕋
			

			

				1
			

			

				∑
			

			
				𝑇
				𝑠
				=
				2
			

			
				𝐾
				(
				𝑡
				,
				𝑠
				)
				ℎ
				(
				𝑠
				)
			

		
	
, 
	
		
			
				𝐾
				(
				𝑡
				,
				𝑠
				)
			

		
	
 is defined as (2.3) and 
	
		
			

				𝜆
			

			

				1
			

		
	
 is the first eigenvalue of
										
	
 		
 			
				(
				1
				.
				1
				1
				)
			
 		
	

	
		
			

				Δ
			

			

				4
			

			
				𝑢
				(
				𝑡
				−
				2
				)
				=
				𝜆
				ℎ
				(
				𝑡
				)
				𝑢
				(
				𝑡
				)
				,
				𝑡
				∈
				𝕋
			

			

				2
			

			
				,
				𝑢
				(
				1
				)
				=
				𝑢
				(
				𝑇
				+
				1
				)
				=
				Δ
			

			

				2
			

			
				𝑢
				(
				0
				)
				=
				Δ
			

			

				2
			

			
				𝑢
				(
				𝑇
				)
				=
				0
				.
			

		
	

The “dual” of Theorem 1.3 is as follows.
Theorem 1.4.  Let 
	
		
			
				ℎ
				∶
				𝕋
			

			

				2
			

			
				→
				(
				0
				,
				∞
				)
				,
				𝑓
				∈
				𝐶
				(
				ℝ
				,
				[
				0
				,
				∞
				)
				)
			

		
	
, and 
	
 		
 			
				(
				1
				.
				1
				2
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑠
				→
				0
			

			

				+
			

			
				𝑓
				(
				𝑠
				)
			

			
				
			
			
				𝑠
				=
				𝑓
			

			

				0
			

			
				∈
				(
				0
				,
				∞
				)
				,
				l
				i
				m
			

			
				𝑠
				→
				∞
			

			
				𝑓
				(
				𝑠
				)
			

			
				
			
			
				𝑠
				=
				𝑓
			

			

				∞
			

			
				=
				0
				.
			

		
	

						Assume that there exists 
	
		
			
				𝐵
				∈
				[
				0
				,
				+
				∞
				]
			

		
	
 such that 
	
		
			

				𝑓
			

		
	
 is nondecreasing on 
	
		
			
				[
				0
				,
				𝐵
				)
			

		
	
. Then 
								(i) (1.4), (1.8) have at least a generalized positive solution provided
										
	
 		
 			
				(
				1
				.
				1
				3
				)
			
 		
	

	
		
			
				𝜆
				>
				i
				n
				f
			

			
				
				𝑠
				∈
				0
				,
				𝑐
			

			

				1
			

			
				𝐵
				
			

			

				𝑠
			

			
				
			
			

				𝑐
			

			

				1
			

			

				𝛾
			

			

				∗
			

			
				,
				𝑓
				(
				𝑠
				)
			

		
	
where 
	
		
			

				𝛾
			

			

				∗
			

			
				=
				m
				i
				n
			

			
				𝑡
				∈
				𝕋
			

			

				2
			

			

				∑
			

			
				𝑇
				𝑠
				=
				2
			

			
				𝐾
				(
				𝑡
				,
				𝑠
				)
				ℎ
				(
				𝑠
				)
				;
			

		
	

								(ii)(1.4), (1.8) have at least two generalized positive solutions provided  
	
 		
 			
				(
				1
				.
				1
				4
				)
			
 		
	

	
		
			
				i
				n
				f
			

			
				
				𝑠
				∈
				0
				,
				𝑐
			

			

				1
			

			
				𝐵
				
			

			

				𝑠
			

			
				
			
			

				𝑐
			

			

				1
			

			

				𝛾
			

			

				∗
			

			
				𝑓
				𝜆
				(
				𝑠
				)
				<
				𝜆
				<
			

			

				1
			

			
				
			
			

				𝑓
			

			

				0
			

			

				.
			

		
	

The rest of the paper is organized as follows: in Section 2, we present the form of the Green's function of (1.4), (1.8) and its properties, and we enunciate the Dancer's global bifurcation theorem ([16, Corollary  15.2]). In Section 3, we use the Dancer's bifurcation theorem to prove Theorems 1.3 and 1.4 and in Section 4, we finish the paper presenting a couple of illustrative examples.
Remark 1.5. For other results on the existence and multiplicity of positive solutions and nodal solutions for fourth-order boundary value problems based on bifurcation techniques, see [17–21].
2. Preliminaries and Dancer's Global Bifurcation Theorem
Lemma 2.1.  Let 
	
		
			
				ℎ
				∶
				𝕋
			

			

				2
			

			
				→
				ℝ
			

		
	
. Then the linear boundary value problem 
	
 		
 			
				(
				2
				.
				1
				)
			
 		
	

	
		
			

				Δ
			

			

				4
			

			
				𝑢
				(
				𝑡
				−
				2
				)
				=
				ℎ
				(
				𝑡
				)
				,
				𝑡
				∈
				𝕋
			

			

				2
			

			
				,
				𝑢
				(
				1
				)
				=
				𝑢
				(
				𝑇
				+
				1
				)
				=
				Δ
			

			

				2
			

			
				𝑢
				(
				0
				)
				=
				Δ
			

			

				2
			

			
				𝑢
				(
				𝑇
				)
				=
				0
			

		
	

						has a solution 
	
 		
 			
				(
				2
				.
				2
				)
			
 		
	

	
		
			
				𝑢
				(
				𝑡
				)
				=
			

			

				𝑇
			

			

				
			

			
				𝑠
				=
				2
			

			
				𝐾
				(
				𝑡
				,
				𝑠
				)
				ℎ
				(
				𝑠
				)
				,
				𝑡
				∈
				𝕋
			

			

				1
			

			

				,
			

		
	

						where 
							
	
 		
 			
				(
				2
				.
				3
				)
			
 		
	

	
		
			
				⎧
				⎪
				⎨
				⎪
				⎩
				
				𝐾
				(
				𝑡
				,
				𝑠
				)
				=
				(
				𝑠
				−
				1
				)
				(
				𝑇
				+
				1
				−
				𝑡
				)
				2
				𝑇
				(
				𝑡
				−
				1
				)
				−
				(
				𝑡
				−
				1
				)
			

			

				2
			

			
				
				−
				(
				𝑠
				−
				2
				)
				𝑠
			

			
				
			
			
				
				6
				𝑇
				,
				2
				≤
				𝑠
				≤
				𝑡
				≤
				𝑇
				+
				1
				,
				(
				𝑡
				−
				1
				)
				(
				𝑇
				+
				1
				−
				𝑡
				)
				2
				𝑇
				(
				𝑠
				−
				1
				)
				−
				(
				𝑠
				−
				1
				)
			

			

				2
			

			
				−
				
				(
				𝑡
				−
				2
				)
				𝑡
			

			
				
			
			
				6
				𝑇
				,
				1
				≤
				𝑡
				≤
				𝑠
				≤
				𝑇
				.
			

		
	

Proof.   By a simple summing computation and 
	
		
			
				𝑢
				(
				1
				)
				=
				Δ
			

			

				2
			

			
				𝑢
				(
				0
				)
				=
				0
			

		
	
, we can obtain
	
 		
 			
				(
				2
				.
				4
				)
			
 		
	

	
		
			
				𝑢
				(
				𝑡
				)
				=
				Δ
				𝑢
				(
				0
				)
				(
				𝑡
				−
				1
				)
				+
				𝑡
				(
				𝑡
				−
				1
				)
				(
				𝑡
				−
				2
				)
			

			
				
			
			
				6
				Δ
			

			

				3
			

			
				𝑢
				(
				0
				)
				+
			

			
				𝑡
				−
				1
			

			

				
			

			
				𝑠
				=
				2
			

			
				(
				𝑡
				−
				𝑠
				)
				(
				𝑡
				−
				𝑠
				−
				1
				)
				(
				𝑡
				−
				𝑠
				+
				1
				)
			

			
				
			
			
				6
				ℎ
				(
				𝑠
				)
				.
			

		
	
This together with 
	
		
			
				𝑢
				(
				𝑇
				+
				1
				)
				=
				Δ
			

			

				2
			

			
				𝑢
				(
				𝑇
				)
				=
				0
			

		
	
, it follows that
							
	
 		
 			
				(
				2
				.
				5
				)
			
 		
	

	
		
			
				𝑢
				(
				𝑡
				)
				=
			

			

				𝑇
			

			

				
			

			
				𝑠
				=
				2
			

			
				(
				
				𝑇
				+
				1
				−
				𝑠
				)
				(
				𝑡
				−
				1
				)
				2
				𝑇
				(
				𝑠
				−
				1
				)
				−
				(
				𝑠
				−
				1
				)
			

			

				2
			

			
				
				−
				𝑡
				(
				𝑡
				−
				2
				)
			

			
				
			
			
				+
				6
				𝑇
				ℎ
				(
				𝑠
				)
			

			
				𝑡
				−
				1
			

			

				
			

			
				𝑠
				=
				2
			

			
				(
				𝑡
				−
				𝑠
				)
				(
				𝑡
				−
				𝑠
				−
				1
				)
				(
				𝑡
				−
				𝑠
				+
				1
				)
			

			
				
			
			
				ℎ
				=
				6
				𝑇
				(
				𝑠
				)
			

			

				𝑇
			

			

				
			

			
				𝑠
				=
				𝑡
			

			
				
				(
				𝑇
				+
				1
				−
				𝑠
				)
				(
				𝑡
				−
				1
				)
				2
				𝑇
				(
				𝑠
				−
				1
				)
				−
				(
				𝑠
				−
				1
				)
			

			

				2
			

			
				
				−
				𝑡
				(
				𝑡
				−
				2
				)
			

			
				
			
			
				+
				6
				𝑇
				ℎ
				(
				𝑠
				)
			

			
				𝑡
				−
				1
			

			

				
			

			
				𝑠
				=
				2
			

			
				
				(
				𝑇
				+
				1
				−
				𝑡
				)
				(
				𝑠
				−
				1
				)
				2
				𝑇
				(
				𝑡
				−
				1
				)
				−
				(
				𝑡
				−
				1
				)
			

			

				2
			

			
				
				−
				𝑠
				(
				𝑠
				−
				2
				)
			

			
				
			
			
				6
				𝑇
				ℎ
				(
				𝑠
				)
				.
			

		
	

						Therefore, (2.2) holds.
Remark 2.2.   It has been pointed out in [15] that (2.1) is equivalent to the summation equation of the form
	
 		
 			
				(
				2
				.
				6
				)
			
 		
	

	
		
			
				𝑢
				(
				𝑡
				)
				=
			

			

				𝑇
			

			

				
			

			
				𝑠
				=
				2
			

			

				𝐺
			

			

				1
			

			
				(
				𝑡
				,
				𝑠
				)
			

			

				𝑇
			

			

				
			

			
				𝑗
				=
				2
			

			

				𝐺
			

			

				1
			

			
				(
				𝑠
				,
				𝑗
				)
				ℎ
				(
				𝑗
				)
				,
				𝑡
				∈
				𝕋
			

			

				1
			

			

				.
			

		
	

						It is easy to verify that (2.2) and (2.6) are equivalent.By a similar method in [9], it follows that 
	
		
			
				𝐾
				(
				𝑡
				,
				𝑠
				)
			

		
	
 satisfies
	
 		
 			
				(
				2
				.
				7
				)
			
 		
	

	
		
			
				𝐾
				(
				𝑡
				,
				𝑠
				)
				≤
				Φ
				(
				𝑠
				)
				f
				o
				r
				𝑠
				∈
				𝕋
			

			

				1
			

			
				,
				𝑡
				∈
				𝕋
			

			

				1
			

			
				,
				𝐾
				(
				𝑡
				,
				𝑠
				)
				≥
				𝑐
				(
				𝑡
				)
				Φ
				(
				𝑠
				)
				f
				o
				r
				𝑠
				∈
				𝕋
			

			

				1
			

			
				,
				𝑡
				∈
				𝕋
			

			

				1
			

			

				,
			

		
	

						where 
							
	
 		
 			
				(
				2
				.
				8
				)
			
 		
	

	
		
			
				⎧
				⎪
				⎨
				⎪
				⎩
				√
				Φ
				(
				𝑠
				)
				=
			

			
				
			
			

				3
			

			
				
			
			
				
				𝑇
				2
				7
				𝑇
				(
				𝑠
				−
				1
				)
			

			

				2
			

			
				
				−
				(
				𝑠
				−
				2
				)
				𝑠
			

			
				3
				/
				2
			

			
				𝑇
				,
				1
				≤
				𝑠
				≤
			

			
				
			
			
				2
				√
				+
				1
				,
			

			
				
			
			

				3
			

			
				
			
			
				2
				7
				𝑇
				(
				𝑇
				+
				1
				−
				𝑠
				)
				(
				2
				𝑇
				(
				𝑠
				−
				1
				)
				−
				(
				𝑠
				−
				2
				)
				𝑠
				)
			

			
				3
				/
				2
			

			
				,
				𝑇
			

			
				
			
			
				2
				+
				1
				<
				𝑠
				≤
				𝑇
				+
				1
				,
			

		
	
 
	
 		
 			
				(
				2
				.
				9
				)
			
 		
	

	
		
			
				⎧
				⎪
				⎪
				⎨
				⎪
				⎪
				⎩
				3
				√
				𝑐
				(
				𝑡
				)
				=
			

			
				
			
			
				3
				
				𝑇
			

			

				2
			

			
				
				−
				𝑡
				(
				𝑡
				−
				2
				)
				(
				𝑡
				−
				1
				)
			

			
				
			
			
				2
				
				𝑇
			

			

				2
			

			
				
				+
				1
			

			
				3
				/
				2
			

			
				𝑇
				,
				1
				≤
				𝑡
				≤
			

			
				
			
			
				2
				3
				√
				+
				1
				,
			

			
				
			
			
				[
				]
				3
				(
				𝑇
				+
				1
				−
				𝑡
				)
				2
				𝑇
				(
				𝑡
				−
				1
				)
				−
				𝑡
				(
				𝑡
				−
				2
				)
			

			
				
			
			
				2
				
				𝑇
			

			

				2
			

			
				
				+
				1
			

			
				3
				/
				2
			

			
				,
				𝑇
			

			
				
			
			
				2
				+
				1
				<
				𝑡
				≤
				𝑇
				+
				1
				.
			

		
	

						Moreover, we have that
	
 		
 			
				(
				2
				.
				1
				0
				)
			
 		
	

	
		
			
				𝐾
				(
				𝑡
				,
				𝑠
				)
				≥
				𝑐
			

			

				1
			

			
				Φ
				(
				𝑠
				)
				,
				f
				o
				r
				𝑠
				∈
				𝕋
			

			

				1
			

			
				,
				𝑡
				∈
				𝕋
			

			

				2
			

			

				.
			

		
	

						here 
	
		
			

				𝑐
			

			

				1
			

			
				√
				=
				3
			

			
				
			
			
				3
				𝑇
			

			

				2
			

			
				/
				2
				(
				𝑇
			

			

				2
			

			
				+
				1
				)
			

			
				3
				/
				2
			

		
	
.Let 
	
		
			

				𝑋
			

		
	
 be a real Banach space with a cone 
	
		
			

				𝐾
			

		
	
 such that 
	
		
			
				𝑋
				=
				𝐾
				−
				𝐾
			

		
	
. Let us consider the equation:
	
 		
 			
				(
				2
				.
				1
				1
				)
			
 		
	

	
		
			
				𝑥
				=
				𝜇
				(
				𝐿
				𝑥
				+
				𝑁
				𝑥
				)
				,
				𝜇
				∈
				ℝ
				,
				𝑥
				∈
				𝑋
			

		
	

						under the assumptions:(A1) The operators 
	
		
			
				𝐿
				,
				𝑁
				∶
				𝑋
				→
				𝑋
			

		
	
 are compact. Furthermore, 
	
		
			

				𝐿
			

		
	
 is linear, 
	
		
			
				‖
				𝑁
				𝑥
				‖
			

			

				𝑋
			

			
				/
				‖
				𝑥
				‖
			

			

				𝑋
			

			
				→
				0
			

		
	
 as 
	
		
			
				‖
				𝑥
				‖
			

			

				𝑋
			

			
				→
				0
			

		
	
, and 
	
		
			
				(
				𝐿
				+
				𝑁
				)
				(
				𝐾
				)
				⊆
				𝐾
			

		
	
. (A2) The spectral radius 
	
		
			
				𝑟
				(
				𝐿
				)
			

		
	
 of 
	
		
			

				𝐿
			

		
	
 is positive. Denote 
	
		
			

				𝜇
			

			

				0
			

			
				=
				𝑟
				(
				𝐿
				)
			

			
				−
				1
			

		
	
. (A3)
	
		
			

				𝐿
			

		
	
 is strongly positive.Dancer's global bifurcation theorem is the following.
Theorem 2.3 (see [16, Corollary  15.2]).  Let
							
	
 		
 			
				(
				2
				.
				1
				2
				)
			
 		
	

	
		
			

				𝑆
			

			

				+
			

			
				∶
				=
				{
				(
				𝜇
				,
				𝑥
				)
				∈
				ℝ
				×
				𝑋
				∣
				(
				𝜇
				,
				𝑥
				)
				i
				s
				a
				s
				o
				l
				u
				t
				i
				o
				n
				o
				f
				(
				2
				.
				1
				1
				)
				w
				i
				t
				h
				𝑥
				>
				0
				a
				n
				d
				𝜇
				>
				0
				}
				.
			

		
	

						If (A1) and (A2) are satisfied, then 
	
		
			
				(
				𝜇
			

			

				0
			

			
				,
				0
				)
			

		
	
 is a bifurcation point of (2.11) and 
	
		
			
				
			
			

				𝑆
			

			

				+
			

		
	
 has an unbounded solution component 
	
		
			

				𝒞
			

			

				+
			

		
	
 which passes through 
	
		
			
				(
				𝜇
			

			

				0
			

			
				,
				0
				)
			

		
	
. Additionally, if (A3) is satisfied, then 
	
		
			
				(
				𝜇
				,
				𝑥
				)
				∈
				𝒞
			

			

				+
			

		
	
 and 
	
		
			
				𝜇
				≠
				𝜇
			

			

				0
			

		
	
 always implies
	
		
			
				𝑥
				>
				0
			

		
	
 and 
	
		
			
				𝜇
				>
				0
			

		
	
.
3. Proof of the Main Results
Before proving Theorem 1.3, we state some preliminary results and notations. Let 
	
 		
 			
				(
				3
				.
				1
				)
			
 			
				(
				3
				.
				2
				)
			
 		
	

	
		
			
				𝜌
				∶
				=
				4
				s
				i
				n
			

			

				2
			

			

				𝜋
			

			
				
			
			
				2
				𝑇
				,
				𝑒
				(
				𝑡
				)
				∶
				=
				s
				i
				n
				𝜋
				(
				𝑡
				−
				1
				)
			

			
				
			
			
				𝑇
				,
				𝑡
				∈
				𝕋
			

			

				1
			

			
				,
				
				𝑋
				∶
				=
				𝑢
				∣
				𝑢
				∶
				𝕋
			

			

				0
			

			
				⟶
				ℝ
				,
				𝑢
				(
				1
				)
				=
				𝑢
				(
				𝑇
				+
				1
				)
				=
				Δ
			

			

				2
			

			
				𝑢
				(
				0
				)
				=
				Δ
			

			

				2
			

			
				
				.
				𝑢
				(
				𝑇
				)
				=
				0
			

		
	

					Then 
	
		
			

				𝑋
			

		
	
 is a Banach space under the normal:
	
 		
 			
				(
				3
				.
				3
				)
			
 		
	

	
		
			
				‖
				𝑢
				‖
			

			

				𝑋
			

			
				
				𝛾
				∶
				=
				i
				n
				f
			

			
				
			
			
				𝜌
				∣
				−
				𝛾
				𝑒
				(
				𝑡
				)
				≤
				−
				Δ
			

			

				2
			

			
				𝑢
				(
				𝑡
				−
				1
				)
				≤
				𝛾
				𝑒
				(
				𝑡
				)
				,
				𝑡
				∈
				𝕋
			

			

				1
			

			
				
				.
			

		
	

					See [22] for the detail.
Let 
	
 		
 			
				(
				3
				.
				4
				)
			
 		
	

	
		
			
				
				𝐾
				∶
				=
				𝑢
				∈
				𝑋
				∣
				Δ
			

			

				2
			

			
				𝑢
				(
				𝑡
				−
				1
				)
				≤
				0
				,
				𝑢
				(
				𝑡
				)
				≥
				0
				,
				𝑡
				∈
				𝕋
			

			

				1
			

			
				
				.
			

		
	

					Then 
	
		
			

				𝐾
			

		
	
 is normal and has a nonempty interior and 
	
		
			
				𝑋
				=
				𝐾
				−
				𝐾
			

		
	
.

				Let 
	
		
			
				𝑌
				=
				{
				𝑢
				∣
				𝑢
				∶
				𝕋
			

			

				2
			

			
				→
				ℝ
				}
			

		
	
. Then 
	
		
			

				𝑌
			

		
	
 is a Banach space under the norm: 
	
 		
 			
				(
				3
				.
				5
				)
			
 		
	

	
		
			
				‖
				𝑢
				‖
			

			

				∞
			

			
				=
				m
				a
				x
			

			
				𝑡
				∈
				𝕋
			

			

				2
			

			
				|
				|
				|
				|
				.
				𝑢
				(
				𝑡
				)
			

		
	

					Define 
	
		
			
				ℒ
				∶
				𝑋
				→
				𝑌
			

		
	
 by setting 
	
 		
 			
				(
				3
				.
				6
				)
			
 		
	

	
		
			
				ℒ
				𝑢
				∶
				=
				Δ
			

			

				4
			

			
				𝑢
				(
				𝑡
				−
				2
				)
				,
				𝑢
				∈
				𝑋
				.
			

		
	

 It is easy to check that 
	
		
			

				ℒ
			

			
				−
				1
			

			
				∶
				𝑌
				→
				𝑋
			

		
	
 is compact.
Lemma 3.1.  Let 
	
		
			
				ℎ
				∈
				𝑌
			

		
	
 with 
	
		
			
				ℎ
				≥
				0
			

		
	
 and 
	
		
			
				ℎ
				(
				𝑡
			

			

				0
			

			
				)
				>
				0
			

		
	
 for some 
	
		
			

				𝑡
			

			

				0
			

			
				∈
				𝕋
			

			

				2
			

		
	
, and 
							
	
 		
 			
				(
				3
				.
				7
				)
			
 		
	

	
		
			
				ℒ
				𝑢
				−
				ℎ
				=
				0
				.
			

		
	

						Then 
	
		
			
				𝑢
				∈
				i
				n
				t
				𝐾
			

		
	
.
 Proof. It is enough to show that there exist two constants 
	
		
			

				𝑟
			

			

				1
			

			
				,
				𝑟
			

			

				2
			

			
				∈
				(
				0
				,
				∞
				)
			

		
	
 such that 
							
	
 		
 			
				(
				3
				.
				8
				)
			
 		
	

	
		
			

				𝑟
			

			

				1
			

			
				𝑒
				(
				𝑡
				)
				≤
				−
				Δ
			

			

				2
			

			
				𝑢
				(
				𝑡
				−
				1
				)
				≤
				𝑟
			

			

				2
			

			
				𝑒
				(
				𝑡
				)
				,
				𝑡
				∈
				𝕋
			

			

				1
			

			

				.
			

		
	

						In fact, we have from (3.7) that
	
 		
 			
				(
				3
				.
				9
				)
			
 		
	

	
		
			
				−
				Δ
			

			

				2
			

			
				𝑢
				(
				𝑡
				−
				1
				)
				=
			

			

				𝑇
			

			

				
			

			
				𝑠
				=
				2
			

			

				𝐺
			

			

				1
			

			
				(
				𝑡
				,
				𝑠
				)
				ℎ
				(
				𝑠
				)
				,
				𝑡
				∈
				𝕋
			

			

				1
			

			

				.
			

		
	

						This together with the relation 
	
		
			
				(
				(
				𝑡
				−
				1
				)
				(
				𝑇
				+
				1
				−
				𝑡
				)
				/
				𝑇
				)
				𝐺
			

			

				1
			

			
				(
				𝑠
				,
				𝑠
				)
				≤
				𝐺
			

			

				1
			

			
				(
				𝑡
				,
				𝑠
				)
				≤
				(
				𝑡
				−
				1
				)
				(
				𝑇
				+
				1
				−
				𝑡
				)
				/
				𝑇
			

		
	
 implies that
	
 		
 			
				(
				3
				.
				1
				0
				)
			
 		
	

	
		
			

				
			

			

				𝑇
			

			

				
			

			
				𝑠
				=
				2
			

			

				𝐺
			

			

				1
			

			
				
				(
				𝑠
				,
				𝑠
				)
				ℎ
				(
				𝑠
				)
				(
				𝑡
				−
				1
				)
				(
				𝑇
				+
				1
				−
				𝑡
				)
			

			
				
			
			
				𝑇
				≤
			

			

				𝑇
			

			

				
			

			
				𝑠
				=
				2
			

			

				𝐺
			

			

				1
			

			
				(
				𝑡
				,
				𝑠
				)
				ℎ
				(
				𝑠
				)
				≤
				‖
				ℎ
				‖
			

			

				∞
			

			
				(
				𝑡
				−
				1
				)
				(
				𝑇
				+
				1
				−
				𝑡
				)
			

			
				
			
			
				𝑇
				.
			

		
	

						Combining (3.9) with (3.10) and the fact that
							
	
 		
 			
				(
				3
				.
				1
				1
				)
			
 		
	

	
		
			

				𝑐
			

			

				1
			

			
				s
				i
				n
				𝜋
				(
				𝑡
				−
				1
				)
			

			
				
			
			
				𝑇
				≤
				(
				𝑡
				−
				1
				)
				(
				𝑇
				+
				1
				−
				𝑡
				)
			

			
				
			
			
				𝑇
				≤
				𝑐
			

			

				2
			

			
				s
				i
				n
				𝜋
				(
				𝑡
				−
				1
				)
			

			
				
			
			
				𝑇
				,
				𝑡
				∈
				𝕋
			

			

				1
			

		
	

						for some constants 
	
		
			

				𝑐
			

			

				1
			

			
				,
				𝑐
			

			

				2
			

			
				∈
				(
				0
				,
				∞
				)
			

		
	
, we conclude that (3.8) is true.
Let 
	
		
			
				𝜁
				∈
				𝐶
				(
				ℝ
				,
				ℝ
				)
			

		
	
 be such that 
	
 		
 			
				(
				3
				.
				1
				2
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑢
				)
				=
				𝑓
			

			

				0
			

			
				𝑢
				+
				𝜁
				(
				𝑢
				)
				,
			

		
	

					clearly 
	
 		
 			
				(
				3
				.
				1
				3
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				|
				𝑢
				|
				→
				0
			

			
				𝜁
				(
				𝑢
				)
			

			
				
			
			
				𝑢
				=
				0
				.
			

		
	

					Let us consider 
	
 		
 			
				(
				3
				.
				1
				4
				)
			
 		
	

	
		
			
				
				ℒ
				𝑢
				=
				𝜆
				ℎ
				(
				⋅
				)
				𝑓
			

			

				0
			

			
				
				𝑢
				+
				ℎ
				(
				⋅
				)
				𝜁
				(
				𝑢
				)
			

		
	

					as a bifurcation problem from the trivial solution 
	
		
			
				𝑢
				≡
				0
			

		
	
.
By (1.4), (1.8), it follows that if 
	
		
			
				𝑢
				(
				𝑡
				)
				∈
				𝑋
			

		
	
 is one solution of (1.4), (1.8), then 
	
		
			
				𝑢
				(
				𝑡
				)
			

		
	
 satisfies 
	
		
			
				𝑢
				(
				0
				)
				=
				−
				𝑢
				(
				2
				)
				,
				𝑢
				(
				𝑇
				+
				2
				)
				=
				−
				𝑢
				(
				𝑇
				)
			

		
	
. So, 
	
		
			
				(
				𝑢
				(
				0
				)
				,
				0
				,
				𝑢
				(
				2
				)
				,
				…
				,
				𝑢
				(
				𝑇
				)
				,
				0
				,
				𝑢
				(
				𝑇
				+
				2
				)
				)
			

		
	
 is a solution of (1.4), (1.8), if and only if, 
	
		
			
				(
				0
				,
				𝑢
				(
				2
				)
				,
				…
				,
				𝑢
				(
				𝑇
				)
				,
				0
				)
			

		
	
 solves the operator equation 
	
 		
 			
				(
				3
				.
				1
				5
				)
			
 		
	

	
		
			
				𝑢
				(
				𝑡
				)
				=
				𝜆
			

			

				𝑇
			

			

				
			

			
				𝑠
				=
				2
			

			
				𝐺
				(
				𝑡
				,
				𝑠
				)
				ℎ
				(
				𝑠
				)
				𝑓
				(
				𝑢
				(
				𝑠
				)
				)
				,
				𝑡
				∈
				𝕋
			

			

				1
			

			

				.
			

		
	

Now, let 
	
		
			
				𝐽
				∶
				𝑌
				→
				𝑋
			

		
	
 be the linear operator: 
	
 		
 			
				(
				3
				.
				1
				6
				)
			
 		
	

	
		
			
				𝐽
				(
				𝑢
				(
				2
				)
				,
				𝑢
				(
				3
				)
				,
				…
				,
				𝑢
				(
				𝑇
				)
				)
				=
				(
				−
				𝑢
				(
				2
				)
				,
				0
				,
				𝑢
				(
				2
				)
				,
				𝑢
				(
				3
				)
				,
				…
				,
				𝑢
				(
				𝑇
				)
				,
				0
				,
				−
				𝑢
				(
				𝑇
				)
				)
				,
				𝑢
				∈
				𝑌
				.
			

		
	

 Let 
	
		
			
				𝐿
				,
				𝑁
				∶
				𝑋
				→
				𝑋
			

		
	
 be the operators: 
	
 		
 			
				(
				3
				.
				1
				7
				)
			
 			
				(
				3
				.
				1
				8
				)
			
 		
	

	
		
			
				𝐿
				𝑢
				∶
				=
				(
				𝐽
				∘
				ℒ
				)
			

			
				−
				1
			

			
				
				ℎ
				(
				⋅
				)
				𝑓
			

			

				0
			

			
				𝑢
				
				,
				𝑁
				𝑢
				∶
				=
				(
				𝐽
				∘
				ℒ
				)
			

			
				−
				1
			

			
				(
				ℎ
				(
				⋅
				)
				𝜁
				(
				𝑢
				)
				)
				,
			

		
	

					respectively. Then Lemma 3.1 yields that 
	
		
			
				𝐿
				∶
				𝑋
				→
				𝑋
			

		
	
 is strongly positive. Moreover, [16, Theorem  7.c] implies 
	
		
			
				𝑟
				(
				𝐿
				)
				>
				0
			

		
	
.
Now, it follows from Theorem 2.3 that there exists a continuum 
	
 		
 			
				(
				3
				.
				1
				9
				)
			
 		
	

	
		
			

				𝒞
			

			

				+
			

			

				⊆
			

			
				
			
			
				{
				(
				𝜇
				,
				𝑥
				)
				∈
				ℝ
				×
				𝑋
				∣
				(
				𝜇
				,
				𝑥
				)
				i
				s
				a
				s
				o
				l
				u
				t
				i
				o
				n
				o
				f
				(
				1
				.
				4
				)
				,
				(
				1
				.
				8
				)
				w
				i
				t
				h
				𝑥
				>
				0
				a
				n
				d
				𝜇
				>
				0
				}
				,
			

		
	

					which joins 
	
		
			
				(
				𝑟
				(
				𝐿
				)
			

			
				−
				1
			

			
				,
				0
				)
			

		
	
 with infinity in 
	
		
			
				(
				0
				,
				∞
				)
				×
				𝐾
			

		
	
 and 
	
 		
 			
				(
				3
				.
				2
				0
				)
			
 		
	

	
		
			
				(
				𝜇
				,
				𝑥
				)
				∈
				𝒞
			

			

				+
			

			
				,
				𝜇
				≠
				𝑟
				(
				𝐿
				)
			

			
				−
				1
			

			
				⟹
				𝑥
				>
				0
				,
				𝜇
				>
				0
				.
			

		
	

					It is easy to check that 
	
 		
 			
				(
				3
				.
				2
				1
				)
			
 		
	

	
		
			
				𝑟
				(
				𝐿
				)
			

			
				−
				1
			

			
				=
				𝜆
			

			

				1
			

			
				
			
			

				𝑓
			

			

				0
			

			

				.
			

		
	

Lemma 3.2.  Let 
	
		
			

				ℎ
			

			

				1
			

			
				,
				ℎ
			

			

				2
			

			
				∈
				𝑌
			

		
	
 with 
	
		
			

				ℎ
			

			

				1
			

			
				≥
				ℎ
			

			

				2
			

			
				>
				0
			

		
	
. Then the eigenvalue problems 
							
	
 		
 			
				(
				3
				.
				2
				2
				)
			
 		
	

	
		
			
				ℒ
				𝑢
				(
				𝑡
				)
				=
				𝜆
				ℎ
			

			

				𝑖
			

			
				(
				𝑡
				)
				𝑢
				(
				𝑡
				)
				,
				𝑡
				∈
				𝕋
			

			

				2
			

			
				,
				𝑖
				=
				1
				,
				2
			

		
	

						have the principal eigenvalue 
	
		
			
				
			
			

				𝜆
			

			

				𝑖
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				2
			

		
	
 such that 
	
		
			
				
			
			

				𝜆
			

			

				1
			

			

				≤
			

			
				
			
			

				𝜆
			

			

				2
			

		
	
. Moreover, the corresponding eigenfunctions 
	
		
			

				𝜓
			

			

				𝑖
			

		
	
 are positive in 
	
		
			

				𝕋
			

			

				2
			

		
	
.
Proof . Let 
	
		
			

				𝐿
			

			

				𝑖
			

			
				∶
				𝑋
				→
				𝑋
			

		
	
 be the operator 
							
	
 		
 			
				(
				3
				.
				2
				3
				)
			
 		
	

	
		
			

				𝐿
			

			

				𝑖
			

			
				𝑢
				∶
				=
				𝜆
				(
				𝐽
				∘
				ℒ
				)
			

			
				−
				1
			

			
				
				ℎ
			

			

				𝑖
			

			
				
				(
				⋅
				)
				𝑢
				,
				𝑖
				=
				1
				,
				2
				.
			

		
	
Then Lemma 3.1 yields that 
	
		
			

				𝐿
			

			

				𝑖
			

			
				∶
				𝑋
				→
				𝑋
			

		
	
 is strongly positive. By Krein-Rutman theorem [16, Theorem  7.c] the spectral radius 
	
		
			
				𝑟
				(
				𝐿
			

			

				𝑖
			

			
				)
				>
				0
			

		
	
 and there exist 
	
		
			

				𝜓
			

			

				𝑖
			

			
				∈
				𝑋
			

		
	
 with 
	
		
			

				𝜓
			

			

				𝑖
			

			
				>
				0
			

		
	
 on 
	
		
			

				𝕋
			

			

				2
			

		
	
 such that 
	
 		
 			
				(
				3
				.
				2
				4
				)
			
 		
	

	
		
			

				𝐿
			

			

				𝑖
			

			

				𝜓
			

			

				𝑖
			

			
				
				𝐿
				(
				𝑡
				)
				=
				𝑟
			

			

				𝑖
			

			
				
				𝜓
			

			

				𝑖
			

			
				(
				𝑡
				)
				,
				𝑖
				=
				1
				,
				2
				.
			

		
	

						That is, the eigenvalue problems (3.22) have the principal eigenvalues 
	
		
			
				
			
			

				𝜆
			

			

				𝑖
			

			
				=
				1
				/
				𝑟
				(
				𝐿
			

			

				𝑖
			

			

				)
			

		
	
, and 
	
		
			

				𝜓
			

			

				𝑖
			

			
				(
				𝑡
				)
			

		
	
 is the corresponding eigenfunctions of 
	
		
			
				
			
			

				𝜆
			

			

				𝑖
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				2
			

		
	
.Next, we prove 
	
		
			
				
			
			

				𝜆
			

			

				1
			

			

				≤
			

			
				
			
			

				𝜆
			

			

				2
			

		
	
. Since 
	
		
			

				∑
			

			
				𝑇
				𝑡
				=
				2
			

			

				Δ
			

			

				4
			

			

				𝜓
			

			

				1
			

			
				(
				𝑡
				−
				2
				)
				𝜓
			

			

				2
			

			
				∑
				(
				𝑡
				)
				=
			

			
				𝑇
				𝑡
				=
				2
			

			

				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				Δ
			

			

				4
			

			

				𝜓
			

			

				2
			

			
				(
				𝑡
				−
				2
				)
			

		
	
, it follows that
	
 		
 			
				(
				3
				.
				2
				5
				)
			
 		
	

	
		
			

				𝑇
			

			

				
			

			
				𝑡
				=
				2
			

			

				ℎ
			

			

				1
			

			
				(
				𝑡
				)
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				𝜓
			

			

				2
			

			
				(
				𝑡
				)
				≥
			

			

				𝑇
			

			

				
			

			
				𝑡
				=
				2
			

			
				
			
			

				𝜆
			

			

				2
			

			
				
			
			
				
			
			

				𝜆
			

			

				2
			

			

				ℎ
			

			

				2
			

			
				(
				𝑡
				)
				𝜓
			

			

				2
			

			
				(
				𝑡
				)
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				=
			

			

				𝑇
			

			

				
			

			
				𝑡
				=
				2
			

			

				1
			

			
				
			
			
				
			
			

				𝜆
			

			

				2
			

			

				Δ
			

			

				4
			

			

				𝜓
			

			

				2
			

			
				(
				𝑡
				−
				2
				)
				𝜓
			

			

				1
			

			
				=
				(
				𝑡
				)
			

			

				𝑇
			

			

				
			

			
				𝑡
				=
				2
			

			

				1
			

			
				
			
			
				
			
			

				𝜆
			

			

				2
			

			

				𝜓
			

			

				2
			

			
				(
				𝑡
				)
				Δ
			

			

				4
			

			

				𝜓
			

			

				1
			

			
				(
				𝑡
				−
				2
				)
				=
			

			

				𝑇
			

			

				
			

			
				𝑡
				=
				2
			

			

				𝜓
			

			

				2
			

			
				(
				𝑡
				)
			

			
				
			
			
				
			
			

				𝜆
			

			

				2
			

			
				
			
			

				𝜆
			

			

				1
			

			

				ℎ
			

			

				1
			

			
				(
				𝑡
				)
				𝜓
			

			

				1
			

			
				=
				(
				𝑡
				)
			

			
				
			
			

				𝜆
			

			

				1
			

			
				
			
			
				
			
			

				𝜆
			

			
				2
				𝑇
			

			

				
			

			
				𝑡
				=
				2
			

			

				ℎ
			

			

				1
			

			
				(
				𝑡
				)
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				𝜓
			

			

				2
			

			
				(
				𝑡
				)
				.
			

		
	

						Therefore, 
	
		
			
				
			
			

				𝜆
			

			

				1
			

			

				≤
			

			
				
			
			

				𝜆
			

			

				2
			

		
	
.  
Suppose that 
	
		
			

				𝕋
			

			

				𝑎
			

			
				=
				{
				𝑎
				+
				1
				,
				𝑎
				+
				2
				,
				…
				,
				𝑏
				−
				1
				}
			

		
	
 is a strict subset of 
	
		
			

				𝕋
			

			

				2
			

		
	
 and 
	
		
			

				ℎ
			

			

				𝑎
			

		
	
 denote the restriction of 
	
		
			

				ℎ
			

		
	
 on 
	
		
			

				𝕋
			

			

				𝑎
			

		
	
. Consider the linear eigenvalue problems: 
	
 		
 			
				(
				3
				.
				2
				6
				)
			
 		
	

	
		
			

				Δ
			

			

				4
			

			
				𝑢
				(
				𝑡
				−
				2
				)
				=
				𝜆
				ℎ
			

			

				𝑎
			

			
				(
				𝑡
				)
				𝑓
			

			

				0
			

			
				𝑢
				(
				𝑡
				)
				,
				𝑡
				∈
				𝕋
			

			

				𝑎
			

			
				,
				𝑢
				(
				𝑎
				)
				=
				𝑢
				(
				𝑏
				)
				=
				Δ
			

			

				2
			

			
				𝑢
				(
				𝑎
				−
				1
				)
				=
				Δ
			

			

				2
			

			
				𝑢
				(
				𝑏
				−
				1
				)
				=
				0
				.
			

		
	

					Then we get the following result.
Lemma 3.3.  Let 
	
		
			
				̃
				𝜆
			

			

				1
			

		
	
 is the principal eigenvalue of (3.17), then (3.26) has only one principal eigenvalue 
	
		
			

				𝜆
			

			

				𝑎
			

		
	
 such that 
	
		
			
				̃
				𝜆
				0
				<
			

			

				1
			

			
				<
				𝜆
			

			

				𝑎
			

		
	
.
Proof. It is not difficult to prove that (3.26) has only one principal eigenvalue 
	
		
			

				𝜆
			

			

				𝑎
			

			
				>
				0
			

		
	
 by Lemma 3.1, and the corresponding eigenfunction 
	
		
			

				𝜓
			

			

				𝑎
			

			
				>
				0
			

		
	
 on 
	
		
			

				𝕋
			

			

				𝑎
			

		
	
. So we only to verify that 
	
		
			
				̃
				𝜆
				0
				<
			

			

				1
			

			
				<
				𝜆
			

			

				𝑎
			

		
	
.Let 
	
		
			

				𝜓
			

			

				1
			

		
	
 be the corresponding eigenfunction of 
	
		
			
				̃
				𝜆
			

			

				1
			

		
	
, we have that
							
	
 		
 			
				(
				3
				.
				2
				7
				)
			
 		
	

	
		
			
				𝑏
				−
				1
			

			

				
			

			
				𝑡
				=
				𝑎
				+
				1
			

			

				Δ
			

			

				4
			

			

				𝜓
			

			

				𝑎
			

			
				(
				𝑡
				−
				2
				)
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				=
			

			
				𝑏
				−
				1
			

			

				
			

			
				𝑡
				=
				𝑎
				+
				1
			

			

				Δ
			

			

				4
			

			

				𝜓
			

			

				1
			

			
				(
				𝑡
				−
				2
				)
				𝜓
			

			

				𝑎
			

			
				(
				𝑡
				)
				−
				𝜓
			

			

				1
			

			
				(
				𝑏
				)
				Δ
			

			

				2
			

			

				𝜓
			

			

				𝑎
			

			
				(
				𝑏
				−
				2
				)
				−
				𝜓
			

			

				𝑎
			

			
				(
				𝑏
				−
				1
				)
				Δ
			

			

				2
			

			

				𝜓
			

			

				1
			

			
				(
				𝑏
				−
				1
				)
				−
				Δ
			

			

				2
			

			

				𝜓
			

			

				𝑎
			

			
				(
				𝑎
				)
				𝜓
			

			

				1
			

			
				(
				𝑎
				)
				−
				𝜓
			

			

				𝑎
			

			
				(
				𝑎
				+
				1
				)
				Δ
			

			

				2
			

			

				𝜓
			

			

				1
			

			
				>
				(
				𝑎
				−
				1
				)
			

			
				𝑏
				−
				1
			

			

				
			

			
				𝑡
				=
				𝑎
				+
				1
			

			

				Δ
			

			

				4
			

			

				𝜓
			

			

				1
			

			
				(
				𝑡
				−
				2
				)
				𝜓
			

			

				𝑎
			

			
				(
				𝑡
				)
				.
			

		
	

						So
							
	
 		
 			
				(
				3
				.
				2
				8
				)
			
 		
	

	
		
			
				𝑏
				−
				1
			

			

				
			

			
				𝑡
				=
				𝑎
				+
				1
			

			
				ℎ
				(
				𝑡
				)
				𝜓
			

			

				𝑎
			

			
				(
				𝑡
				)
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				=
			

			
				𝑏
				−
				1
			

			

				
			

			
				𝑡
				=
				𝑎
				+
				1
			

			

				1
			

			
				
			
			

				𝜆
			

			

				𝑎
			

			

				Δ
			

			

				4
			

			

				𝜓
			

			

				𝑎
			

			
				(
				𝑡
				−
				2
				)
				𝜓
			

			

				1
			

			
				>
				(
				𝑡
				)
			

			
				𝑏
				−
				1
			

			

				
			

			
				𝑡
				=
				𝑎
				+
				1
			

			

				1
			

			
				
			
			

				𝜆
			

			

				𝑎
			

			

				Δ
			

			

				4
			

			

				𝜓
			

			

				1
			

			
				(
				𝑡
				−
				2
				)
				𝜓
			

			

				𝑎
			

			
				=
				(
				𝑡
				)
			

			
				𝑏
				−
				1
			

			

				
			

			
				𝑡
				=
				𝑎
				+
				1
			

			

				𝜓
			

			

				𝑎
			

			
				(
				𝑡
				)
			

			
				
			
			

				𝜆
			

			

				𝑎
			

			
				̃
				𝜆
			

			

				1
			

			
				ℎ
				(
				𝑡
				)
				𝜓
			

			

				1
			

			
				=
				̃
				𝜆
				(
				𝑡
				)
			

			

				1
			

			
				
			
			

				𝜆
			

			
				𝑎
				𝑏
				−
				1
			

			

				
			

			
				𝑡
				=
				𝑎
				+
				1
			

			
				ℎ
				(
				𝑡
				)
				𝜓
			

			

				𝑎
			

			
				(
				𝑡
				)
				𝜓
			

			

				1
			

			
				(
				𝑡
				)
				.
			

		
	

						Thus 
	
		
			
				̃
				𝜆
				0
				<
			

			

				1
			

			
				<
				𝜆
			

			

				𝑎
			

		
	
.
Proof of Theorem 1.3. We divide the proof into three steps.Let 
	
		
			
				{
				(
				𝜇
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝑛
			

			
				)
				}
				⊂
				𝒞
			

			

				+
			

		
	
 be such that 
							
	
 		
 			
				(
				3
				.
				2
				9
				)
			
 		
	

	
		
			
				|
				|
				𝜇
			

			

				𝑛
			

			
				|
				|
				+
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				‖
				‖
			

			

				𝑋
			

			
				→
				∞
				,
				𝑛
				→
				∞
				.
			

		
	

						Then 
							
	
 		
 			
				(
				3
				.
				3
				0
				)
			
 		
	

	
		
			

				Δ
			

			

				4
			

			

				𝑦
			

			

				𝑛
			

			
				(
				𝑡
				−
				2
				)
				=
				𝜇
			

			

				𝑛
			

			
				ℎ
				
				𝑦
				(
				𝑡
				)
				𝑓
			

			

				𝑛
			

			
				
				(
				𝑡
				)
				,
				𝑡
				∈
				𝕋
			

			

				2
			

			
				,
				𝑦
			

			

				𝑛
			

			
				(
				1
				)
				=
				𝑦
			

			

				𝑛
			

			
				(
				𝑇
				+
				1
				)
				=
				Δ
			

			

				2
			

			

				𝑦
			

			

				𝑛
			

			
				(
				0
				)
				=
				Δ
			

			

				2
			

			

				𝑦
			

			

				𝑛
			

			
				(
				𝑇
				)
				=
				0
				.
			

		
	
Step 1. We show that there exists a constant 
	
		
			

				𝑀
			

		
	
 such that 
	
		
			

				𝜇
			

			

				𝑛
			

			
				∈
				(
				0
				,
				𝑀
				]
			

		
	
 for all 
	
		
			

				𝑛
			

		
	
.Suppose on the contrary that 
	
 		
 			
				(
				3
				.
				3
				1
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝜇
			

			

				𝑛
			

			
				=
				∞
				.
			

		
	

								Let 
	
		
			

				𝑣
			

			

				𝑛
			

			
				=
				𝑦
			

			

				𝑛
			

			
				/
				‖
				𝑦
			

			

				𝑛
			

			

				‖
			

			

				𝑋
			

		
	
. Then it follows from (3.30) that 
	
 		
 			
				(
				3
				.
				3
				2
				)
			
 		
	

	
		
			

				Δ
			

			

				4
			

			

				𝑣
			

			

				𝑛
			

			
				(
				𝑡
				−
				2
				)
				=
				𝜇
			

			

				𝑛
			

			
				𝑓
				
				𝑦
				ℎ
				(
				𝑡
				)
			

			

				𝑛
			

			
				
				(
				𝑡
				)
			

			
				
			
			

				𝑦
			

			

				𝑛
			

			
				𝑣
				(
				𝑡
				)
			

			

				𝑛
			

			
				(
				𝑡
				)
				,
				𝑡
				∈
				𝕋
			

			

				2
			

			
				,
				𝑣
			

			

				𝑛
			

			
				(
				1
				)
				=
				𝑣
			

			

				𝑛
			

			
				(
				𝑇
				+
				1
				)
				=
				Δ
			

			

				2
			

			

				𝑣
			

			

				𝑛
			

			
				(
				0
				)
				=
				Δ
			

			

				2
			

			

				𝑣
			

			

				𝑛
			

			
				(
				𝑇
				)
				=
				0
				.
			

		
	

								Since
	
 		
 			
				(
				3
				.
				3
				3
				)
			
 		
	

	
		
			
				
				i
				n
				f
				𝑓
				(
				𝑠
				)
			

			
				
			
			
				𝑠
				
				∣
				𝑠
				>
				0
				∶
				=
				𝑀
			

			

				0
			

			
				>
				0
				,
			

		
	

								there exists a constant 
	
		
			

				𝑀
			

			

				0
			

			
				>
				0
			

		
	
, such that
									
	
 		
 			
				(
				3
				.
				3
				4
				)
			
 		
	

	
		
			
				𝑓
				
				𝑦
			

			

				𝑛
			

			
				
				(
				𝑡
				)
			

			
				
			
			

				𝑦
			

			

				𝑛
			

			
				(
				𝑡
				)
				>
				𝑀
			

			

				0
			

			
				>
				0
				.
			

		
	

								Let 
	
		
			

				𝜆
			

			

				∗
			

		
	
 be the principal eigenvalue of the linear eigenvalue problems: 
									
	
 		
 			
				(
				3
				.
				3
				5
				)
			
 		
	

	
		
			

				Δ
			

			

				4
			

			
				𝑣
				(
				𝑡
				−
				2
				)
				=
				𝜆
				ℎ
				(
				𝑡
				)
				𝑀
			

			

				0
			

			
				𝑣
				(
				𝑡
				)
				,
				𝑡
				∈
				𝕋
			

			

				2
			

			
				,
				𝑣
				(
				1
				)
				=
				𝑣
				(
				𝑇
				+
				1
				)
				=
				Δ
			

			

				2
			

			
				𝑣
				(
				0
				)
				=
				Δ
			

			

				2
			

			
				𝑣
				(
				𝑇
				)
				=
				0
				.
			

		
	

								Combining (3.31) and (3.34) with the relation (3.32), using Lemma 3.2, we get
									
	
 		
 			
				(
				3
				.
				3
				6
				)
			
 		
	

	
		
			
				0
				<
				𝜇
			

			

				𝑛
			

			
				≤
				𝜆
			

			

				∗
			

			

				.
			

		
	

								This contradicts (3.31). So 
	
		
			

				𝜇
			

			

				𝑛
			

			
				∈
				(
				0
				,
				𝑀
				]
			

		
	
 for all 
	
		
			

				𝑛
			

		
	
.Step 2. We show that 
	
		
			

				𝒞
			

			

				+
			

		
	
 joins 
	
		
			
				(
				𝜆
			

			

				1
			

			
				/
				𝑓
			

			

				0
			

			
				,
				0
				)
			

		
	
 with 
	
		
			
				(
				0
				,
				∞
				)
			

		
	
.Assume that there exist 
	
		
			
				𝛿
				>
				0
			

		
	
 and 
	
		
			
				{
				(
				𝜇
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝑛
			

			
				)
				}
				⊂
				𝒞
			

			

				+
			

		
	
 such that 
									
	
 		
 			
				(
				3
				.
				3
				7
				)
			
 		
	

	
		
			
				0
				<
				𝛿
				≤
				𝜇
			

			

				𝑛
			

			
				‖
				‖
				𝑦
				≤
				𝑀
				;
			

			

				𝑛
			

			
				‖
				‖
			

			

				𝑋
			

			
				⟶
				∞
				,
				𝑛
				⟶
				∞
				.
			

		
	
First, we show that 
									
	
 		
 			
				(
				3
				.
				3
				8
				)
			
 		
	

	
		
			
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				‖
				‖
			

			

				𝑋
			

			
				‖
				‖
				𝑦
				⟶
				∞
				⟹
			

			

				𝑛
			

			
				‖
				‖
			

			

				∞
			

			
				⟶
				∞
				.
			

		
	
Suppose on the contrary that
	
 		
 			
				(
				3
				.
				3
				9
				)
			
 		
	

	
		
			
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				‖
				‖
			

			

				∞
			

			
				≤
				𝑀
			

			

				1
			

		
	

								for some 
	
		
			

				𝑀
			

			

				1
			

			
				>
				0
			

		
	
 (independent on 
	
		
			

				𝑛
			

		
	
). Then it follows from (3.30) and 
	
		
			
				0
				<
				𝛿
				≤
				|
				𝜇
			

			

				𝑛
			

			
				|
				≤
				𝑀
			

		
	
 that 
	
 		
 			
				(
				3
				.
				4
				0
				)
			
 		
	

	
		
			
				‖
				‖
				Δ
			

			

				4
			

			

				𝑦
			

			

				𝑛
			

			
				‖
				‖
			

			

				∞
			

			
				≤
				𝑀
				‖
				ℎ
				‖
			

			

				∞
			

			
				
				𝑓
				s
				u
				p
				(
				𝑠
				)
				∣
				0
				<
				𝑠
				≤
				𝑀
			

			

				1
			

			
				
				,
			

		
	

								and subsequently, 
	
		
			
				{
				‖
				𝑦
			

			

				𝑛
			

			

				‖
			

			

				𝑋
			

			

				}
			

		
	
 is bounded. This is a contradiction. So, (3.38) holds.Next, we show that 
	
 		
 			
				(
				3
				.
				4
				1
				)
			
 		
	

	
		
			
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				‖
				‖
			

			

				∞
			

			
				
				𝑦
				⟶
				∞
				⇒
				m
				i
				n
			

			

				𝑛
			

			
				(
				𝑡
				)
				∣
				𝑡
				∈
				𝕋
			

			

				2
			

			
				
				⟶
				∞
				.
			

		
	
In fact, 
									
	
 		
 			
				(
				3
				.
				4
				2
				)
			
 		
	

	
		
			

				𝑦
			

			

				𝑛
			

			
				(
				𝑡
				)
				=
				𝜇
			

			
				𝑛
				𝑇
			

			

				
			

			
				𝑠
				=
				2
			

			
				
				𝑦
				𝐾
				(
				𝑡
				,
				𝑠
				)
				ℎ
				(
				𝑠
				)
				𝑓
			

			

				𝑛
			

			
				
				(
				𝑠
				)
				,
				𝑡
				∈
				𝕋
			

			

				1
			

			

				.
			

		
	

								This together with (2.7) imply that (3.41) is valid.Finally, we have from the facts that 
	
		
			
				m
				i
				n
				{
				𝑦
			

			

				𝑛
			

			
				(
				𝑡
				)
				∣
				𝑡
				∈
				𝕋
			

			

				2
			

			
				}
				→
				∞
			

		
	
 and 
	
		
			
				0
				<
				𝛿
				≤
				|
				𝜇
			

			

				𝑛
			

			
				|
				≤
				𝑀
			

		
	
 that 
									
	
 		
 			
				(
				3
				.
				4
				3
				)
			
 		
	

	
		
			

				𝜇
			

			

				𝑛
			

			
				𝑓
				
				𝑦
			

			

				𝑛
			

			
				
				(
				𝑡
				)
			

			
				
			
			

				𝑦
			

			

				𝑛
			

			
				(
				𝑡
				)
				⟶
				∞
				,
				𝑛
				⟶
				∞
				f
				o
				r
				a
				n
				y
				𝑡
				∈
				𝕋
			

			

				𝑎
			

			

				.
			

		
	

								Consider the following linear eigenvalue problems: 
									
	
 		
 			
				(
				3
				.
				4
				4
				)
			
 		
	

	
		
			

				Δ
			

			

				4
			

			
				𝑣
				(
				𝑡
				−
				2
				)
				=
				𝜆
				ℎ
			

			

				𝑎
			

			
				(
				𝑡
				)
				𝑣
				(
				𝑡
				)
				,
				𝑡
				∈
				𝕋
			

			

				𝑎
			

			
				,
				𝑣
				(
				𝑎
				)
				=
				𝑣
				(
				𝑏
				)
				=
				Δ
			

			

				2
			

			
				𝑣
				(
				𝑎
				−
				1
				)
				=
				Δ
			

			

				2
			

			
				𝑣
				(
				𝑏
				−
				1
				)
				=
				0
				.
			

		
	

								By Lemma 3.3 and (3.32), (3.44) has a positive principal eigenvalue 
	
		
			

				𝜆
			

			

				𝑎
			

		
	
, and
	
 		
 			
				(
				3
				.
				4
				5
				)
			
 		
	

	
		
			

				𝜇
			

			

				𝑛
			

			
				𝑓
				
				𝑦
			

			

				𝑛
			

			
				
				(
				𝑡
				)
			

			
				
			
			

				𝑦
			

			

				𝑛
			

			
				(
				𝑡
				)
				≤
				𝜆
			

			

				𝑎
			

			

				,
			

		
	

								which contradicts (3.43). Thus 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝜇
			

			

				𝑛
			

			
				=
				0
			

		
	
.Step 3. Fixed 
	
		
			

				𝜆
			

		
	
 such that 
									
	
 		
 			
				(
				3
				.
				4
				6
				)
			
 		
	

	
		
			
				0
				<
				𝜆
				<
				s
				u
				p
			

			
				𝑠
				∈
				(
				0
				,
				𝐵
				)
			

			

				𝑠
			

			
				
			
			

				𝛾
			

			

				∗
			

			
				.
				𝑓
				(
				𝑠
				)
			

		
	

								Then there exists 
	
		
			
				𝑏
				∈
				(
				0
				,
				𝐵
				]
			

		
	
 such that 
	
 		
 			
				(
				3
				.
				4
				7
				)
			
 		
	

	
		
			
				𝑏
				0
				<
				𝜆
				<
			

			
				
			
			

				𝛾
			

			

				∗
			

			
				.
				𝑓
				(
				𝑏
				)
			

		
	

								We show that there is no 
	
		
			
				(
				𝜇
				,
				𝑢
				)
				∈
				𝒞
			

			

				+
			

		
	
 such that 
									
	
 		
 			
				(
				3
				.
				4
				8
				)
			
 		
	

	
		
			
				‖
				𝑢
				‖
			

			

				∞
			

			
				𝑏
				=
				𝑏
				,
				0
				<
				𝜇
				<
			

			
				
			
			

				𝛾
			

			

				∗
			

			
				.
				𝑓
				(
				𝑏
				)
			

		
	

								In fact, if there exists 
	
		
			
				(
				𝜂
				,
				𝑦
				)
				∈
				𝒞
			

			

				+
			

		
	
 satisfying (3.48), then 
									
	
 		
 			
				(
				3
				.
				4
				9
				)
			
 		
	

	
		
			
				𝑦
				(
				𝑡
				)
				=
				𝜂
			

			

				𝑇
			

			

				
			

			
				𝑠
				=
				2
			

			
				𝐾
				(
				𝑡
				,
				𝑠
				)
				ℎ
				(
				𝑠
				)
				𝑓
				(
				𝑦
				(
				𝑠
				)
				)
				≤
				𝜂
				𝛾
			

			

				∗
			

			
				𝑓
				(
				𝑏
				)
				=
				𝜂
				𝛾
			

			

				∗
			

			
				𝑓
				(
				𝑏
				)
			

			
				
			
			
				𝑏
				⋅
				𝑏
			

		
	

								for 
	
		
			
				𝑡
				∈
				𝕋
			

			

				1
			

		
	
, and subsequently, 
	
		
			
				𝜂
				≥
				𝑏
				/
				𝛾
			

			

				∗
			

			
				𝑓
				(
				𝑏
				)
			

		
	
. Therefore, no 
	
		
			
				(
				𝜇
				,
				𝑢
				)
				∈
				𝒞
			

			

				+
			

		
	
 satisfies (3.48).Now, combining the conclusions in Steps 2 and 3, using the fact that no 
	
		
			
				(
				𝜇
				,
				𝑢
				)
				∈
				𝒞
			

			

				+
			

		
	
 satisfies (3.48), it concludes that for every 
	
		
			
				𝜆
				∈
				(
				𝜆
			

			

				1
			

			
				/
				𝑓
			

			

				0
			

			
				,
				𝑏
				/
				𝛾
			

			

				∗
			

			
				𝑓
				(
				𝑏
				)
				)
			

		
	
, (1.4), (1.8) has at least two generalized positive solutions in 
	
		
			

				𝒞
			

			

				+
			

		
	
. For arbitrary 
	
		
			
				𝜆
				∈
				(
				0
				,
				s
				u
				p
			

			
				𝑠
				∈
				(
				0
				,
				𝐵
				)
			

			
				(
				𝑠
				/
				𝛾
			

			

				∗
			

			
				𝑓
				(
				𝑠
				)
				)
				)
			

		
	
, we may find 
	
		
			
				𝑏
				=
				𝑏
				(
				𝜆
				)
			

		
	
 satisfying (3.47). So, for every 
	
		
			
				𝜆
				∈
				(
				𝜆
			

			

				1
			

			
				/
				𝑓
			

			

				0
			

			
				,
				s
				u
				p
			

			
				𝑠
				∈
				(
				0
				,
				𝐵
				)
			

			
				(
				𝑠
				/
				𝛾
			

			

				∗
			

			
				𝑓
				(
				𝑠
				)
				)
				)
			

		
	
, (1.4), (1.8) has at least two generalized positive solutions in 
	
		
			

				𝒞
			

			

				+
			

		
	
.           
Proof of Theorem 1.4. We divide the proof into three steps.Step 1. We show that there exists a positive constant 
	
		
			
				𝛽
				>
				0
			

		
	
 such that 
									
	
 		
 			
				(
				3
				.
				5
				0
				)
			
 		
	

	
		
			
				
				i
				n
				f
				𝜇
				∣
				(
				𝜇
				,
				𝑢
				)
				∈
				𝒞
			

			

				+
			

			
				
				=
				∶
				𝛽
				>
				0
				.
			

		
	

								Suppose on the contrary that there exists 
	
		
			
				{
				(
				𝜇
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝑛
			

			
				)
				}
				⊂
				𝒞
			

			

				+
			

		
	
 such that 
									
	
 		
 			
				(
				3
				.
				5
				1
				)
			
 		
	

	
		
			

				𝜇
			

			

				𝑛
			

			
				→
				0
			

			

				+
			

			
				,
				a
				s
				𝑛
				→
				∞
				.
			

		
	

								Then we have from (3.32), (3.51), 
	
		
			

				𝑓
			

			

				0
			

			
				∈
				(
				0
				,
				∞
				)
			

		
	
 and 
	
		
			

				𝑓
			

			

				∞
			

			
				=
				0
			

		
	
 that 
									
	
 		
 			
				(
				3
				.
				5
				2
				)
			
 		
	

	
		
			
				‖
				‖
				𝑣
			

			

				𝑛
			

			
				‖
				‖
			

			

				𝑋
			

			
				→
				0
				,
				a
				s
				𝑛
				→
				∞
				.
			

		
	

								However, this contradicts with the fact that 
	
		
			
				‖
				𝑣
			

			

				𝑛
			

			

				‖
			

			

				𝑋
			

			
				=
				1
			

		
	
 for all 
	
		
			
				𝑛
				∈
				ℕ
			

		
	
. Therefore, (3.50) holds.Step 2. We show that for any closed interval 
	
		
			
				𝐼
				⊂
				[
				𝛽
				,
				∞
				)
			

		
	
, there exists 
	
		
			

				𝑀
			

			

				𝐼
			

			
				>
				0
			

		
	
 such that 
									
	
 		
 			
				(
				3
				.
				5
				3
				)
			
 		
	

	
		
			
				
				s
				u
				p
				‖
				𝑢
				‖
				∣
				(
				𝜇
				,
				𝑢
				)
				∈
				𝒞
			

			

				+
			

			
				
				≤
				𝑀
			

			

				𝐼
			

			

				.
			

		
	

								Suppose on the contrary that there exists 
	
		
			
				{
				(
				𝜇
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝑛
			

			
				)
				}
				⊂
				𝒞
			

			

				+
			

		
	
 with 
									
	
 		
 			
				(
				3
				.
				5
				4
				)
			
 		
	

	
		
			
				
				𝜇
			

			

				𝑛
			

			
				
				‖
				‖
				𝑦
				⊂
				𝐼
				,
			

			

				𝑛
			

			
				‖
				‖
			

			

				𝑋
			

			
				⟶
				∞
				a
				s
				𝑛
				⟶
				∞
				.
			

		
	

								Then by (3.38), 
									
	
 		
 			
				(
				3
				.
				5
				5
				)
			
 		
	

	
		
			
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				‖
				‖
			

			

				∞
			

			
				⟶
				∞
				,
				𝑛
				⟶
				∞
				.
			

		
	

								and subsequently 
									
	
 		
 			
				(
				3
				.
				5
				6
				)
			
 		
	

	
		
			
				m
				i
				n
			

			
				𝑡
				∈
				𝕋
			

			

				2
			

			

				𝑦
			

			

				𝑛
			

			
				(
				𝑡
				)
				≥
				𝑐
			

			

				1
			

			
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				‖
				‖
			

			

				∞
			

			
				.
				⟶
				∞
			

		
	

								This together with (3.32) and 
	
		
			

				𝑓
			

			

				0
			

			
				∈
				(
				0
				,
				∞
				)
			

		
	
 and 
	
		
			

				𝑓
			

			

				∞
			

			
				=
				0
			

		
	
 that 
									
	
 		
 			
				(
				3
				.
				5
				7
				)
			
 		
	

	
		
			
				‖
				‖
				
				𝑣
			

			

				𝑛
			

			

				|
			

			

				𝕋
			

			

				2
			

			
				
				‖
				‖
			

			

				∞
			

			
				⟶
				0
				,
				𝑛
				⟶
				∞
				.
			

		
	

								However, this contradicts with the fact that 
									
	
 		
 			
				(
				3
				.
				5
				8
				)
			
 		
	

	
		
			
				m
				i
				n
			

			
				𝑡
				∈
				𝕋
			

			

				2
			

			

				𝑣
			

			

				𝑛
			

			
				(
				𝑡
				)
				≥
				𝑐
			

			

				1
			

			
				,
				𝑛
				∈
				ℕ
				.
			

		
	

								Therefore, (3.53) holds.Step 3. Fixed 
	
		
			

				𝜆
			

		
	
 such that 
	
 		
 			
				(
				3
				.
				5
				9
				)
			
 		
	

	
		
			
				𝜆
				>
				i
				n
				f
			

			
				
				𝑠
				∈
				0
				,
				𝑐
			

			

				1
			

			
				𝐵
				
			

			

				𝑠
			

			
				
			
			

				𝑐
			

			

				1
			

			

				𝛾
			

			

				∗
			

			
				.
				𝑓
				(
				𝑠
				)
			

		
	

								Then there exists 
	
		
			
				𝑙
				∈
				(
				0
				,
				𝑐
			

			

				1
			

			
				𝐵
				)
			

		
	
 such that 
									
	
 		
 			
				(
				3
				.
				6
				0
				)
			
 		
	

	
		
			
				𝑙
				𝜆
				>
			

			
				
			
			

				𝛾
			

			

				∗
			

			

				𝑐
			

			

				1
			

			
				.
				𝑓
				(
				𝑙
				)
			

		
	

								We show that there is no 
	
		
			
				(
				𝜂
				,
				𝑦
				)
				∈
				𝒞
			

			

				+
			

		
	
 such that 
									
	
 		
 			
				(
				3
				.
				6
				1
				)
			
 		
	

	
		
			
				‖
				𝑦
				‖
			

			

				∞
			

			
				=
				𝑙
			

			
				
			
			

				𝑐
			

			

				1
			

			
				𝑙
				𝜂
				>
			

			
				
			
			

				𝛾
			

			

				∗
			

			

				𝑐
			

			

				1
			

			
				.
				𝑓
				(
				𝑙
				)
			

		
	

								Suppose on the contrary that there exists 
	
		
			
				(
				𝜂
				,
				𝑦
				)
				∈
				𝐶
			

			

				+
			

		
	
 satisfying (3.61). Then for 
	
		
			
				𝑡
				∈
				𝕋
			

			

				2
			

		
	
, 
									
	
 		
 			
				(
				3
				.
				6
				2
				)
			
 		
	

	
		
			
				𝑦
				(
				𝑡
				)
				=
				𝜂
			

			

				𝑇
			

			

				
			

			
				𝑠
				=
				2
			

			
				𝐾
				(
				𝑡
				,
				𝑠
				)
				ℎ
				(
				𝑠
				)
				𝑓
				(
				𝑦
				(
				𝑠
				)
				)
				≥
				𝜂
			

			

				𝑇
			

			

				
			

			
				𝑠
				=
				2
			

			
				
				𝑐
				𝐾
				(
				t
				,
				𝑠
				)
				ℎ
				(
				𝑠
				)
				𝑓
			

			

				1
			

			
				‖
				𝑦
				‖
			

			

				∞
			

			
				
				=
				𝜂
			

			

				𝑇
			

			

				
			

			
				𝑠
				=
				2
			

			
				𝐾
				(
				𝑡
				,
				𝑠
				)
				ℎ
				(
				𝑠
				)
				𝑓
				(
				𝑙
				)
				≥
				𝜂
				𝛾
			

			

				∗
			

			
				𝑓
				(
				𝑙
				)
				=
				𝜂
				𝛾
			

			

				∗
			

			
				𝑓
				(
				𝑙
				)
			

			
				
			
			
				𝑙
				⋅
				𝑙
				,
			

		
	

								and subsequently, 
	
		
			
				𝜂
				≤
				𝑙
				/
				𝑐
			

			

				1
			

			

				𝛾
			

			

				∗
			

			
				𝑓
				(
				𝑙
				)
			

		
	
. Therefore, there is no 
	
		
			
				(
				𝜂
				,
				𝑦
				)
				∈
				𝒞
			

			

				+
			

		
	
 such that (3.61) holds.Now, combining the conclusions in Steps 2 and 3, using the fact that no 
	
		
			
				(
				𝜇
				,
				𝑢
				)
				∈
				𝒞
			

			

				+
			

		
	
 satisfying (3.61), it concludes that for every 
	
		
			
				𝜆
				∈
				(
				𝑙
				/
				𝑐
			

			

				1
			

			

				𝛾
			

			

				∗
			

			
				𝑓
				(
				𝑙
				)
				,
				𝜆
			

			

				1
			

			
				/
				𝑓
			

			

				0
			

			

				)
			

		
	
, (1.4), (1.8) has at least two generalized positive solutions in 
	
		
			

				𝒞
			

			

				+
			

		
	
. For arbitrary 
	
		
			
				𝜆
				∈
				(
				i
				n
				f
			

			
				𝑠
				∈
				(
				0
				,
				𝑐
			

			

				1
			

			
				𝐵
				)
			

			
				(
				𝑠
				/
				𝑐
			

			

				1
			

			

				𝛾
			

			

				∗
			

			
				𝑓
				(
				𝑠
				)
				)
				,
				∞
				)
			

		
	
, we may find 
	
		
			
				𝑙
				=
				𝑙
				(
				𝜆
				)
			

		
	
 satisfying (3.60). So, for every 
	
		
			
				𝜆
				∈
				(
				i
				n
				f
			

			
				𝑠
				∈
				(
				0
				,
				𝑐
			

			

				1
			

			
				𝐵
				)
			

			
				(
				𝑠
				/
				𝛾
			

			

				∗
			

			
				𝑓
				(
				𝑠
				)
				)
				,
				𝜆
			

			

				1
			

			
				/
				𝑓
			

			

				0
			

			

				)
			

		
	
, (1.4), (1.8) has at least two generalized positive solutions in 
	
		
			

				𝒞
			

			

				+
			

		
	
.
4. Some Examples
In this section, we will apply our results to two examples.
For convenience, set 
	
		
			
				𝑇
				=
				1
				2
			

		
	
, then 
	
		
			

				𝕋
			

			

				1
			

			
				=
				{
				1
				,
				2
				,
				…
				,
				1
				3
				}
			

		
	
, 
	
		
			

				𝕋
			

			

				2
			

			
				=
				{
				2
				,
				3
				,
				…
				,
				1
				2
				}
			

		
	
.
Example 4.1. Let us consider the boundary value problem 
							
	
 		
 			
				(
				4
				.
				1
				)
			
 		
	

	
		
			

				Δ
			

			

				4
			

			
				𝑢
				(
				𝑡
				−
				2
				)
				=
				𝜆
				𝑓
				(
				𝑢
				(
				𝑡
				)
				)
				,
				𝑡
				∈
				𝕋
			

			

				2
			

			
				,
				𝑢
				(
				1
				)
				=
				𝑢
				(
				1
				3
				)
				=
				Δ
			

			

				2
			

			
				𝑢
				(
				0
				)
				=
				Δ
			

			

				2
			

			
				𝑢
				(
				1
				2
				)
				=
				0
				,
			

		
	

						where 
							
	
 		
 			
				(
				4
				.
				2
				)
			
 		
	

	
		
			
				
				]
				,
				𝑓
				(
				𝑢
				)
				=
				a
				r
				c
				t
				a
				n
				𝑢
				,
				𝑢
				∈
				(
				0
				,
				1
				0
				0
				0
				(
				𝑢
				−
				1
				0
				0
				0
				)
			

			

				2
			

			
				+
				a
				r
				c
				t
				a
				n
				1
				0
				0
				0
				,
				𝑢
				∈
				(
				1
				0
				0
				0
				,
				∞
				)
				.
			

		
	

						Clearly, 
	
		
			
				𝑓
				(
				𝑢
				)
			

		
	
 is nondecreasing, 
	
		
			

				𝑓
			

			

				0
			

			
				=
				1
			

		
	
, 
	
		
			

				𝑓
			

			

				∞
			

			
				=
				∞
			

		
	
. Take 
	
		
			
				𝐵
				=
				1
				0
				0
				0
			

		
	
. By a simple computation, it follows that 
	
		
			
				i
				n
				f
			

			
				𝑠
				∈
				(
				0
				,
				1
				0
				0
				0
				)
			

			
				(
				𝑓
				(
				𝑠
				)
				/
				𝑠
				)
				=
				a
				r
				c
				t
				a
				n
				1
				0
				0
				0
				/
				1
				0
				0
				0
				≈
				0
				.
				0
				0
				1
				5
				7
			

		
	
, 
	
		
			

				𝜆
			

			

				1
			

			
				=
				1
				6
				s
				i
				n
			

			

				4
			

			
				(
				𝜋
				/
				2
				4
				)
				≈
				0
				.
				0
				0
				4
				8
			

		
	
 and 
	
		
			

				𝛾
			

			

				∗
			

			
				=
				m
				a
				x
			

			
				𝑡
				∈
				𝕋
			

			

				1
			

			

				∑
			

			
				1
				2
				𝑠
				=
				2
			

			
				𝐾
				(
				𝑡
				,
				𝑠
				)
				=
				1
				6
				2
				9
				/
				6
			

		
	
, then 
							
	
 		
 			
				(
				4
				.
				3
				)
			
 		
	

	
		
			
				0
				.
				0
				0
				4
				8
				≈
				1
				6
				s
				i
				n
			

			

				4
			

			

				𝜋
			

			
				
			
			
				=
				𝜆
				2
				4
			

			

				1
			

			
				
			
			

				𝑓
			

			

				0
			

			
				<
				s
				u
				p
			

			
				𝑠
				∈
				(
				0
				,
				1
				0
				0
				0
				)
			

			

				𝑠
			

			
				
			
			
				𝑓
				(
				𝑠
				)
				𝛾
			

			

				∗
			

			
				=
				6
			

			
				
			
			
				1
				6
				2
				9
				i
				n
				f
			

			
				𝑠
				∈
				(
				0
				,
				1
				0
				0
				0
				)
			

			
				(
				𝑓
				(
				𝑠
				)
				/
				𝑠
				)
				≈
				2
				.
				3
				4
				6
				3
				1
				.
			

		
	

						So, Theorem 1.3(i) implies that (4.1) has at least one generalized positive solution for 
							
	
 		
 			
				(
				4
				.
				4
				)
			
 		
	

	
		
			
				𝜆
				0
				<
				𝜆
				<
			

			

				1
			

			
				
			
			

				𝑓
			

			

				0
			

			
				≈
				0
				.
				0
				0
				4
				8
				;
			

		
	

						Theorem 1.3(ii) implies that (4.1) has at least two generalized positive solutions for 
							
	
 		
 			
				(
				4
				.
				5
				)
			
 		
	

	
		
			

				𝜆
			

			

				1
			

			
				
			
			

				𝑓
			

			

				0
			

			
				1
				<
				𝜆
				<
			

			
				
			
			

				𝛾
			

			

				∗
			

			
				
				1
				6
				s
				i
				n
			

			

				4
			

			
				
				(
				𝜋
				/
				2
				4
				)
				−
				1
				≈
				2
				.
				3
				4
				6
				3
				1
				.
			

		
	

Example 4.2. Let us consider the boundary value problem: 
							
	
 		
 			
				(
				4
				.
				6
				)
			
 		
	

	
		
			

				Δ
			

			

				4
			

			
				
				𝑢
				(
				𝑡
				−
				2
				)
				=
				𝜆
				𝑓
				(
				𝑢
				(
				𝑡
				)
				)
				,
				𝑡
				∈
				𝕋
			

			

				2
			

			
				,
				𝑢
				(
				1
				)
				=
				𝑢
				(
				1
				3
				)
				=
				Δ
			

			

				2
			

			
				𝑢
				(
				0
				)
				=
				Δ
			

			

				2
			

			
				𝑢
				(
				1
				2
				)
				=
				0
				,
			

		
	

						where 
							
	
 		
 			
				(
				4
				.
				7
				)
			
 		
	

	
		
			
				
				⎧
				⎪
				⎨
				⎪
				⎩
				𝑒
				𝑓
				(
				𝑢
				)
				=
			

			

				𝑢
			

			
				−
				1
			

			
				
			
			
				𝑢
				]
				,
				√
				,
				𝑢
				∈
				(
				0
				,
				3
				0
			

			
				
			
			
				𝑒
				𝑢
				−
				3
				0
				+
			

			
				3
				0
			

			
				−
				1
			

			
				
			
			
				3
				0
				,
				𝑢
				∈
				(
				3
				0
				,
				∞
				)
				.
			

		
	

						Obviously, 
	
		
			
				
				𝑓
				(
				𝑢
				)
			

		
	
 is nondecreasing in 
	
		
			
				[
				0
				,
				∞
				)
			

		
	
, so 
	
		
			
				
				𝑓
			

			

				0
			

			
				=
				l
				i
				m
			

			
				𝑢
				→
				0
			

			
				(
				
				𝑓
				(
				𝑢
				)
				/
				𝑢
				)
				=
				1
			

		
	
, 
	
		
			
				
				𝑓
			

			

				∞
			

			
				=
				l
				i
				m
			

			
				𝑢
				→
				0
			

			
				(
				
				𝑓
				(
				𝑢
				)
				/
				𝑢
				)
				=
				0
			

		
	
. By a simple computation, it follows that 
	
		
			

				𝜆
			

			

				1
			

			
				=
				1
				6
				s
				i
				n
			

			

				4
			

			
				(
				𝜋
				/
				2
				4
				)
			

		
	
 and 
	
		
			

				𝛾
			

			

				∗
			

			
				=
				m
				i
				n
			

			
				𝑡
				∈
				𝕋
			

			

				2
			

			

				∑
			

			
				1
				2
			

			

				s
			

			
				=
				2
			

			
				𝐾
				(
				𝑡
				,
				𝑠
				)
				=
				1
				4
				3
				/
				2
			

		
	
, 
	
		
			

				𝑐
			

			

				1
			

			
				√
				=
				2
				1
				6
			

			
				
			
			
				√
				3
				/
				1
				4
				5
			

			
				
			
			
				1
				4
				5
				≈
				0
				.
				2
				1
				4
			

		
	
. Take 
	
		
			
				𝐵
				=
				5
				0
			

		
	
. Since 
	
		
			
				s
				u
				p
			

			
				𝑠
				∈
				(
				0
				,
				1
				0
				.
				7
				1
				5
				)
			

			
				(
				
				𝑓
				(
				𝑠
				)
				/
				𝑠
				)
			

		
	
 
	
		
			

				=
			

		
	
 
	
		
			
				(
				𝑒
			

			
				1
				0
				.
				7
				1
				5
			

			
				−
				1
				)
				/
				1
				0
				.
				7
				1
				5
				≈
				4
				2
				0
				2
				.
				0
				7
				2
				6
			

		
	
, it follows that 
							
	
 		
 			
				(
				4
				.
				8
				)
			
 		
	

	
		
			
				0
				.
				0
				0
				0
				0
				1
				5
				5
				≈
				i
				n
				f
			

			
				
				𝑠
				∈
				0
				,
				𝑐
			

			

				1
			

			
				𝐵
				
			

			

				𝑠
			

			
				
			
			

				𝑐
			

			

				1
			

			

				𝛾
			

			

				∗
			

			
				
				=
				1
				𝑓
				(
				𝑠
				)
			

			
				
			
			
				s
				u
				p
			

			
				𝑠
				∈
				(
				0
				,
				1
				0
				.
				7
				1
				5
				)
			

			
				
				
				
				𝑐
				𝑓
				(
				𝑠
				)
				/
				𝑠
			

			

				1
			

			

				𝛾
			

			

				∗
			

			
				<
				𝜆
			

			

				1
			

			
				
			
			
				
				𝑓
			

			

				0
			

			
				=
				1
				6
				s
				i
				n
			

			

				4
			

			

				𝜋
			

			
				
			
			
				2
				4
				≈
				0
				.
				0
				0
				4
				8
				.
			

		
	

						Therefore, (i) of Theorem 1.4 implies that(4.6) has at least one generalized positive solution for 
							
	
 		
 			
				(
				4
				.
				9
				)
			
 		
	

	
		
			
				𝜆
				>
				i
				n
				f
			

			
				
				𝑠
				∈
				0
				,
				𝑐
			

			

				1
			

			
				𝐵
				
			

			

				𝑠
			

			
				
			
			

				𝑐
			

			

				1
			

			

				𝛾
			

			

				∗
			

			
				
				𝑓
				(
				𝑠
				)
				≈
				0
				.
				0
				0
				0
				0
				1
				5
				5
				;
			

		
	
(ii) of Theorem 1.4 implies that (4.6) has at least two generalized positive solutions for 
	
 		
 			
				(
				4
				.
				1
				0
				)
			
 		
	

	
		
			
				0
				.
				0
				0
				0
				0
				1
				5
				5
				<
				𝜆
				<
				1
				6
				s
				i
				n
			

			

				4
			

			

				𝜋
			

			
				
			
			
				.
				2
				4
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