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Abstract. 
A stochastic delay predator-prey model in a polluted environment with impulsive
toxicant input is proposed and studied. The thresholds between stability
in time average and extinction of each population are obtained. Some
recent results are extended and improved greatly. Several simulation figures
are introduced to support the conclusions.


1. Introduction
Environmental pollution by industries, agriculture, and other human activities is one of the most important socio-ecological problems in the world today. Due to toxins in the environment, lots of species have gone extinct, and many are on the verge of extinction. Thus, controlling the environmental pollution and the conservation of biodiversity are the major focus areas of all the countries around the world. This motivates scholars to study the effects of toxins on populations and to find out a theoretical persistence-extinction threshold.
Recently, a lot of population models in a polluted environment have been proposed and investigated; here, we may mention, among many others, [1–23]. Particularly, Yang et al. [15] pointed out that in many cases toxicants should be emitted in regular pulses, for example, the use of pesticides and the pollution by heavy metals (see, e.g., [24]). Thus, they proposed the following two-species Lotka-Volterra predator-prey system in a polluted environment with impulsive toxicant input: 
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Yang et al. [15] showed that in the following Lemma holds. 
Lemma 1.  For system (1), define 
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Some interesting and important problems arise naturally.   
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				𝑥
				(
				𝑡
				)
				=
				(
				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝑥
			

			

				2
			

			
				(
				𝑡
				)
				)
			

			

				𝑇
			

		
	
 to the first two equations of system (3) a.s.
Proof. The proof is similar to Hung [29] by defining 
							
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				𝑉
				
				𝑥
				(
				𝑥
				)
				=
			

			

				1
			

			
				−
				1
				−
				l
				n
				𝑥
			

			

				1
			

			
				
				+
				𝑎
			

			
				1
				1
			

			

				𝑎
			

			
				2
				2
			

			
				
			
			

				𝑎
			

			
				2
				2
				1
			

			
				
				𝑥
			

			

				2
			

			
				−
				1
				−
				l
				n
				𝑥
			

			

				2
			

			
				
				+
				0
				.
				5
				𝑎
			

			
				1
				1
			

			

				
			

			
				𝑡
				𝑡
				−
				𝜏
			

			

				2
			

			

				𝑥
			

			
				2
				1
			

			
				(
				𝑠
				)
				𝑑
				𝑠
			

		
	

						and hence is omitted. 
To begin with, let us consider the following subsystem of (3): 
						
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				𝑑
				𝐶
			

			
				1
				0
			

			
				(
				𝑡
				)
			

			
				
			
			
				𝑑
				𝑡
				=
				𝑘
			

			

				1
			

			

				𝐶
			

			

				𝑒
			

			
				
				𝑔
				(
				𝑡
				)
				−
			

			

				1
			

			
				+
				𝑚
			

			

				1
			

			
				
				𝐶
			

			
				1
				0
			

			
				(
				𝑡
				)
				,
				𝑑
				𝐶
			

			
				2
				0
			

			
				(
				𝑡
				)
			

			
				
			
			
				𝑑
				𝑡
				=
				𝑘
			

			

				2
			

			

				𝐶
			

			

				𝑒
			

			
				
				𝑔
				(
				𝑡
				)
				−
			

			

				2
			

			
				+
				𝑚
			

			

				2
			

			
				
				𝐶
			

			
				2
				0
			

			
				(
				𝑡
				)
				,
				𝑑
				𝐶
			

			

				𝑒
			

			
				(
				𝑡
				)
			

			
				
			
			
				𝑑
				𝑡
				=
				−
				ℎ
				𝐶
			

			

				𝑒
			

			
				(
				𝑡
				)
				,
				𝑡
				≠
				𝑛
				𝛾
				,
				𝑛
				∈
				𝑍
			

			

				+
			

			
				,
				Δ
				𝐶
			

			
				1
				0
			

			
				(
				𝑡
				)
				=
				0
				,
				Δ
				𝐶
			

			
				2
				0
			

			
				(
				𝑡
				)
				=
				0
				,
				Δ
				𝐶
			

			

				𝑒
			

			
				(
				𝑡
				)
				=
				𝑏
				,
				𝑡
				=
				𝑛
				𝛾
				,
				𝑛
				∈
				𝑍
			

			

				+
			

			
				,
				0
				≤
				𝐶
			

			

				0
			

			
				(
				0
				)
				≤
				1
				,
				0
				≤
				𝐶
			

			

				𝑒
			

			
				(
				0
				)
				≤
				1
				.
			

		
	

Lemma 5 (see [13, 15]).  System (10) has a unique positive 
	
		
			

				𝛾
			

		
	
-periodic solution 
	
		
			

				(
			

			

				∼
			

			

				𝐶
			

			
				1
				0
			

			
				(
				𝑡
				)
				,
			

			

				∼
			

			

				𝐶
			

			
				2
				0
			

			
				(
				𝑡
				)
				,
			

			

				∼
			

			

				𝐶
			

			

				𝑒
			

			
				(
				𝑡
				)
				)
			

			

				𝑇
			

		
	
, and for each solution 
	
		
			
				(
				𝐶
			

			
				1
				0
			

			
				(
				𝑡
				)
				,
				𝐶
			

			
				2
				0
			

			
				(
				𝑡
				)
				,
				𝐶
			

			

				𝑒
			

			
				(
				𝑡
				)
				)
			

			

				𝑇
			

		
	
 of (10), 
	
		
			

				𝐶
			

			
				1
				0
			

			
				(
				𝑡
				)
				→
			

			

				∼
			

			

				𝐶
			

			
				1
				0
			

			
				(
				𝑡
				)
			

		
	
, 
	
		
			

				𝐶
			

			
				2
				0
			

			
				(
				𝑡
				)
				→
			

			

				∼
			

			

				𝐶
			

			
				2
				0
			

			
				(
				𝑡
				)
			

		
	
, and 
	
		
			

				𝐶
			

			

				𝑒
			

			
				(
				𝑡
				)
				→
			

			

				∼
			

			

				𝐶
			

			

				𝑒
			

			
				(
				𝑡
				)
			

		
	
 as 
	
		
			
				𝑡
				→
				∞
			

		
	
. Moreover, 
	
		
			

				𝐶
			

			
				𝑖
				0
			

			
				(
				𝑡
				)
				>
			

			

				∼
			

			

				𝐶
			

			
				𝑖
				0
			

			
				(
				𝑡
				)
			

		
	
 and 
	
		
			

				𝐶
			

			

				𝑒
			

			
				(
				𝑡
				)
				>
			

			

				∼
			

			

				𝐶
			

			

				𝑒
			

			
				(
				𝑡
				)
			

		
	
 for all 
	
		
			
				𝑡
				≥
				0
			

		
	
 if 
	
		
			

				𝐶
			

			
				𝑖
				0
			

			
				(
				0
				)
				>
			

			

				∼
			

			

				𝐶
			

			
				𝑖
				0
			

			
				(
				0
				)
			

		
	
 and 
	
		
			

				𝐶
			

			

				𝑒
			

			
				(
				0
				)
				>
			

			

				∼
			

			

				𝐶
			

			

				𝑒
			

			
				(
				0
				)
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				2
			

		
	
, where 
							
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			

				∼
			

			

				𝐶
			

			
				1
				0
			

			
				(
				𝑡
				)
				=
			

			

				∼
			

			

				𝐶
			

			
				1
				0
			

			
				(
				0
				)
				𝑒
			

			
				−
				(
				𝑔
			

			

				1
			

			
				+
				𝑚
			

			

				1
			

			
				)
				(
				𝑡
				−
				𝑛
				𝛾
				)
			

			
				+
				𝑘
			

			

				1
			

			
				𝑏
				
				𝑒
			

			
				−
				(
				𝑔
			

			

				1
			

			
				+
				𝑚
			

			

				1
			

			
				)
				(
				𝑡
				−
				𝑛
				𝛾
				)
			

			
				−
				𝑒
			

			
				−
				ℎ
				(
				𝑡
				−
				𝑛
				𝛾
				)
			

			

				
			

			
				
			
			
				
				ℎ
				−
				𝑔
			

			

				1
			

			
				−
				𝑚
			

			

				1
			

			
				
				
				1
				−
				𝑒
			

			
				−
				ℎ
				𝛾
			

			
				
				,
			

			

				∼
			

			

				𝐶
			

			
				2
				0
			

			
				(
				𝑡
				)
				=
			

			

				∼
			

			

				𝐶
			

			
				2
				0
			

			
				(
				0
				)
				𝑒
			

			
				−
				(
				𝑔
			

			

				2
			

			
				+
				𝑚
			

			

				2
			

			
				)
				(
				𝑡
				−
				𝑛
				𝛾
				)
			

			
				+
				𝑘
			

			

				2
			

			
				𝑏
				
				𝑒
			

			
				−
				(
				𝑔
			

			

				2
			

			
				+
				𝑚
			

			

				2
			

			
				)
				(
				𝑡
				−
				𝑛
				𝛾
				)
			

			
				−
				𝑒
			

			
				−
				ℎ
				(
				𝑡
				−
				𝑛
				𝛾
				)
			

			

				
			

			
				
			
			
				
				ℎ
				−
				𝑔
			

			

				2
			

			
				−
				𝑚
			

			

				2
			

			
				
				
				1
				−
				𝑒
			

			
				−
				ℎ
				𝛾
			

			
				
				,
			

			

				∼
			

			

				𝐶
			

			

				𝑒
			

			
				(
				𝑡
				)
				=
				𝑏
				𝑒
			

			
				−
				ℎ
				(
				𝑡
				−
				𝑛
				𝛾
				)
			

			
				
			
			
				1
				−
				𝑒
			

			
				−
				ℎ
				𝛾
			

			

				,
			

			

				∼
			

			

				𝐶
			

			
				1
				0
			

			
				𝑘
				(
				0
				)
				=
			

			

				1
			

			
				𝑏
				
				𝑒
			

			
				−
				(
				𝑔
			

			

				1
			

			
				+
				𝑚
			

			

				1
			

			
				)
				𝛾
			

			
				−
				𝑒
			

			
				−
				ℎ
				𝛾
			

			

				
			

			
				
			
			
				
				ℎ
				−
				𝑔
			

			

				1
			

			
				−
				𝑚
			

			

				1
			

			
				
				
				1
				−
				𝑒
			

			
				−
				(
				𝑔
			

			

				1
			

			
				+
				𝑚
			

			

				1
			

			
				)
				𝛾
			

			
				
				
				1
				−
				𝑒
			

			
				−
				ℎ
				𝛾
			

			
				
				,
			

			

				∼
			

			

				𝐶
			

			
				2
				0
			

			
				𝑘
				(
				0
				)
				=
			

			

				2
			

			
				𝑏
				
				𝑒
			

			
				−
				(
				𝑔
			

			

				2
			

			
				+
				𝑚
			

			

				2
			

			
				)
				𝛾
			

			
				−
				𝑒
			

			
				−
				ℎ
				𝛾
			

			

				
			

			
				
			
			
				
				ℎ
				−
				𝑔
			

			

				2
			

			
				−
				𝑚
			

			

				2
			

			
				
				
				1
				−
				𝑒
			

			
				−
				(
				𝑔
			

			

				2
			

			
				+
				𝑚
			

			

				2
			

			
				)
				𝛾
			

			
				
				
				1
				−
				𝑒
			

			
				−
				ℎ
				𝛾
			

			
				
				,
			

			

				∼
			

			

				𝐶
			

			

				𝑒
			

			
				(
				𝑏
				0
				)
				=
			

			
				
			
			
				1
				−
				𝑒
			

			
				−
				ℎ
				𝛾
			

		
	

						for 
	
		
			
				𝑡
				∈
				(
				𝑛
				𝛾
				,
				(
				𝑛
				+
				1
				)
				𝛾
				]
			

		
	
 and 
	
		
			
				𝑛
				∈
				𝑍
			

			

				+
			

		
	
. In addition, 
							
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑡
				→
				+
				∞
			

			

				𝑡
			

			
				−
				1
			

			

				
			

			
				𝑡
				0
				∼
			

			

				𝐶
			

			
				𝑖
				0
			

			
				𝑘
				(
				𝑠
				)
				𝑑
				𝑠
				=
			

			

				𝑖
			

			

				𝑏
			

			
				
			
			
				ℎ
				
				𝑔
			

			

				𝑖
			

			
				+
				𝑚
			

			

				𝑖
			

			
				
				𝛾
				=
				𝐾
			

			

				𝑖
			

			
				
			
			
				𝛾
				,
				𝑖
				=
				1
				,
				2
				.
			

		
	

Lemma 6 (see [34]).   Suppose that 
	
		
			
				𝑥
				(
				𝑡
				)
				∈
				𝐶
				[
				Ω
				×
				[
				0
				,
				+
				∞
				)
				,
				𝑅
			

			

				+
			

			

				]
			

		
	
.  (I) If there exist 
	
		
			

				𝜎
			

		
	
 and positive constants 
	
		
			

				𝜎
			

			

				0
			

		
	
,
	
		
			

				𝑇
			

		
	
 such that 
										
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			
				l
				n
				𝑥
				(
				𝑡
				)
				≤
				𝜎
				𝑡
				−
				𝜎
			

			

				0
			

			

				
			

			
				𝑡
				0
			

			
				𝑥
				(
				𝑠
				)
				𝑑
				𝑠
				+
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝛽
			

			

				𝑖
			

			

				𝐵
			

			

				𝑖
			

			
				(
				𝑡
				)
			

		
	
 for 
	
		
			
				𝑡
				≥
				𝑇
			

		
	
, where 
	
		
			

				𝐵
			

			

				𝑖
			

			
				(
				𝑡
				)
			

		
	
 are independent standard Brownian motions and 
	
		
			

				𝛽
			

			

				𝑖
			

		
	
 are constants, 
	
		
			
				1
				≤
				𝑖
				≤
				𝑛
			

		
	
, then one has the following: if 
	
		
			
				𝜎
				≥
				0
			

		
	
, then 
	
		
			
				⟨
				𝑥
				⟩
			

			

				∗
			

			
				≤
				𝜎
				/
				𝜎
			

			

				0
			

		
	
 a.s.; if 
	
		
			
				𝜎
				<
				0
			

		
	
, then 
	
		
			
				l
				i
				m
			

			
				𝑡
				→
				+
				∞
			

			
				𝑥
				(
				𝑡
				)
				=
				0
				𝑎
				.
				𝑠
			

		
	
.  (II) If there exist positive constants 
	
		
			

				𝜎
			

			

				0
			

		
	
,
	
		
			

				𝑇
			

		
	
 and 
	
		
			

				𝜎
			

		
	
 such that
										
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				l
				n
				𝑥
				(
				𝑡
				)
				≥
				𝜎
				𝑡
				−
				𝜎
			

			

				0
			

			

				
			

			
				𝑡
				0
			

			
				𝑥
				(
				𝑠
				)
				𝑑
				𝑠
				+
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝛽
			

			

				𝑖
			

			

				𝐵
			

			

				𝑖
			

			
				(
				𝑡
				)
			

		
	
 for 
	
		
			
				𝑡
				≥
				𝑇
			

		
	
, then 
	
		
			
				⟨
				𝑥
				⟩
			

			

				∗
			

			
				≥
				𝜎
				/
				𝜎
			

			

				0
			

		
	
  a.s.
Now, let us consider the following auxiliary system: 
						
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				𝑑
				𝑦
			

			

				1
			

			
				(
				𝑡
				)
				=
				𝑦
			

			

				1
			

			
				
				𝑟
				(
				𝑡
				)
			

			
				1
				0
			

			
				−
				𝑟
			

			
				1
				1
			

			

				𝐶
			

			
				1
				0
			

			
				(
				𝑡
				)
				−
				𝑎
			

			
				1
				1
			

			

				𝑦
			

			

				1
			

			
				
				(
				𝑡
				)
				𝑑
				𝑡
				+
				𝛼
			

			

				1
			

			

				𝑦
			

			

				1
			

			
				(
				𝑡
				)
				𝑑
				𝐵
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝑑
				𝑦
			

			

				2
			

			
				(
				𝑡
				)
				=
				𝑦
			

			

				2
			

			
				
				(
				𝑡
				)
				−
				𝑟
			

			
				2
				0
			

			
				−
				𝑟
			

			
				2
				1
			

			

				𝐶
			

			
				2
				0
			

			
				(
				𝑡
				)
				+
				𝑎
			

			
				2
				1
			

			

				𝑦
			

			

				1
			

			
				
				𝑡
				−
				𝜏
			

			

				2
			

			
				
				−
				𝑎
			

			
				2
				2
			

			

				𝑦
			

			

				2
			

			
				
				(
				𝑡
				)
				𝑑
				𝑡
				+
				𝛼
			

			

				2
			

			

				𝑦
			

			

				2
			

			
				(
				𝑡
				)
				𝑑
				𝐵
			

			

				2
			

			
				(
				𝑡
				)
				,
			

		
	

					with initial value 
	
		
			
				𝜙
				(
				𝑡
				)
				∈
				𝐶
				(
				[
				−
				𝜏
				,
				0
				]
				,
				𝑅
			

			
				2
				+
			

			

				)
			

		
	
. 
Lemma 7.   If 
	
		
			

				𝜃
			

			

				1
			

			
				=
				𝑟
			

			
				1
				0
			

			
				−
				0
				.
				5
				𝛼
			

			
				2
				1
			

			
				>
				𝑟
			

			
				1
				1
			

			

				𝐾
			

			

				1
			

			
				/
				𝛾
			

		
	
, then the solution 
	
		
			
				𝑦
				(
				𝑡
				)
			

		
	
 of system (15) obeys 
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑡
				→
				+
				∞
			

			
				⟨
				𝑦
			

			

				1
			

			
				𝜃
				(
				𝑡
				)
				⟩
				=
			

			

				1
			

			
				−
				𝑟
			

			
				1
				1
			

			

				𝐾
			

			

				1
			

			
				/
				𝛾
			

			
				
			
			

				𝑎
			

			
				1
				1
			

			
				;
				l
				i
				m
			

			
				𝑡
				→
				+
				∞
			

			

				𝑦
			

			

				2
			

			
				(
				𝑡
				)
				=
				0
				𝑎
				.
				𝑠
				.
				,
				𝑖
				𝑓
			

			

				∼
			

			

				Δ
			

			

				2
			

			

				<
			

			
				
			
			

				Δ
			

			

				2
			

			
				;
				l
				i
				m
			

			
				𝑡
				→
				+
				∞
			

			
				⟨
				𝑦
			

			

				2
			

			
				(
				𝑡
				)
				⟩
				=
			

			

				∼
			

			

				Δ
			

			

				2
			

			

				−
			

			
				
			
			

				Δ
			

			

				2
			

			
				
			
			

				𝑎
			

			
				1
				1
			

			

				𝑎
			

			
				2
				2
			

			
				𝑎
				.
				𝑠
				.
				,
				𝑖
				𝑓
			

			

				∼
			

			

				Δ
			

			

				2
			

			

				>
			

			
				
			
			

				Δ
			

			

				2
			

			

				.
			

		
	

Proof. By Lemma 5,
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑡
				→
				+
				∞
			

			

				𝑡
			

			
				−
				1
			

			

				
			

			
				𝑡
				0
			

			

				𝐶
			

			
				𝑖
				0
			

			
				(
				𝑠
				)
				𝑑
				𝑠
				=
				l
				i
				m
			

			
				𝑡
				→
				+
				∞
			

			

				𝑡
			

			
				−
				1
			

			

				
			

			
				𝑡
				0
				∼
			

			

				𝐶
			

			
				𝑖
				0
			

			
				=
				𝐾
				(
				𝑠
				)
				𝑑
				𝑠
			

			

				𝑖
			

			
				
			
			
				𝛾
				,
				𝑖
				=
				1
				,
				2
				.
			

		
	

						Then, for all
	
		
			
				𝜀
				>
				0
			

		
	
, there exists 
	
		
			
				𝑇
				>
				0
			

		
	
 such that
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			

				𝐾
			

			

				𝑖
			

			
				
			
			
				𝛾
				−
				𝜀
				≤
				⟨
				𝐶
			

			
				𝑖
				0
			

			
				𝐾
				(
				𝑡
				)
				⟩
				≤
			

			

				𝑖
			

			
				
			
			
				𝛾
				+
				𝜀
				,
				𝑡
				>
				𝑇
				,
				𝑖
				=
				1
				,
				2
				.
			

		
	

						An application of Itô’s formula to (15) yields
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				l
				n
				𝑦
			

			

				1
			

			
				(
				𝑡
				)
				−
				l
				n
				𝑦
			

			

				1
			

			
				(
				0
				)
				=
				𝜃
			

			

				1
			

			
				𝑡
				−
				𝑟
			

			
				1
				1
			

			

				
			

			
				𝑡
				0
			

			

				𝐶
			

			
				1
				0
			

			
				(
				𝑠
				)
				𝑑
				𝑠
				−
				𝑎
			

			
				1
				1
			

			

				
			

			
				𝑡
				0
			

			

				𝑦
			

			

				1
			

			
				(
				𝑠
				)
				𝑑
				𝑠
				+
				𝛼
			

			

				1
			

			

				𝐵
			

			

				1
			

			
				(
				𝑡
				)
				,
				l
				n
				𝑦
			

			

				2
			

			
				(
				𝑡
				)
				−
				l
				n
				𝑦
			

			

				2
			

			
				(
				0
				)
				=
				−
				𝜃
			

			

				2
			

			
				𝑡
				−
				𝑟
			

			
				2
				1
			

			

				
			

			
				𝑡
				0
			

			

				𝐶
			

			
				2
				0
			

			
				(
				𝑠
				)
				𝑑
				𝑠
				+
				𝑎
			

			
				2
				1
			

			

				
			

			
				𝑡
				0
			

			

				𝑦
			

			

				1
			

			
				
				𝑠
				−
				𝜏
			

			

				2
			

			
				
				𝑑
				𝑠
				−
				𝑎
			

			
				2
				2
			

			

				
			

			
				𝑡
				0
			

			

				𝑦
			

			

				2
			

			
				(
				𝑠
				)
				𝑑
				𝑠
				+
				𝛼
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				(
				𝑡
				)
				=
				−
				𝜃
			

			

				2
			

			
				𝑡
				−
				𝑟
			

			
				2
				1
			

			

				
			

			
				𝑡
				0
			

			

				𝐶
			

			
				2
				0
			

			
				(
				𝑠
				)
				𝑑
				𝑠
				+
				𝑎
			

			
				2
				1
			

			

				
			

			
				𝑡
				0
			

			

				𝑦
			

			

				1
			

			
				(
				𝑠
				)
				𝑑
				𝑠
				−
				𝑎
			

			
				2
				1
			

			
				
				
			

			
				𝑡
				𝑡
				−
				𝜏
			

			

				2
			

			

				𝑦
			

			

				1
			

			
				(
				
				𝑠
				)
				𝑑
				𝑠
				−
			

			
				0
				−
				𝜏
			

			

				2
			

			

				𝑦
			

			

				1
			

			
				(
				
				𝑠
				)
				𝑑
				𝑠
				−
				𝑎
			

			
				2
				2
			

			

				
			

			
				𝑡
				0
			

			

				𝑦
			

			

				2
			

			
				(
				𝑠
				)
				𝑑
				𝑠
				+
				𝛼
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				(
				𝑡
				)
				.
			

		
	

						That is to say, we have shown that 
							
	
 		
 			
				(
				2
				0
				)
			
 			
				(
				2
				1
				)
			
 		
	

	
		
			

				𝑡
			

			
				−
				1
			

			
				𝑦
				l
				n
			

			

				1
			

			
				(
				𝑡
				)
			

			
				
			
			

				𝑦
			

			

				1
			

			
				(
				0
				)
				=
				𝜃
			

			

				1
			

			
				−
				𝑟
			

			
				1
				1
			

			
				⟨
				𝐶
			

			
				1
				0
			

			
				(
				𝑡
				)
				⟩
				−
				𝑎
			

			
				1
				1
			

			
				⟨
				𝑦
			

			

				1
			

			
				(
				𝑡
				)
				⟩
				+
				𝑡
			

			
				−
				1
			

			

				𝛼
			

			

				1
			

			

				𝐵
			

			

				1
			

			
				𝑡
				(
				𝑡
				)
				,
			

			
				−
				1
			

			
				𝑦
				l
				n
			

			

				2
			

			
				(
				𝑡
				)
			

			
				
			
			

				𝑦
			

			

				2
			

			
				(
				0
				)
				+
				𝑡
			

			
				−
				1
			

			

				𝑎
			

			
				2
				1
			

			
				
				
			

			
				𝑡
				𝑡
				−
				𝜏
			

			

				2
			

			

				𝑦
			

			

				1
			

			
				
				(
				𝑠
				)
				𝑑
				𝑠
				−
			

			
				0
				−
				𝜏
			

			

				2
			

			

				𝑦
			

			

				1
			

			
				
				(
				𝑠
				)
				𝑑
				𝑠
				=
				−
				𝜃
			

			

				2
			

			
				−
				𝑟
			

			
				2
				1
			

			
				⟨
				𝐶
			

			
				2
				0
			

			
				(
				𝑡
				)
				⟩
				+
				𝑎
			

			
				2
				1
			

			
				⟨
				𝑦
			

			

				1
			

			
				(
				𝑡
				)
				⟩
				−
				𝑎
			

			
				2
				2
			

			
				⟨
				𝑦
			

			

				2
			

			
				(
				𝑡
				)
				⟩
				+
				𝑡
			

			
				−
				1
			

			

				𝛼
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				(
				𝑡
				)
				.
			

		
	

						When (18) is used in (20), we can see that for 
	
		
			
				𝑡
				>
				𝑇
			

		
	
,
							
	
 		
 			
				(
				2
				2
				)
			
 			
				(
				2
				3
				)
			
 		
	

	
		
			

				𝑡
			

			
				−
				1
			

			
				𝑦
				l
				n
			

			

				1
			

			
				(
				𝑡
				)
			

			
				
			
			

				𝑦
			

			

				1
			

			
				(
				0
				)
				≤
				𝜃
			

			

				1
			

			
				−
				𝑟
			

			
				1
				1
			

			

				𝐾
			

			

				1
			

			
				
			
			
				𝛾
				+
				𝑟
			

			
				1
				1
			

			
				𝜀
				−
				𝑎
			

			
				1
				1
			

			
				⟨
				𝑦
			

			

				1
			

			
				(
				𝑡
				)
				⟩
				+
				𝑡
			

			
				−
				1
			

			

				𝛼
			

			

				1
			

			

				𝐵
			

			

				1
			

			
				𝑡
				(
				𝑡
				)
				,
			

			
				−
				1
			

			
				𝑦
				l
				n
			

			

				1
			

			
				(
				𝑡
				)
			

			
				
			
			

				𝑦
			

			

				1
			

			
				(
				0
				)
				≥
				𝜃
			

			

				1
			

			
				−
				𝑟
			

			
				1
				1
			

			

				𝐾
			

			

				1
			

			
				
			
			
				𝛾
				−
				𝑟
			

			
				1
				1
			

			
				𝜀
				−
				𝑎
			

			
				1
				1
			

			
				⟨
				𝑦
			

			

				1
			

			
				(
				𝑡
				)
				⟩
				+
				𝑡
			

			
				−
				1
			

			

				𝛼
			

			

				1
			

			

				𝐵
			

			

				1
			

			
				(
				𝑡
				)
				.
			

		
	

						Let 
	
		
			

				𝜀
			

		
	
 be sufficiently small such that 
	
		
			

				𝜃
			

			

				1
			

			
				−
				𝑟
			

			
				1
				1
			

			

				𝐾
			

			

				1
			

			
				/
				𝛾
				−
				𝑟
			

			
				1
				1
			

			
				𝜀
				>
				0
			

		
	
. Making use of (I) and (II) in Lemma 6 to (22) and (23), respectively, we have 
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				⟨
				𝑦
			

			

				1
			

			
				(
				𝑡
				)
				⟩
			

			

				∗
			

			
				≤
				𝜃
			

			

				1
			

			
				−
				𝑟
			

			
				1
				1
			

			

				𝐾
			

			

				1
			

			
				/
				𝛾
				+
				𝑟
			

			
				1
				1
			

			

				𝜀
			

			
				
			
			

				𝑎
			

			
				1
				1
			

			
				,
				⟨
				𝑦
			

			

				1
			

			
				(
				𝑡
				)
				⟩
			

			

				∗
			

			
				≥
				𝜃
			

			

				1
			

			
				−
				𝑟
			

			
				1
				1
			

			

				𝐾
			

			

				1
			

			
				/
				𝛾
				−
				𝑟
			

			
				1
				1
			

			

				𝜀
			

			
				
			
			

				𝑎
			

			
				1
				1
			

			

				.
			

		
	

						It then follows from the arbitrariness of 
	
		
			

				𝜀
			

		
	
 that
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑡
				→
				+
				∞
			

			
				⟨
				𝑦
			

			

				1
			

			
				𝜃
				(
				𝑡
				)
				⟩
				=
			

			

				1
			

			
				−
				𝑟
			

			
				1
				1
			

			

				𝐾
			

			

				1
			

			
				/
				𝛾
			

			
				
			
			

				𝑎
			

			
				1
				1
			

			

				.
			

		
	

						Substituting (17) and (25) into (20) and noting that 
	
		
			
				l
				i
				m
			

			
				𝑡
				→
				+
				∞
			

			

				𝑡
			

			
				−
				1
			

			

				𝐵
			

			

				1
			

			
				(
				𝑡
				)
				=
				0
			

		
	
, one can derive that
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑡
				→
				+
				∞
			

			

				𝑡
			

			
				−
				1
			

			
				l
				n
				𝑦
			

			

				1
			

			
				(
				𝑡
				)
				=
				0
				,
				a
				.
				s
				.
			

		
	

						Employing (20) and (21) in the expression 
	
		
			

				𝑎
			

			
				2
				1
			

			
				l
				n
				(
				𝑦
			

			

				1
			

			
				(
				𝑡
				)
				/
				𝑦
			

			

				1
			

			
				(
				0
				)
				)
				+
				𝑎
			

			
				1
				1
			

			
				l
				n
				(
				𝑦
			

			

				2
			

			
				(
				𝑡
				)
				/
				𝑦
			

			

				2
			

			
				(
				0
				)
				)
			

		
	
 yields 
							
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			

				𝑎
			

			
				1
				1
			

			

				𝑡
			

			
				−
				1
			

			
				𝑦
				l
				n
			

			

				2
			

			
				(
				𝑡
				)
			

			
				
			
			

				𝑦
			

			

				2
			

			
				(
				0
				)
				+
				𝑎
			

			
				2
				1
			

			

				𝑡
			

			
				−
				1
			

			
				𝑦
				l
				n
			

			

				1
			

			
				(
				𝑡
				)
			

			
				
			
			

				𝑦
			

			

				1
			

			
				=
				(
				0
				)
			

			

				∼
			

			

				Δ
			

			

				2
			

			
				−
				𝑟
			

			
				1
				1
			

			

				𝑎
			

			
				2
				1
			

			
				⟨
				𝐶
			

			
				1
				0
			

			
				(
				𝑡
				)
				⟩
				−
				𝑟
			

			
				2
				1
			

			

				𝑎
			

			
				1
				1
			

			
				⟨
				𝐶
			

			
				2
				0
			

			
				(
				𝑡
				)
				⟩
				−
				𝑎
			

			
				1
				1
			

			

				𝑎
			

			
				2
				2
			

			
				⟨
				𝑦
			

			

				2
			

			
				(
				𝑡
				)
				⟩
				−
				𝑡
			

			
				−
				1
			

			

				𝑎
			

			
				1
				1
			

			

				𝑎
			

			
				2
				1
			

			
				
				
			

			
				𝑡
				𝑡
				−
				𝜏
			

			

				2
			

			

				𝑦
			

			

				1
			

			
				
				(
				𝑠
				)
				𝑑
				𝑠
				−
			

			
				0
				−
				𝜏
			

			

				2
			

			

				𝑦
			

			

				1
			

			
				
				(
				𝑠
				)
				𝑑
				𝑠
				+
				𝑡
			

			
				−
				1
			

			
				
				𝑎
			

			
				2
				1
			

			

				𝛼
			

			

				1
			

			

				𝐵
			

			

				1
			

			
				(
				𝑡
				)
				+
				𝑎
			

			
				1
				1
			

			

				𝛼
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				
				.
				(
				𝑡
				)
			

		
	

						In view of (25), we get
							
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑡
				→
				+
				∞
			

			

				𝑡
			

			
				−
				1
			

			

				
			

			
				𝑡
				𝑡
				−
				𝜏
			

			

				2
			

			

				𝑦
			

			

				1
			

			
				(
				𝑠
				)
				𝑑
				𝑠
				=
				l
				i
				m
			

			
				𝑡
				→
				+
				∞
			

			

				𝑡
			

			
				−
				1
			

			
				
				
			

			
				𝑡
				0
			

			

				𝑦
			

			

				1
			

			
				
				(
				𝑠
				)
				𝑑
				𝑠
				−
			

			
				𝑡
				−
				𝜏
			

			

				2
			

			

				0
			

			

				𝑦
			

			

				1
			

			
				
				(
				𝑠
				)
				𝑑
				𝑠
				=
				0
				,
				a
				.
				s
				.
			

		
	

						By (17), (26), (27), and (28), for all
	
		
			
				𝜀
				>
				0
			

		
	
, there exists 
	
		
			
				𝑇
				>
				0
			

		
	
 such that, for 
	
		
			
				𝑡
				≥
				𝑇
			

		
	
, 
							
	
 		
 			
				(
				2
				9
				)
			
 			
				(
				3
				0
				)
			
 		
	

	
		
			

				𝑎
			

			
				1
				1
			

			

				𝑡
			

			
				−
				1
			

			
				𝑦
				l
				n
			

			

				2
			

			
				(
				𝑡
				)
			

			
				
			
			

				𝑦
			

			

				2
			

			
				≤
				(
				0
				)
			

			

				∼
			

			

				Δ
			

			

				2
			

			

				−
			

			
				
			
			

				Δ
			

			

				2
			

			
				+
				𝜀
				−
				𝑎
			

			
				1
				1
			

			

				𝑎
			

			
				2
				2
			

			
				⟨
				𝑦
			

			

				2
			

			
				(
				𝑡
				)
				⟩
				+
				𝑡
			

			
				−
				1
			

			
				
				𝑎
			

			
				2
				1
			

			

				𝜎
			

			

				1
			

			

				𝐵
			

			

				1
			

			
				(
				𝑡
				)
				+
				𝑎
			

			
				1
				1
			

			

				𝜎
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				
				,
				𝑎
				(
				𝑡
				)
			

			
				1
				1
			

			

				𝑡
			

			
				−
				1
			

			
				𝑦
				l
				n
			

			

				2
			

			
				(
				𝑡
				)
			

			
				
			
			

				𝑦
			

			

				2
			

			
				≥
				(
				0
				)
			

			

				∼
			

			

				Δ
			

			

				2
			

			

				−
			

			
				
			
			

				Δ
			

			

				2
			

			
				−
				𝜀
				−
				𝑎
			

			
				1
				1
			

			

				𝑎
			

			
				2
				2
			

			
				⟨
				𝑦
			

			

				2
			

			
				(
				𝑡
				)
				⟩
				+
				𝑡
			

			
				−
				1
			

			
				
				𝑎
			

			
				2
				1
			

			

				𝜎
			

			

				1
			

			

				𝐵
			

			

				1
			

			
				(
				𝑡
				)
				+
				𝑎
			

			
				1
				1
			

			

				𝜎
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				(
				
				.
				𝑡
				)
			

		
	

						If 
	
		
			

				∼
			

			

				Δ
			

			

				2
			

			

				<
			

			
				
			
			

				Δ
			

			

				2
			

		
	
, then we can choose 
	
		
			

				𝜀
			

		
	
 sufficiently small such that 
	
		
			

				∼
			

			

				Δ
			

			

				2
			

			

				−
			

			
				
			
			

				Δ
			

			

				2
			

			
				+
				𝜀
				<
				0
			

		
	
. Then, by (29) and (I) in Lemma 6, we obtain 
	
		
			
				l
				i
				m
			

			
				𝑡
				→
				+
				∞
			

			

				𝑦
			

			

				2
			

			
				(
				𝑡
				)
				=
				0
				a
				.
				s
			

		
	
. If 
	
		
			

				∼
			

			

				Δ
			

			

				2
			

			

				>
			

			
				
			
			

				Δ
			

			

				2
			

		
	
, then we can choose 
	
		
			

				𝜀
			

		
	
 sufficiently small such that 
	
		
			

				∼
			

			

				Δ
			

			

				2
			

			

				−
			

			
				
			
			

				Δ
			

			

				2
			

			
				−
				𝜀
				>
				0
			

		
	
. An application of (I) and (II) in Lemma 6 to (29) and (30), respectively, makes one observe that 
							
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			

				∼
			

			

				Δ
			

			

				2
			

			

				−
			

			
				
			
			

				Δ
			

			

				2
			

			
				−
				𝜀
			

			
				
			
			

				𝑎
			

			
				1
				1
			

			

				𝑎
			

			
				2
				2
			

			
				≤
				⟨
				𝑦
			

			

				2
			

			
				(
				𝑡
				)
				⟩
			

			

				∗
			

			
				≤
				⟨
				𝑦
			

			

				2
			

			
				(
				𝑡
				)
				⟩
			

			

				∗
			

			

				≤
			

			

				∼
			

			

				Δ
			

			

				2
			

			

				−
			

			
				
			
			

				Δ
			

			

				2
			

			
				+
				𝜀
			

			
				
			
			

				𝑎
			

			
				1
				1
			

			

				𝑎
			

			
				2
				2
			

			
				,
				a
				.
				s
				.
			

		
	

						Therefore, using the arbitrariness of 
	
		
			

				𝜀
			

		
	
 results in 
							
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑡
				→
				+
				∞
			

			
				⟨
				𝑦
			

			

				2
			

			
				(
				𝑡
				)
				⟩
				=
			

			

				∼
			

			

				Δ
			

			

				2
			

			

				−
			

			
				
			
			

				Δ
			

			

				2
			

			
				
			
			

				𝑎
			

			
				1
				1
			

			

				𝑎
			

			
				2
				2
			

			
				a
				.
				s
				.
			

		
	

						This completes the proof. 
We are now in the position to prove our main results.
Proof of Theorem 2. Applying Itô’s formula to (3) leads to
							
	
 		
 			
				(
				3
				3
				)
			
 			
				(
				3
				4
				)
			
 		
	

	
		
			
				l
				n
				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				−
				l
				n
				𝑥
			

			

				1
			

			
				(
				0
				)
				=
				𝜃
			

			

				1
			

			
				𝑡
				−
				𝑟
			

			
				1
				1
			

			

				
			

			
				𝑡
				0
			

			

				𝐶
			

			
				1
				0
			

			
				(
				𝑠
				)
				𝑑
				𝑠
				−
				𝑎
			

			
				1
				1
			

			

				
			

			
				𝑡
				0
			

			

				𝑥
			

			

				1
			

			
				(
				𝑠
				)
				𝑑
				𝑠
				−
				𝑎
			

			
				1
				2
			

			

				
			

			
				𝑡
				0
			

			

				𝑥
			

			

				2
			

			
				
				𝑠
				−
				𝜏
			

			

				1
			

			
				
				𝑑
				𝑠
				+
				𝛼
			

			

				1
			

			

				𝐵
			

			

				1
			

			
				(
				𝑡
				)
				=
				𝜃
			

			

				1
			

			
				𝑡
				−
				𝑟
			

			
				1
				1
			

			

				
			

			
				𝑡
				0
			

			

				𝐶
			

			
				1
				0
			

			
				(
				𝑠
				)
				𝑑
				𝑠
				−
				𝑎
			

			
				1
				2
			

			

				
			

			
				𝑡
				0
			

			

				𝑥
			

			

				2
			

			
				(
				𝑠
				)
				𝑑
				𝑠
				+
				𝑎
			

			
				1
				2
			

			
				
				
			

			
				𝑡
				𝑡
				−
				𝜏
			

			

				1
			

			

				𝑥
			

			

				2
			

			
				(
				
				𝑠
				)
				𝑑
				𝑠
				−
			

			
				0
				−
				𝜏
			

			

				1
			

			

				𝑥
			

			

				2
			

			
				(
				
				𝑠
				)
				𝑑
				𝑠
				−
				𝑎
			

			
				1
				1
			

			

				
			

			
				𝑡
				0
			

			

				𝑥
			

			

				1
			

			
				(
				𝑠
				)
				𝑑
				𝑠
				+
				𝛼
			

			

				1
			

			

				𝐵
			

			

				1
			

			
				(
				𝑡
				)
				.
				l
				n
				𝑥
			

			

				2
			

			
				(
				𝑡
				)
				−
				l
				n
				𝑥
			

			

				2
			

			
				(
				0
				)
				=
				−
				𝜃
			

			

				2
			

			
				𝑡
				−
				𝑟
			

			
				2
				1
			

			

				
			

			
				𝑡
				0
			

			

				𝐶
			

			
				2
				0
			

			
				(
				𝑠
				)
				𝑑
				𝑠
				+
				𝑎
			

			
				2
				1
			

			

				
			

			
				𝑡
				0
			

			

				𝑥
			

			

				1
			

			
				(
				𝑠
				)
				𝑑
				𝑠
				−
				𝑎
			

			
				2
				1
			

			
				
				
			

			
				𝑡
				𝑡
				−
				𝜏
			

			

				2
			

			

				𝑥
			

			

				1
			

			
				
				(
				𝑠
				)
				𝑑
				𝑠
				−
			

			
				0
				−
				𝜏
			

			

				2
			

			

				𝑥
			

			

				1
			

			
				
				(
				𝑠
				)
				𝑑
				𝑠
				−
				𝑎
			

			
				2
				2
			

			

				
			

			
				𝑡
				0
			

			

				𝑥
			

			

				2
			

			
				(
				𝑠
				)
				𝑑
				𝑠
				+
				𝛼
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				(
				𝑡
				)
				.
			

		
	

	
		
			
				(
				i
				)
			

		
	
 It follows from (17) and (33) that 
							
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			

				𝑡
			

			
				−
				1
			

			
				l
				n
				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				−
				𝑡
			

			
				−
				1
			

			
				l
				n
				𝑥
			

			

				1
			

			
				(
				0
				)
				≤
				𝜃
			

			

				1
			

			
				−
				𝑟
			

			
				1
				1
			

			
				⟨
				𝐶
			

			
				1
				0
			

			
				(
				𝑡
				)
				⟩
				−
				𝑎
			

			
				1
				1
			

			
				⟨
				𝑥
			

			

				1
			

			
				𝛼
				(
				𝑡
				)
				⟩
				+
			

			

				1
			

			

				𝐵
			

			

				1
			

			
				(
				𝑡
				)
			

			
				
			
			
				𝑡
				≤
				𝜃
			

			

				1
			

			
				−
				𝑟
			

			
				1
				1
			

			

				𝐾
			

			

				1
			

			
				
			
			
				𝜆
				+
				𝜀
				−
				𝑎
			

			
				1
				1
			

			
				⟨
				𝑥
			

			

				1
			

			
				𝛼
				(
				𝑡
				)
				⟩
				+
			

			

				1
			

			

				𝐵
			

			

				1
			

			
				(
				𝑡
				)
			

			
				
			
			

				𝑡
			

		
	

						for sufficiently large 
	
		
			

				𝑡
			

		
	
. Since 
	
		
			

				𝜃
			

			

				1
			

			
				−
				𝑟
			

			
				1
				1
			

			

				𝐾
			

			

				1
			

			
				/
				𝜆
				<
				0
			

		
	
, then we can choose 
	
		
			

				𝜀
			

		
	
 sufficiently small such that 
	
		
			

				𝜃
			

			

				1
			

			
				−
				𝑟
			

			
				1
				1
			

			

				𝐾
			

			

				1
			

			
				/
				𝜆
				+
				𝜀
				<
				0
			

		
	
. Then, by (I) in Lemma 6,
							
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑡
				→
				+
				∞
			

			

				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				=
				0
				,
				a
				.
				s
				.
			

		
	

						When (36) is used in (34), one can see that 
							
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			

				𝑡
			

			
				−
				1
			

			
				l
				n
				𝑥
			

			

				2
			

			
				(
				𝑡
				)
				−
				l
				n
				𝑥
			

			

				2
			

			
				(
				0
				)
				≤
				−
				𝜃
			

			

				2
			

			
				+
				𝜀
				−
				𝑎
			

			
				2
				2
			

			
				⟨
				𝑥
			

			

				2
			

			
				𝛼
				(
				𝑡
				)
				⟩
				+
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				(
				𝑡
				)
			

			
				
			
			

				𝑡
			

		
	

						for sufficiently large 
	
		
			

				𝑡
			

		
	
, where 
	
		
			
				𝜀
				>
				0
			

		
	
 obeys 
	
		
			
				−
				𝜃
			

			

				2
			

			
				+
				𝜀
				<
				0
			

		
	
. In view of Lemma 6 again, 
	
		
			
				l
				i
				m
			

			
				𝑡
				→
				+
				∞
			

			

				𝑥
			

			

				2
			

			
				(
				𝑡
				)
				=
				0
			

		
	
,
	
		
			
				a
				.
				s
			

		
	
.
	
		
			
				(
				i
				i
				)
			

		
	
 By the stochastic comparison theorem [40], one can observe that 
							
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			

				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				≤
				𝑦
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝑥
			

			

				2
			

			
				(
				𝑡
				)
				≤
				𝑦
			

			

				2
			

			
				(
				𝑡
				)
				.
			

		
	

						Note that 
	
		
			

				𝜃
			

			

				1
			

			
				>
				𝑟
			

			
				1
				1
			

			

				𝐾
			

			

				1
			

			
				/
				𝛾
			

		
	
 and 
	
		
			

				∼
			

			

				Δ
			

			

				2
			

			

				<
			

			
				
			
			

				Δ
			

			

				2
			

		
	
; it then follows from Lemma 7 that 
	
		
			
				l
				i
				m
			

			
				𝑡
				→
				+
				∞
			

			

				𝑦
			

			

				2
			

			
				(
				𝑡
				)
				=
				0
			

		
	
,
	
		
			
				a
				.
				s
			

		
	
. Making use of (38) gives 
	
		
			
				l
				i
				m
			

			
				𝑡
				→
				+
				∞
			

			

				𝑥
			

			

				2
			

			
				(
				𝑡
				)
				=
				0
			

		
	
,
	
		
			
				a
				.
				s
			

		
	
. Thus, for all
	
		
			
				𝜀
				>
				0
			

		
	
, there exists 
	
		
			
				𝑇
				>
				0
			

		
	
 such that, for 
	
		
			
				𝑡
				≥
				𝑇
			

		
	
,
							
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			

				𝜀
			

			
				
			
			
				2
				≤
				𝑎
			

			
				1
				2
			

			

				𝑥
			

			

				2
			

			
				𝜀
				(
				𝑡
				)
				≤
			

			
				
			
			
				2
				.
			

		
	

						Substituting the above inequalities into (33) and then using (18), we obtain 
							
	
 		
 			
				(
				4
				0
				)
			
 			
				(
				4
				1
				)
			
 		
	

	
		
			

				𝑡
			

			
				−
				1
			

			
				l
				n
				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				≤
				𝑡
			

			
				−
				1
			

			
				l
				n
				𝑥
			

			

				1
			

			
				(
				0
				)
				+
				𝜃
			

			

				1
			

			
				−
				𝑟
			

			
				1
				1
			

			
				⟨
				𝐶
			

			
				1
				0
			

			
				(
				𝑡
				)
				⟩
				−
				𝑎
			

			
				1
				1
			

			
				⟨
				𝑥
			

			

				1
			

			
				𝜀
				(
				𝑡
				)
				⟩
				+
			

			
				
			
			
				2
				+
				𝛼
			

			

				1
			

			

				𝐵
			

			

				1
			

			
				(
				𝑡
				)
			

			
				
			
			
				𝑡
				≤
				𝜃
			

			

				1
			

			
				−
				𝑟
			

			
				1
				1
			

			

				𝐾
			

			

				1
			

			
				
			
			
				𝛾
				+
				2
				𝜀
				−
				𝑎
			

			
				1
				1
			

			
				⟨
				𝑥
			

			

				1
			

			
				𝛼
				(
				𝑡
				)
				⟩
				+
			

			

				1
			

			

				𝐵
			

			

				1
			

			
				(
				𝑡
				)
			

			
				
			
			
				𝑡
				,
				𝑡
			

			
				−
				1
			

			
				l
				n
				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				≥
				𝑡
			

			
				−
				1
			

			
				l
				n
				𝑥
			

			

				1
			

			
				(
				0
				)
				+
				𝜃
			

			

				1
			

			
				−
				𝑟
			

			
				1
				1
			

			
				⟨
				𝐶
			

			
				1
				0
			

			
				(
				𝑡
				)
				⟩
				−
				𝑎
			

			
				1
				1
			

			
				⟨
				𝑥
			

			

				1
			

			
				𝜀
				(
				𝑡
				)
				⟩
				−
			

			
				
			
			
				2
				+
				𝛼
			

			

				1
			

			

				𝐵
			

			

				1
			

			
				(
				𝑡
				)
			

			
				
			
			
				𝑡
				≥
				𝜃
			

			

				1
			

			
				−
				𝑟
			

			
				1
				1
			

			

				𝐾
			

			

				1
			

			
				
			
			
				𝛾
				−
				2
				𝜀
				−
				𝑎
			

			
				1
				1
			

			
				⟨
				𝑥
			

			

				1
			

			
				𝛼
				(
				𝑡
				)
				⟩
				+
			

			

				1
			

			

				𝐵
			

			

				1
			

			
				(
				𝑡
				)
			

			
				
			
			
				𝑡
				.
			

		
	

						Let 
	
		
			

				𝜀
			

		
	
 be sufficiently small such that 
	
		
			

				𝜃
			

			

				1
			

			
				−
				𝑟
			

			
				1
				1
			

			

				𝐾
			

			

				1
			

			
				/
				𝛾
				−
				𝜀
				>
				0
			

		
	
, and then, applying (I) and (II) in Lemma 6 to (40) and (41), respectively, one can see that 
							
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			

				𝜃
			

			

				1
			

			
				−
				𝑟
			

			
				1
				1
			

			

				𝐾
			

			

				1
			

			
				/
				𝛾
				−
				2
				𝜀
			

			
				
			
			

				𝑎
			

			
				1
				1
			

			
				≤
				⟨
				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				⟩
			

			

				∗
			

			
				≤
				⟨
				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				⟩
			

			

				∗
			

			
				≤
				𝜃
			

			

				1
			

			
				−
				𝑟
			

			
				1
				1
			

			

				𝐾
			

			

				1
			

			
				/
				𝛾
				+
				2
				𝜀
			

			
				
			
			

				𝑎
			

			
				1
				1
			

			
				a
				.
				s
				.
			

		
	

						An application of the arbitrariness of 
	
		
			

				𝜀
			

		
	
 gives 
							
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑡
				→
				+
				∞
			

			
				⟨
				𝑥
			

			

				1
			

			
				𝜃
				(
				𝑡
				)
				⟩
				=
			

			

				1
			

			
				−
				𝑟
			

			
				1
				1
			

			

				𝐾
			

			

				1
			

			
				/
				𝛾
			

			
				
			
			

				𝑎
			

			
				1
				1
			

			
				,
				a
				.
				s
				.
			

		
	

	
		
			
				(
				i
				i
				i
				)
			

		
	
 Clearly, 
	
		
			

				∼
			

			

				Δ
			

			

				2
			

			

				>
			

			
				
			
			

				Δ
			

			

				2
			

		
	
 implies 
	
		
			

				𝜃
			

			

				1
			

			
				>
				𝑟
			

			
				1
				1
			

			

				𝐾
			

			

				1
			

			
				/
				𝛾
			

		
	
, and then, by Lemma 7, 
							
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑡
				→
				+
				∞
			

			
				⟨
				𝑦
			

			

				2
			

			
				(
				𝑡
				)
				⟩
				=
			

			

				∼
			

			

				Δ
			

			

				2
			

			

				−
			

			
				
			
			

				Δ
			

			

				2
			

			
				
			
			

				𝑎
			

			
				1
				1
			

			

				𝑎
			

			
				2
				2
			

			

				.
			

		
	

						Thus, similar to the proof of (28), we get 
							
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑡
				→
				+
				∞
			

			

				𝑡
			

			
				−
				1
			

			

				
			

			
				𝑡
				𝑡
				−
				𝜏
			

			

				1
			

			

				𝑦
			

			

				2
			

			
				(
				𝑠
				)
				𝑑
				𝑠
				=
				0
				a
				.
				s
				.
			

		
	

						Therefore, by (26), (28), and (38), we can observe that 
							
	
 		
 			
				(
				4
				6
				)
			
 			
				(
				4
				7
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑡
				→
				+
				∞
			

			

				𝑡
			

			
				−
				1
			

			
				l
				n
				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				≤
				l
				i
				m
			

			
				𝑡
				→
				+
				∞
			

			

				𝑡
			

			
				−
				1
			

			
				l
				n
				𝑦
			

			

				1
			

			
				(
				𝑡
				)
				=
				0
				,
				l
				i
				m
			

			
				𝑡
				→
				+
				∞
			

			

				𝑡
			

			
				−
				1
			

			

				
			

			
				𝑡
				𝑡
				−
				𝜏
			

			

				2
			

			

				𝑥
			

			

				1
			

			
				(
				𝑠
				)
				𝑑
				𝑠
				=
				0
				,
				l
				i
				m
			

			
				𝑡
				→
				+
				∞
			

			

				𝑡
			

			
				−
				1
			

			

				
			

			
				𝑡
				𝑡
				−
				𝜏
			

			

				1
			

			

				𝑥
			

			

				2
			

			
				(
				𝑠
				)
				𝑑
				𝑠
				=
				0
				,
				a
				.
				s
				.
			

		
	

						Employing (33) and (34) in the expression 
	
		
			

				𝑎
			

			
				2
				1
			

			
				l
				n
				(
				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				/
				𝑥
			

			

				1
			

			
				(
				0
				)
				)
				+
				𝑎
			

			
				1
				1
			

			
				l
				n
				(
				𝑥
			

			

				2
			

			
				(
				𝑡
				)
				/
				𝑥
			

			

				2
			

			
				(
				0
				)
				)
			

		
	
 yields 
							
	
 		
 			
				(
				4
				8
				)
			
 		
	

	
		
			

				𝑡
			

			
				−
				1
			

			

				𝑎
			

			
				2
				1
			

			
				𝑥
				l
				n
			

			

				1
			

			
				(
				𝑡
				)
			

			
				
			
			

				𝑥
			

			

				1
			

			
				(
				0
				)
				+
				𝑡
			

			
				−
				1
			

			

				𝑎
			

			
				1
				1
			

			
				𝑥
				l
				n
			

			

				2
			

			
				(
				𝑡
				)
			

			
				
			
			

				𝑥
			

			

				2
			

			
				(
				0
				)
				=
				𝑎
			

			
				1
				2
			

			

				𝑎
			

			
				2
				1
			

			

				𝑡
			

			
				−
				1
			

			
				
				
			

			
				𝑡
				𝑡
				−
				𝜏
			

			

				1
			

			

				𝑥
			

			

				2
			

			
				
				(
				𝑠
				)
				𝑑
				𝑠
				−
			

			
				0
				−
				𝜏
			

			

				1
			

			

				𝑥
			

			

				2
			

			
				
				(
				𝑠
				)
				𝑑
				𝑠
				−
				𝑎
			

			
				1
				1
			

			

				𝑎
			

			
				2
				1
			

			

				𝑡
			

			
				−
				1
			

			
				
				
			

			
				𝑡
				𝑡
				−
				𝜏
			

			

				2
			

			

				𝑥
			

			

				1
			

			
				(
				
				𝑠
				)
				𝑑
				𝑠
				−
			

			
				0
				−
				𝜏
			

			

				2
			

			

				𝑥
			

			

				1
			

			
				(
				
				+
				𝑠
				)
				𝑑
				𝑠
			

			

				∼
			

			

				Δ
			

			

				2
			

			
				−
				𝑎
			

			
				2
				1
			

			

				𝑟
			

			
				1
				1
			

			
				⟨
				𝐶
			

			
				1
				0
			

			
				(
				𝑡
				)
				⟩
				−
				𝑎
			

			
				1
				1
			

			

				𝑟
			

			
				2
				1
			

			
				⟨
				𝐶
			

			
				2
				0
			

			
				(
				𝑡
				)
				⟩
				−
				Δ
				⟨
				𝑥
			

			

				2
			

			
				(
				𝑡
				)
				⟩
				+
				𝑡
			

			
				−
				1
			

			

				𝑎
			

			
				2
				1
			

			

				𝛼
			

			

				1
			

			

				𝐵
			

			

				1
			

			
				(
				𝑡
				)
				+
				𝑡
			

			
				−
				1
			

			

				𝑎
			

			
				1
				1
			

			

				𝛼
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				(
				𝑡
				)
				.
			

		
	

						When (18), (46) and (47), are used in (48), one can obtain
							
	
 		
 			
				(
				4
				9
				)
			
 		
	

	
		
			

				𝑡
			

			
				−
				1
			

			

				𝑎
			

			
				1
				1
			

			
				𝑥
				l
				n
			

			

				2
			

			
				(
				𝑡
				)
			

			
				
			
			

				𝑥
			

			

				2
			

			
				≥
				(
				0
				)
			

			

				∼
			

			

				Δ
			

			

				2
			

			

				−
			

			
				
			
			

				Δ
			

			

				2
			

			
				−
				𝜀
				−
				Δ
				⟨
				𝑥
			

			

				2
			

			
				(
				𝑡
				)
				⟩
				+
				𝑡
			

			
				−
				1
			

			

				𝑎
			

			
				2
				1
			

			

				𝛼
			

			

				1
			

			

				𝐵
			

			

				1
			

			
				(
				𝑡
				)
				+
				𝑡
			

			
				−
				1
			

			

				𝑎
			

			
				1
				1
			

			

				𝛼
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				(
				𝑡
				)
			

		
	

						for sufficiently large 
	
		
			

				𝑡
			

		
	
, where 
	
		
			
				𝜀
				>
				0
			

		
	
 obeys 
	
		
			

				∼
			

			

				Δ
			

			

				2
			

			

				−
			

			
				
			
			

				Δ
			

			

				2
			

			
				−
				𝜀
				>
				0
			

		
	
. It then follows from 
	
		
			
				(
				I
				I
				)
			

		
	
 in Lemma 6 that 
							
	
 		
 			
				(
				5
				0
				)
			
 		
	

	
		
			
				⟨
				𝑥
			

			

				2
			

			
				(
				𝑡
				)
				⟩
			

			

				∗
			

			

				≥
			

			

				∼
			

			

				Δ
			

			

				2
			

			

				−
			

			
				
			
			

				Δ
			

			

				2
			

			
				−
				𝜀
			

			
				
			
			
				Δ
				.
			

		
	

						By virtue of the arbitrariness of 
	
		
			

				𝜀
			

		
	
, we can see that 
							
	
 		
 			
				(
				5
				1
				)
			
 		
	

	
		
			
				⟨
				𝑥
			

			

				2
			

			
				(
				𝑡
				)
				⟩
			

			

				∗
			

			

				≥
			

			

				∼
			

			

				Δ
			

			

				2
			

			

				−
			

			
				
			
			

				Δ
			

			

				2
			

			
				
			
			
				Δ
				.
			

		
	

						Consequently, for every 
	
		
			
				0
				<
				𝜀
				<
				𝑎
			

			
				1
				2
			

			

				(
			

			

				∼
			

			

				Δ
			

			

				2
			

			

				−
			

			
				
			
			

				Δ
			

			

				2
			

			
				)
				/
				Δ
			

		
	
, there is 
	
		
			
				𝑇
				>
				0
			

		
	
 such that 
							
	
 		
 			
				(
				5
				2
				)
			
 		
	

	
		
			

				𝑎
			

			
				1
				2
			

			
				⟨
				𝑥
			

			

				2
			

			
				(
				𝑡
				)
				⟩
				≥
				𝑎
			

			
				1
				2
			

			
				⟨
				𝑥
			

			

				2
			

			

				⟩
			

			

				∗
			

			
				𝑎
				−
				𝜀
				≥
			

			
				1
				2
			

			

				
			

			

				∼
			

			

				Δ
			

			

				2
			

			

				−
			

			
				
			
			

				Δ
			

			

				2
			

			

				
			

			
				
			
			
				Δ
				−
				𝜀
				,
				𝑡
				>
				𝑇
				.
			

		
	

						Substituting the above inequality into (33) and then using (18) and (47), one can see that
							
	
 		
 			
				(
				5
				3
				)
			
 		
	

	
		
			

				𝑡
			

			
				−
				1
			

			
				𝑥
				l
				n
			

			

				1
			

			
				(
				𝑡
				)
			

			
				
			
			

				𝑥
			

			

				1
			

			
				(
				0
				)
				≤
				𝜃
			

			

				1
			

			
				−
				𝑎
			

			
				1
				2
			

			

				
			

			

				∼
			

			

				Δ
			

			

				2
			

			

				−
			

			
				
			
			

				Δ
			

			

				2
			

			

				
			

			
				
			
			
				Δ
				+
				3
				𝜀
				−
				𝑎
			

			
				1
				1
			

			

				𝑡
			

			
				−
				1
			

			

				
			

			
				𝑡
				0
			

			

				𝑥
			

			

				1
			

			
				(
				𝑠
				)
				𝑑
				𝑠
				+
				𝑡
			

			
				−
				1
			

			

				𝛼
			

			

				1
			

			

				𝐵
			

			

				1
			

			
				(
				=
				𝑎
				𝑡
				)
			

			
				1
				1
			

			

				
			

			

				∼
			

			

				Δ
			

			

				1
			

			

				−
			

			
				
			
			

				Δ
			

			

				1
			

			

				
			

			
				
			
			
				Δ
				+
				3
				𝜀
				−
				𝑎
			

			
				1
				1
			

			

				𝑡
			

			
				−
				1
			

			

				
			

			
				𝑡
				0
			

			

				𝑥
			

			

				1
			

			
				(
				𝑠
				)
				𝑑
				𝑠
				+
				𝑡
			

			
				−
				1
			

			

				𝛼
			

			

				1
			

			

				𝐵
			

			

				1
			

			
				(
				𝑡
				)
			

		
	

						for sufficiently large 
	
		
			

				𝑡
			

		
	
. Since 
	
		
			

				∼
			

			

				Δ
			

			

				1
			

			

				−
			

			
				
			
			

				Δ
			

			

				1
			

			
				>
				0
			

		
	
, and then, by Lemma 6 and the arbitrariness of 
	
		
			

				𝜀
			

		
	
, one can observe that
							
	
 		
 			
				(
				5
				4
				)
			
 		
	

	
		
			
				⟨
				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				⟩
			

			

				∗
			

			

				≤
			

			

				∼
			

			

				Δ
			

			

				1
			

			

				−
			

			
				
			
			

				Δ
			

			

				1
			

			
				
			
			
				Δ
				.
			

		
	

						When this inequality, (18) and (47), are used in (34), we can see that 
							
	
 		
 			
				(
				5
				5
				)
			
 		
	

	
		
			

				𝑡
			

			
				−
				1
			

			
				𝑥
				l
				n
			

			

				2
			

			
				(
				𝑡
				)
			

			
				
			
			

				𝑥
			

			

				2
			

			
				(
				0
				)
				≤
				−
				𝜃
			

			

				2
			

			
				+
				𝑎
			

			
				∼
				2
				1
			

			

				Δ
			

			

				1
			

			

				−
			

			
				
			
			

				Δ
			

			

				1
			

			
				
			
			
				Δ
				+
				3
				𝜀
				−
				𝑎
			

			
				2
				2
			

			

				𝑡
			

			
				−
				1
			

			

				
			

			
				𝑡
				0
			

			

				𝑥
			

			

				2
			

			
				(
				𝑠
				)
				𝑑
				𝑠
				+
				𝑡
			

			
				−
				1
			

			

				𝛼
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				=
				𝑎
				(
				𝑡
				)
			

			
				2
				2
			

			

				
			

			

				∼
			

			

				Δ
			

			

				2
			

			

				−
			

			
				
			
			

				Δ
			

			

				2
			

			

				
			

			
				
			
			
				Δ
				+
				3
				𝜀
				−
				𝑎
			

			
				2
				2
			

			

				𝑡
			

			
				−
				1
			

			

				
			

			
				𝑡
				0
			

			

				𝑥
			

			

				2
			

			
				(
				𝑠
				)
				𝑑
				𝑠
				+
				𝑡
			

			
				−
				1
			

			

				𝛼
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				(
				𝑡
				)
			

		
	

						for sufficiently large 
	
		
			

				𝑡
			

		
	
. Then, it follows from Lemma 6 and the arbitrariness of 
	
		
			

				𝜀
			

		
	
 that 
							
	
 		
 			
				(
				5
				6
				)
			
 		
	

	
		
			
				⟨
				𝑥
			

			

				2
			

			
				(
				𝑡
				)
				⟩
			

			

				∗
			

			

				≤
			

			

				∼
			

			

				Δ
			

			

				2
			

			

				−
			

			
				
			
			

				Δ
			

			

				2
			

			
				
			
			
				Δ
				.
			

		
	

						Substituting the above inequality and (18) into (33), we get
							
	
 		
 			
				(
				5
				7
				)
			
 		
	

	
		
			

				𝑡
			

			
				−
				1
			

			
				𝑥
				l
				n
			

			

				1
			

			
				(
				𝑡
				)
			

			
				
			
			

				𝑥
			

			

				1
			

			
				(
				0
				)
				≥
				𝜃
			

			

				1
			

			
				−
				𝑎
			

			
				∼
				1
				2
			

			

				Δ
			

			

				2
			

			

				−
			

			
				
			
			

				Δ
			

			

				2
			

			
				
			
			
				Δ
				−
				3
				𝜀
				−
				𝑎
			

			
				1
				1
			

			

				𝑡
			

			
				−
				1
			

			

				
			

			
				𝑡
				0
			

			

				𝑥
			

			

				1
			

			
				(
				𝑠
				)
				𝑑
				𝑠
				+
				𝑡
			

			
				−
				1
			

			

				𝛼
			

			

				1
			

			

				𝐵
			

			

				1
			

			
				=
				𝑎
				(
				𝑡
				)
			

			
				1
				1
			

			

				
			

			

				∼
			

			

				Δ
			

			

				1
			

			

				−
			

			
				
			
			

				Δ
			

			

				1
			

			

				
			

			
				
			
			
				Δ
				−
				3
				𝜀
				−
				𝑎
			

			
				1
				1
			

			

				𝑡
			

			
				−
				1
			

			

				
			

			
				𝑡
				0
			

			

				𝑥
			

			

				1
			

			
				(
				𝑠
				)
				𝑑
				𝑠
				+
				𝑡
			

			
				−
				1
			

			

				𝛼
			

			

				1
			

			

				𝐵
			

			

				1
			

			
				(
				𝑡
				)
			

		
	

						for sufficiently large 
	
		
			

				𝑡
			

		
	
. By 
	
		
			
				(
				I
				I
				)
			

		
	
 in Lemma 6 and the arbitrariness of 
	
		
			

				𝜀
			

		
	
 again, we obtain 
							
	
 		
 			
				(
				5
				8
				)
			
 		
	

	
		
			
				⟨
				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				⟩
			

			

				∗
			

			

				≥
			

			

				∼
			

			

				Δ
			

			

				1
			

			

				−
			

			
				
			
			

				Δ
			

			

				1
			

			
				
			
			
				Δ
				.
			

		
	

						Then, the required assertion follows from (51), (54), (56), and (58). 
3. Numerical Simulations
  Let us use the famous Milstein method (see, e.g., [41]) to illustrate the analytical results.
To begin with, we choose 
	
		
			

				𝑟
			

			
				1
				0
			

			
				=
				0
				.
				8
				5
			

		
	
, 
	
		
			

				𝑟
			

			
				2
				0
			

			
				=
				0
				.
				0
				5
			

		
	
, 
	
		
			

				𝑟
			

			
				1
				1
			

			
				=
				𝑟
			

			
				2
				1
			

			
				=
				1
			

		
	
,  
	
		
			

				𝑎
			

			
				1
				1
			

			
				=
				0
				.
				4
			

		
	
,   
	
		
			

				𝑎
			

			
				1
				2
			

			
				=
				0
				.
				4
			

		
	
, 
	
		
			

				𝑎
			

			
				2
				1
			

			
				=
				0
				.
				3
			

		
	
, 
	
		
			

				𝑎
			

			
				2
				2
			

			
				=
				0
				.
				3
			

		
	
, 
	
		
			

				𝜏
			

			

				1
			

			
				=
				3
				,
				𝜏
			

			

				2
			

			
				=
				8
			

		
	
, 
	
		
			

				𝛼
			

			
				2
				2
			

			
				=
				0
				.
				1
			

		
	
, 
	
		
			

				𝑘
			

			

				𝑖
			

			
				=
				𝑔
			

			

				𝑖
			

			
				=
				𝑚
			

			

				𝑖
			

			
				=
				0
				.
				1
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				2
			

		
	
, 
	
		
			
				ℎ
				=
				0
				.
				5
			

		
	
, 
	
		
			
				𝑏
				=
				0
				.
				6
			

		
	
, and 
	
		
			
				𝛾
				=
				1
				2
			

		
	
. Then, 
						
	
 		
 			
				(
				5
				9
				)
			
 		
	

	
		
			

				𝐾
			

			

				𝑖
			

			
				=
				𝑘
			

			

				𝑖
			

			

				𝑏
			

			
				
			
			
				ℎ
				
				𝑔
			

			

				𝑖
			

			
				+
				𝑚
			

			

				𝑖
			

			
				
				Δ
				=
				0
				.
				6
				,
			

			

				2
			

			
				=
				𝑟
			

			
				1
				0
			

			

				𝑎
			

			
				2
				1
			

			
				−
				𝑟
			

			
				2
				0
			

			

				𝑎
			

			
				1
				1
			

			
				=
				0
				.
				2
				3
				5
				>
			

			
				
			
			

				Δ
			

			

				2
			

			
				=
				𝑎
			

			
				2
				1
			

			

				𝑟
			

			
				1
				1
			

			

				𝐾
			

			

				1
			

			
				
			
			
				𝛾
				+
				𝑎
			

			
				1
				1
			

			

				𝑟
			

			
				2
				1
			

			

				𝐾
			

			

				2
			

			
				
			
			
				𝛾
				=
				0
				.
				0
				3
				5
				.
			

		
	

					By 
	
		
			
				(
				c
				)
			

		
	
 in Lemma 1, the solution of model (1) obeys
						
	
 		
 			
				(
				6
				0
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑡
				→
				+
				∞
			

			

				𝑡
			

			
				−
				1
			

			

				
			

			
				𝑡
				0
			

			

				𝑥
			

			

				1
			

			
				(
				𝑠
				)
				𝑑
				𝑠
				>
				0
				,
				l
				i
				m
				s
				u
				p
			

			
				𝑡
				→
				+
				∞
			

			

				𝑡
			

			
				−
				1
			

			

				
			

			
				𝑡
				0
			

			

				𝑥
			

			

				2
			

			
				(
				𝑠
				)
				𝑑
				𝑠
				>
				0
				.
			

		
	

					However, when the white noises are taken into account, the properties of the system may be changed greatly. In Figure 1, we let the coefficients be same with the above. The only difference between conditions of Figures 1(a), 1(b), and 1(c) is that the value of 
	
		
			

				𝛼
			

			
				2
				1
			

		
	
 is different. In Figure 1(a), we choose 
	
		
			

				𝛼
			

			
				2
				1
			

			
				/
				2
				=
				0
				.
				8
				2
			

		
	
. Therefore, 
						
	
 		
 			
				(
				6
				1
				)
			
 		
	

	
		
			

				𝜃
			

			

				1
			

			
				=
				𝑟
			

			
				1
				0
			

			
				−
				𝛼
			

			
				2
				1
			

			
				
			
			
				2
				𝑟
				=
				0
				.
				0
				3
				<
			

			
				1
				1
			

			

				𝐾
			

			

				1
			

			
				
			
			
				𝛾
				=
				0
				.
				0
				5
				.
			

		
	

					Then, by 
	
		
			
				(
				i
				)
			

		
	
 in Theorem 2, both  
	
		
			

				𝑥
			

			

				1
			

		
	
 and 
	
		
			

				𝑥
			

			

				2
			

		
	
 are extinctive. Figure 1(a) confirms these. In Figure 1(b), we choose 
	
		
			

				𝛼
			

			
				2
				1
			

			
				/
				2
				=
				0
				.
				6
				5
			

		
	
. That is to say 
	
		
			

				𝜃
			

			

				1
			

			
				=
				0
				.
				2
				>
				𝑟
			

			
				1
				1
			

			

				𝐾
			

			

				1
			

			
				/
				𝛾
				=
				0
				.
				0
				5
			

		
	
 and 
	
		
			

				∼
			

			

				Δ
			

			

				2
			

			
				=
				0
				.
				0
				2
				<
			

			
				
			
			

				Δ
			

			

				2
			

			
				=
				0
				.
				0
				3
				5
			

		
	
. It then follows from 
	
		
			
				(
				i
				i
				)
			

		
	
 in Theorem 2 that 
	
		
			

				𝑥
			

			

				2
			

		
	
 is extinctive and 
	
		
			

				𝑥
			

			

				1
			

		
	
 is stable in time average: 
						
	
 		
 			
				(
				6
				2
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑡
				→
				+
				∞
			

			
				⟨
				𝑥
			

			

				1
			

			
				𝜃
				(
				𝑡
				)
				⟩
				=
			

			

				1
			

			
				−
				𝑟
			

			
				1
				1
			

			

				𝐾
			

			

				1
			

			
				/
				𝛾
			

			
				
			
			

				𝑎
			

			
				1
				1
			

			
				=
				0
				.
				3
				7
				5
				.
			

		
	

					See Figure 1(b). In Figure 1(c), we choose 
	
		
			

				𝛼
			

			
				2
				1
			

			
				/
				2
				=
				0
				.
				2
			

		
	
. Then, 
	
		
			

				∼
			

			

				Δ
			

			

				2
			

			
				=
				0
				.
				1
				5
				5
				>
			

			
				
			
			

				Δ
			

			

				2
			

			
				=
				0
				.
				0
				3
				5
			

		
	
. In view of 
	
		
			
				(
				i
				i
				i
				)
			

		
	
 in Theorem 2, we can obtain that both 
	
		
			

				𝑥
			

			

				1
			

		
	
 and 
	
		
			

				𝑥
			

			

				2
			

		
	
 are stable in time average: 
						
	
 		
 			
				(
				6
				3
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑡
				→
				+
				∞
			

			
				⟨
				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				⟩
				=
			

			

				∼
			

			

				Δ
			

			

				1
			

			

				−
			

			
				
			
			

				Δ
			

			

				1
			

			
				
			
			
				Δ
				=
				0
				.
				2
				4
			

			
				
			
			
				0
				.
				2
				4
				=
				1
				,
				l
				i
				m
			

			
				𝑡
				→
				+
				∞
			

			
				⟨
				𝑥
			

			

				2
			

			
				(
				𝑡
				)
				⟩
				=
			

			

				∼
			

			

				Δ
			

			

				2
			

			

				−
			

			
				
			
			

				Δ
			

			

				2
			

			
				
			
			
				Δ
				=
				0
				.
				1
				2
			

			
				
			
			
				0
				.
				2
				4
				=
				0
				.
				5
				.
			

		
	

					Figure 1(c) confirms these.




	




	
	




	
	




	
	




	
	




	
	
	




	




	
	
	




	
	
	




	
	
	




	
	
	




	




	
	
	




	
	
	














	
	
	
	




	
		
	
	
		
	
	
		
		
	
	
		
	


	
		
	
	
		
	
	
		
		
	
	
		
	

(a)









	




	
	
	




	
	
	
	




	
	
	
	




	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	






































































	
	
	
	





	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
		
	
	
		
		
	
	
		
	

(b)












	




	
	
	




	
	
	




	
	
	




	
	
	




	
	
	
	




	




	
	
	




	
	
	




	
	
	




	
	
	




	




	
	
	




	
	
	




	
	
	




	
	
	






























































































	
	
	
	






	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
		
	
	
		
		
	
	
		
	


	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
		
	
	
		
		
	
	
		
	

(c)
Figure 1: Solutions of system (3) for 
	
		
			

				𝑟
			

			
				1
				0
			

			
				=
				0
				.
				8
				5
			

		
	
, 
	
		
			

				𝑟
			

			
				2
				0
			

			
				=
				0
				.
				0
				5
			

		
	
, 
	
		
			

				𝑟
			

			
				1
				1
			

			
				=
				𝑟
			

			
				2
				1
			

			
				=
				1
			

		
	
, 
	
		
			

				𝑎
			

			
				1
				1
			

			
				=
				0
				.
				4
			

		
	
, 
	
		
			

				𝑎
			

			
				1
				2
			

			
				=
				0
				.
				4
			

		
	
, 
	
		
			

				𝑎
			

			
				2
				1
			

			
				=
				0
				.
				3
			

		
	
, 
	
		
			

				𝑎
			

			
				2
				2
			

			
				=
				0
				.
				3
			

		
	
, 
	
		
			

				𝜏
			

			

				1
			

			
				=
				3
			

		
	
, 
	
		
			

				𝜏
			

			

				2
			

			
				=
				8
			

		
	
, 
	
		
			

				𝛼
			

			
				2
				2
			

			
				=
				0
				.
				1
			

		
	
, 
	
		
			

				𝑘
			

			

				𝑖
			

			
				=
				𝑔
			

			

				𝑖
			

			
				=
				𝑚
			

			

				𝑖
			

			
				=
				0
				.
				1
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				2
			

		
	
, 
	
		
			
				ℎ
				=
				0
				.
				5
			

		
	
, 
	
		
			
				𝑏
				=
				0
				.
				6
			

		
	
, 
	
		
			
				𝛾
				=
				1
				2
			

		
	
, 
	
		
			

				𝑥
			

			

				1
			

			
				(
				0
				)
				=
				0
				.
				9
			

		
	
, 
	
		
			

				𝑥
			

			

				2
			

			
				(
				0
				)
				=
				0
				.
				5
			

		
	
, 
	
		
			

				𝐶
			

			

				0
			

			
				(
				0
				)
				=
				𝐶
			

			

				𝑒
			

			
				(
				0
				)
				=
				0
				.
				1
			

		
	
, and step size 
	
		
			
				Δ
				𝑡
				=
				0
				.
				0
				0
				1
			

		
	
. (a) is with 
	
		
			

				𝛼
			

			
				2
				1
			

			
				/
				2
				=
				0
				.
				8
				2
			

		
	
;  (b) is with 
	
		
			

				𝛼
			

			
				2
				1
			

			
				/
				2
				=
				0
				.
				6
				5
			

		
	
;  (c) is with 
	
		
			

				𝛼
			

			
				2
				1
			

			
				/
				2
				=
				0
				.
				2
			

		
	
.


In Figure 2, we choose 
	
		
			

				𝑟
			

			
				1
				0
			

			
				=
				0
				.
				8
				5
			

		
	
, 
	
		
			

				𝑟
			

			
				2
				0
			

			
				=
				0
				.
				0
				5
			

		
	
, 
	
		
			

				𝑟
			

			
				1
				1
			

			
				=
				𝑟
			

			
				2
				1
			

			
				=
				1
			

		
	
, 
	
		
			

				𝑎
			

			
				1
				1
			

			
				=
				0
				.
				4
			

		
	
, 
	
		
			

				𝑎
			

			
				1
				2
			

			
				=
				0
				.
				4
			

		
	
, 
	
		
			

				𝑎
			

			
				2
				1
			

			
				=
				0
				.
				3
			

		
	
, 
	
		
			

				𝑎
			

			
				2
				2
			

			
				=
				0
				.
				3
			

		
	
, 
	
		
			

				𝜏
			

			

				1
			

			
				=
				3
			

		
	
, 
	
		
			

				𝜏
			

			

				2
			

			
				=
				8
			

		
	
, 
	
		
			

				𝛼
			

			
				2
				1
			

			
				=
				0
				.
				4
			

		
	
, 
	
		
			

				𝛼
			

			
				2
				2
			

			
				=
				0
				.
				1
			

		
	
, 
	
		
			

				𝑘
			

			

				𝑖
			

			
				=
				𝑔
			

			

				𝑖
			

			
				=
				𝑚
			

			

				𝑖
			

			
				=
				0
				.
				1
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				2
			

		
	
, 
	
		
			
				ℎ
				=
				0
				.
				5
			

		
	
, and 
	
		
			
				𝑏
				=
				0
				.
				6
			

		
	
. The only difference between conditions of Figures 1(c) and 2 is that the value of 
	
		
			

				𝛾
			

		
	
 is different. In Figure 2, we choose 
	
		
			
				𝛾
				=
				0
				.
				8
			

		
	
. Then, 
	
		
			

				𝜃
			

			

				1
			

			
				=
				0
				.
				6
				5
				<
				𝑟
			

			
				1
				1
			

			

				𝐾
			

			

				1
			

			
				/
				𝛾
				=
				0
				.
				7
				5
			

		
	
. It follows from 
	
		
			
				(
				i
				)
			

		
	
 in Theorem 2 that both 
	
		
			

				𝑥
			

			

				1
			

		
	
 and 
	
		
			

				𝑥
			

			

				2
			

		
	
 are extinctive. Figure 2 confirms these. By comparing Figure 1(c) with Figure 2, one can see that the impulsive period 
	
		
			

				𝛾
			

		
	
 plays a key role in determining the stability in time average and the extinction of the species. 





	




	
	




	
	




	
	




	
	




	
	
	




	




	
	
	




	
	
	




	
	
	




	
	
	




	




	
	
	




	
	
	














	
	
	
	




	
		
	
	
		
	


	
		
	
	
		
	

Figure 2: Solutions of system (3) for 
	
		
			

				𝑟
			

			
				1
				0
			

			
				=
				0
				.
				8
				5
			

		
	
, 
	
		
			

				𝑟
			

			
				2
				0
			

			
				=
				0
				.
				0
				5
			

		
	
, 
	
		
			

				𝑟
			

			
				1
				1
			

			
				=
				𝑟
			

			
				2
				1
			

			
				=
				1
			

		
	
, 
	
		
			

				𝑎
			

			
				1
				1
			

			
				=
				0
				.
				4
			

		
	
, 
	
		
			

				𝑎
			

			
				1
				2
			

			
				=
				0
				.
				4
			

		
	
, 
	
		
			

				𝑎
			

			
				2
				1
			

			
				=
				0
				.
				3
			

		
	
, 
	
		
			

				𝑎
			

			
				2
				2
			

			
				=
				0
				.
				3
			

		
	
, 
	
		
			

				𝜏
			

			

				1
			

			
				=
				3
			

		
	
, 
	
		
			

				𝜏
			

			

				2
			

			
				=
				8
			

		
	
, 
	
		
			

				𝛼
			

			
				2
				1
			

			
				=
				0
				.
				4
			

		
	
, 
	
		
			

				𝛼
			

			
				2
				2
			

			
				=
				0
				.
				1
			

		
	
, 
	
		
			

				𝑘
			

			

				𝑖
			

			
				=
				𝑔
			

			

				𝑖
			

			
				=
				𝑚
			

			

				𝑖
			

			
				=
				0
				.
				1
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				2
			

		
	
, 
	
		
			
				ℎ
				=
				0
				.
				5
			

		
	
, 
	
		
			
				𝑏
				=
				0
				.
				6
			

		
	
, 
	
		
			
				𝛾
				=
				0
				.
				8
			

		
	
, 
	
		
			

				𝑥
			

			

				1
			

			
				(
				0
				)
				=
				0
				.
				9
			

		
	
, 
	
		
			

				𝑥
			

			

				2
			

			
				(
				0
				)
				=
				0
				.
				5
			

		
	
, 
	
		
			

				𝐶
			

			

				0
			

			
				(
				0
				)
				=
				𝐶
			

			

				𝑒
			

			
				(
				0
				)
				=
				0
				.
				1
			

		
	
, and step size 
	
		
			
				Δ
				𝑡
				=
				0
				.
				0
				0
				1
			

		
	
.


4. Conclusions and Future Directions
 This paper is concerned with stochastic delay predator-prey model in a polluted environment with impulsive toxicant input. For each species, the threshold between stability in time average and extinction is established. Some recent results are improved and extended. Our Theorem 2 reveals some interesting and important results.  (A)Firstly, time delay is harmless for stability in time average and extinction of the stochastic system (3).(B)The white noise 
	
		
			

				𝛼
			

			

				1
			

			
				𝑑
				𝐵
			

			

				1
			

			
				(
				𝑡
				)
			

		
	
 and 
	
		
			

				𝛼
			

			

				2
			

			
				𝑑
				𝐵
			

			

				2
			

			
				(
				𝑡
				)
			

		
	
 can change the properties of the system greatly.(C)The impulsive period 
	
		
			

				𝛾
			

		
	
 plays an important role in determining the stability in time average and the extinction of the species.
Some interesting questions deserve further investigations. One may consider some more realistic but more complex systems, for example, stochastic delay model with Markov switching (see, e.g., [30, 32, 39]). It is also interesting to investigate what happens if 
	
		
			

				𝑎
			

			
				𝑖
				𝑗
			

		
	
 is stochastic.
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