Research Article

Analysis of Stochastic Delay Predator-Prey System with Impulsive Toxicant Input in Polluted Environments

Meng Liu

School of Mathematical Science, Huaiyin Normal University, Huaian 223300, China

Correspondence should be addressed to Meng Liu; liumeng0557@sina.com

Received 21 June 2013; Revised 28 August 2013; Accepted 28 August 2013

A stochastic delay predator-prey model in a polluted environment with impulsive toxicant input is proposed and studied. The thresholds between stability in time average and extinction of each population are obtained. Some recent results are extended and improved greatly. Several simulation figures are introduced to support the conclusions.

1. Introduction

Environmental pollution by industries, agriculture, and other human activities is one of the most important socio-ecological problems in the world today. Due to toxins in the environment, lots of species have gone extinct, and many are on the verge of extinction. Thus, controlling the environmental pollution and the conservation of biodiversity are the major focus areas of all the countries around the world. This motivates scholars to study the effects of toxins on populations and to find out a theoretical persistence-extinction threshold.

Recently, a lot of population models in a polluted environment have been proposed and investigated; here, we may mention, among many others, [1–23]. Particularly, Yang et al. [15] pointed out that in many cases toxicants should be emitted in regular pulses, for example, the use of pesticides and the pollution by heavy metals (see, e.g., [24]). Thus, they proposed the following two-species Lotka-Volterra predator-prey system in a polluted environment with impulsive toxicant input:

\[
\begin{align*}
\frac{dx_1(t)}{dt} &= x_1(t) \left[r_{10} - r_{11}C_{10}(t) - a_{11}x_1(t) - a_{12}x_2(t) \right], \\
\frac{dx_2(t)}{dt} &= x_2(t) \left[-r_{20} - r_{21}C_{20}(t) + a_{21}x_1(t) - a_{22}x_2(t) \right], \\
\frac{dC_{10}(t)}{dt} &= k_1C_e(t) - (g_1 + m_1)C_{10}(t), \\
\frac{dC_{20}(t)}{dt} &= k_2C_e(t) - (g_2 + m_2)C_{20}(t), \\
\frac{dC_e(t)}{dt} &= -hC_e(t), \\
\end{align*}
\]

where all the parameters are positive constants and \(\Delta f(t) = f(t^+) - f(t)\), \(Z^+ = \{1, 2, \ldots\}\); \(x_1(t)\) and \(x_2(t)\): the size of prey population and the predator population, respectively; \(r_{ij}\): the intrinsic growth rate of the \(i\)th population without toxicant; \(r_{ij}\): the \(i\)th population response to the pollutant present in the organism; \(C_{ij}(t)\): the concentration of toxicant in the \(i\)th organism; \(C_e(t)\): the concentration of toxicant in the environment; \(kC_e(t)\): the organism’s net uptake of toxicant from the environment; \(gC_{ij}(t) + mC_{ij}(t)\): the egestion and depuration rates of the toxicant in the \(i\)th organism; \(hC_e(t)\): the toxicant loss from the environment itself by volatilization and so on; \(\gamma\): the period of the impulsive effect about the exogenous input of toxicant; \(b\): the toxicant input amount at every time.

Yang et al. [15] showed that in the following Lemma holds.
Lemma 1. For system (1), define
\[
\Delta_2 = r_{10}a_{21} - r_{20}a_{11}, \quad \Delta_2 := a_{21}r_{11}K_1 \gamma + a_{11}r_{21}K_2 \gamma, \\
K_i = \frac{k_i b}{h(g_i + m_i)}.
\]

(a) If \(r_{10} < r_{11}K_1/\gamma \), then \(\lim_{t \to +\infty} x_i(t) = 0 \), \(i = 1, 2 \).
(b) If \(r_{10} > r_{11}K_1/\gamma \) and \(\Delta_2 < \Delta_2 \), then \(\limsup_{t \to +\infty} r^{-1} \int_0^t x_i(s)ds > 0 \) and \(x_2(t) \) goes to extinction.
(c) If \(\Delta_2 > \Delta_2 \), then \(\limsup_{t \to +\infty} r^{-1} \int_0^t x_i(s)ds > 0 \), \(i = 1, 2 \).

Some interesting and important problems arise naturally.

(Q1) In the real world, the growth of species depends on various environmental factors, such as temperature, humidity and parasites and so forth. Therefore population models should be stochastic rather than deterministic (May [25]). Thus, what happens if model (1) is subject to stochastic noises?

(Q2) In addition, time delays occur in almost every situation. Kuang [26] has pointed out that ignoring time delays means ignoring reality. Therefore, what happens if model (1) takes time delays into account?

(Q3) Can we improve the results given in Lemma 1?

The aim of this paper is to study the above problems. Suppose that stochastic noises mainly affect the growth rates, with \(r_{10} \to r_0 + \alpha \tilde{B}_t(t) \) (see, e.g., [27–39]), where \(\tilde{B}_t(t) \) is a white noise and \(\alpha_i \) is the intensity of the noise. Moreover, taking time delays into account, we obtain the following model:

\[
\begin{align*}
\dot{x}_1(t) &= x_1(t) \left[r_{10} - r_{11}C_{10}(t) - a_{11}x_1(t) \right] - a_{12}x_2(t - \tau_1) + a_1x_1(t)dB_1(t), \\
\dot{x}_2(t) &= x_2(t) \left[-r_{20} - r_{21}C_{20}(t) - a_{22}x_2(t) + a_2x_1(t - \tau_2) \right] + a_2x_1(t)dB_2(t), \\
\dot{C}_{10}(t) &= k_1C_e(t) - (g_1 + m_1)C_{10}(t), \\
\dot{C}_{20}(t) &= k_2C_e(t) - (g_2 + m_2)C_{20}(t), \\
\dot{C}_e(t) &= -hC_e(t),
\end{align*}
\]

with initial condition
\[
x_1(t) = \phi_1(t) > 0, \quad t \in [-\tau, 0]; \quad \phi_1(0) > 0, \quad i = 1, 2,
\]

where \(\tau_i \geq 0, \tau = \max\{\tau_1, \tau_2\} \), \(\phi_i(t) \) is continuous on \([-\tau, 0]\). Our main result is the following theorem.

Theorem 2. For system (3), define
\[
\begin{align*}
\theta_1 &= r_{10} - 0.5a_{11}^2, \quad \theta_2 = r_{20} + 0.5a_{22}^2, \quad \Delta = a_{11}a_{22} + a_{12}a_{21}, \\
\overline{\Delta}_1 &= a_{21}r_{11}K_1/\gamma + a_{11}r_{21}K_2/\gamma, \\
\overline{\Delta}_2 &= a_{21}r_{11}K_1 - a_{11}r_{21}K_2/\gamma.
\end{align*}
\]

(i) If \(\theta_1 < r_{11}K_1/\gamma \), then both \(x_1 \) and \(x_2 \) go to extinction almost surely (a.s.); that is, \(\lim_{t \to +\infty} x_i(t) = 0 \) a.s., \(i = 1, 2 \).

(ii) If \(\theta_1 > r_{11}K_1/\gamma \) and \(\overline{\Delta}_2 < \overline{\Delta}_2 \), then \(x_2(t) \) goes to extinction and \(x_1 \) is stable in time average a.s.; that is,
\[
\lim_{t \to +\infty} r^{-1} \int_0^t x_1(s)ds = \frac{\overline{\Delta}_1 - \overline{\Delta}_1/\Delta}{\Delta} > 0, \quad \text{a.s.}
\]

(iii) If \(\overline{\Delta}_2 > \overline{\Delta}_2 \), then both \(x_1 \) and \(x_2 \) are stable in time average a.s.

\[
\begin{align*}
\lim_{t \to +\infty} r^{-1} \int_0^t x_1(s)ds &= \frac{\overline{\Delta}_1 - \overline{\Delta}_1}{\Delta} > 0, \quad \text{a.s.,} \\
\lim_{t \to +\infty} r^{-1} \int_0^t x_2(s)ds &= \frac{\overline{\Delta}_2 - \overline{\Delta}_2/\Delta}{\Delta} > 0, \quad \text{a.s.}
\end{align*}
\]

Remark 3. By comparing Lemma 1 with our Theorem 2, we can see that on the one hand, if \(\alpha_i = 0 = \tau_i = \tau_2 = 0 \), then \(\theta_i = r_{i0}, \overline{\Delta}_i = \Delta_i \), \(i = 1, 2 \), and our stochastic delay system (3) becomes model (1); on the other hand, our results in Theorem 2 improve that in Lemma 1. Lemma 1 shows that the superior limit is positive, while Theorem 2 reveals that the limit exists and gives the explicit form of the limit. The contribution of this paper is therefore clear.

2. Proof

For the sake of simplicity, we introduce some notations:

\[
R_+^i = \{a = (a_1, a_2) \in R^2 \mid a_i > 0, \quad i = 1, 2\},
\]

\[
\langle f(t) \rangle = r^{-1} \int_0^t f(s)ds,
\]

\[
\langle f(t) \rangle^* = \limsup_{t \to +\infty} r^{-1} \int_0^t f(s)ds,
\]

\[
\langle f(t) \rangle_* = \liminf_{t \to +\infty} r^{-1} \int_0^t f(s)ds.
\]

Lemma 4. For any given initial value \(\phi(t) = (\phi_1(t), \phi_2(t)) \in C([-\tau, 0], R_+^2) \), there is a unique global positive solution \(x(t) = (x_1(t), x_2(t))^T \) to the first two equations of system (3) a.s.
Proof. The proof is similar to Hung [29] by defining
\[V(x) = [x_1 - 1 - \ln x_1] + \frac{a_1a_2}{a_1} [x_2 - 1 - \ln x_2] \]
(9)
and hence is omitted.

To begin with, let us consider the following subsystem of (3):
\[
\begin{align*}
\frac{dC_{10}(t)}{dt} &= k_1 C_e(t) - (g_1 + m_1) C_{10}(t), \\
\frac{dC_{20}(t)}{dt} &= k_2 C_e(t) - (g_2 + m_2) C_{20}(t), \\
\frac{dC_e(t)}{dt} &= -h C_e(t), \quad t \notin n\gamma, \quad n \in \mathbb{Z}^*, \\
\Delta C_{10}(t) &= 0, \quad \Delta C_{20}(t) = 0, \quad \Delta C_e(t) = b, \\
0 &\leq C_0(0) \leq 1, \quad 0 \leq C_e(0) \leq 1.
\end{align*}
\]
(10)

Lemma 5 (see [13, 15]). System (10) has a unique positive \(\gamma \)-periodic solution \((C_{10}(t), C_{20}(t), C_e(t))\), and for each solution \((C_{10}(t), C_{20}(t), C_e(t))\) of (10), \(C_{10}(t) \to \overline{C}_{10}(t), C_{20}(t) \to \overline{C}_{20}(t), C_e(t) \to \overline{C}_e(t) \) as \(t \to \infty \). Moreover, \(C_{10}(t) > \overline{C}_{10}(t) \) and \(C_{20}(t) > \overline{C}_{20}(t) \) for all \(t \geq 0 \) if \(C_{10}(0) > \overline{C}_{10}(0) \) and \(C_{20}(0) > \overline{C}_{20}(0) \), hence is omitted.

Lemma 6 (see [34]). Suppose that \(x(t) \in C[\Omega \times [0, +\infty), \mathbb{R}_+] \).

(1) If there exist \(\sigma \) and positive constants \(\sigma_0, T \) such that
\[
\ln x(t) \leq \sigma t - \sigma_0 \int_0^t x(s) \, ds + \sum_{i=1}^n \beta_i B_i(t) \quad (13)
\]
for \(t \geq T \), where \(B_i(t) \) are independent standard Brownian motions and \(\beta_i \) are constants, \(1 \leq i \leq n \), then one has the following: if \(\sigma \geq 0 \), then \(\langle x \rangle^* \leq \sigma_0 \) a.s.; if \(\sigma < 0 \), then \(\lim_{t \to +\infty} x(t) = 0 \) a.s.

(II) If there exist positive constants \(\sigma_0, T \) and \(\sigma \) such that
\[
\ln x(t) \geq \sigma t - \sigma_0 \int_0^t x(s) \, ds + \sum_{i=1}^n \beta_i B_i(t) \quad (14)
\]
for \(t \geq T \), then \(\langle x \rangle^* \geq \sigma \sigma_0 \) a.s.

Now, let us consider the following auxiliary system:
\[
dy_1(t) = y_1(t) \left[r_{10} - r_{11} C_{10}(t) - a_{11} y_1(t) \right] dt + a_1 y_1(t) dB_1(t),
\]
(15)
\[
dy_2(t) = y_2(t) \left[-r_{20} + r_{21} C_{20}(t) + a_{21} y_2(t) (t - \tau_2) - a_{22} y_2(t) \right] dt + a_2 y_2(t) dB_2(t),
\]
with initial value \(\phi(t) \in C([-r, 0], R^2_+) \).

Lemma 7. If \(\theta_1 = r_{10} - 0.5a_1^2 > r_{11} K_1/\gamma \), then the solution \(y(t) \) of system (15) obeys
\[
\lim_{t \to +\infty} \langle y_1(t) \rangle = \frac{\theta_1 - r_{11} K_1/\gamma}{a_{11}};
\]
\[
\lim_{t \to +\infty} y_2(t) = 0 \text{ a.s., if } \overline{\Lambda}_2 < \overline{\Lambda}_2;
\]
\[
\lim_{t \to +\infty} \langle y_2(t) \rangle = \frac{\overline{\Lambda}_2 - \overline{\Lambda}_2}{a_{11} a_{22}} \text{ a.s., if } \overline{\Lambda}_2 > \overline{\Lambda}_2.
\]
(16)

Proof. By Lemma 5,
\[
\lim_{t \to +\infty} \int_0^t C_{10}(s) \, ds = \lim_{t \to +\infty} \int_0^t C_{20}(s) \, ds = \frac{K_1}{\gamma}, \quad i = 1, 2.
\]
(17)
Then, for all \(\varepsilon > 0 \), there exists \(T > 0 \) such that
\[
\frac{K_i}{\gamma} - \varepsilon \leq \langle C_{10}(t) \rangle \leq \frac{K_i}{\gamma} + \varepsilon, \quad t > T, \quad i = 1, 2.
\]
(18)
An application of Itô’s formula to (15) yields
\[
\ln y_1(t) - \ln y_1(0) = \theta_1 t - r_{11} \int_0^t C_{10}(s) \, ds - a_{11} \int_0^t y_1(s) \, ds + a_1 B_1(t),
\]
\[
\ln y_2(t) - \ln y_2(0) = -\theta_2 t - r_{21} \int_0^t C_{20}(s) \, ds + a_{21} \int_0^t y_2(s) \, ds + a_2 B_2(t).
\]
This completes the proof.

We are now in the position to prove our main results.
Proof of Theorem 2. Applying Itô’s formula to (3) leads to
\[
\ln x_1(t) - \ln x_1(0) = \theta_1 t - r_{11} \int_0^t C_{10}(s) \, ds - a_{11} \int_0^t x_1(s) \, ds
\]
\[
- a_{12} \int_0^t x_2(s - r_1) \, ds + a_1 B_1(t)
\]
\[
\ln x_2(t) - \ln x_2(0) = -\theta_2 t - r_{21} \int_0^t C_{20}(s) \, ds + a_{21} \int_0^t x_1(s) \, ds
\]
\[
- a_{22} \int_0^t x_2(s - r_1) \, ds + a_2 B_2(t)
\]
(i) It follows from (17) and (33) that
\[
t^{-1} \ln x_1(t) - t^{-1} \ln x_1(0)
\]
\[
\leq \theta_1 - r_{11} \langle C_{10}(t) \rangle - a_{11} \langle x_1(t) \rangle + \frac{a_1 B_1(t)}{t}
\]
\[
\leq \theta_1 - r_{11} \frac{K_1}{\lambda} + \varepsilon - a_{11} \langle x_1(t) \rangle + \frac{a_1 B_1(t)}{t}
\]
for sufficiently large \(t \). Since \(\theta_1 - r_{11} K_1/\lambda < 0 \), then we can choose \(\varepsilon \) sufficiently small such that \(\theta_1 - r_{11} K_1/\lambda + \varepsilon < 0 \). Then, by (l) in Lemma 6,
\[
\lim_{t \to +\infty} x_1(t) = 0, \text{ a.s.}
\]
(36)
When (36) is used in (34), one can see that
\[
t^{-1} \ln x_2(t) - \ln x_2(0) \leq -\theta_2 + \varepsilon - a_{22} \langle x_2(t) \rangle + \frac{a_2 B_2(t)}{t}
\]
(37)
for sufficiently large \(t \), where \(\varepsilon > 0 \) obeys \(-\theta_2 + \varepsilon < 0 \). In view of Lemma 6 again, \(\lim_{t \to +\infty} x_2(t) = 0 \), a.s.
(ii) By the stochastic comparison theorem [40], one can observe that
\[
x_1(t) \leq y_1(t), \quad x_2(t) \leq y_2(t)
\]
(38)
Note that \(\theta_1 > r_{11} K_1/\gamma \) and \(\bar{\Delta}_2 < \bar{\Delta}_2 \); it then follows from Lemma 7 that \(\lim_{t \to +\infty} y_2(t) = 0 \), a.s. Making use of (38) gives \(\lim_{t \to +\infty} x_2(t) = 0 \), a.s. Thus, for all \(\varepsilon > 0 \), there exists \(T > 0 \) such that, for \(t \geq T \),
\[
\frac{\varepsilon}{2} \leq a_{12} x_2(t) \leq \frac{\varepsilon}{2}
\]
(39)
Substituting the above inequalities into (33) and then using (18), we obtain
\[
t^{-1} \ln x_1(t) \leq t^{-1} \ln x_1(0) + \theta_1 - r_{11} \langle C_{10}(t) \rangle
\]
\[
- a_{11} \langle x_1(t) \rangle + \frac{\varepsilon + a_1 B_1(t)}{t}
\]
\[
\leq \theta_1 - \frac{r_{11} K_1}{\gamma} + 2\varepsilon - a_{11} \langle x_1(t) \rangle + \frac{a_1 B_1(t)}{t},
\]
(40)
\[
t^{-1} \ln x_1(t) \geq t^{-1} \ln x_1(0) + \theta_1 - r_{11} \langle C_{10}(t) \rangle
\]
\[
- a_{11} \langle x_1(t) \rangle - \frac{\varepsilon + a_1 B_1(t)}{t}
\]
\[
\geq \theta_1 - \frac{r_{11} K_1}{\gamma} - 2\varepsilon - a_{11} \langle x_1(t) \rangle + \frac{a_1 B_1(t)}{t}.
\]
(41)
Let \(\varepsilon \) be sufficiently small such that \(\theta_1 - r_{11} K_1/\gamma - \varepsilon > 0 \), and then, applying (I) and (II) in Lemma 6 to (40) and (41), respectively, one can see that
\[
\frac{\theta_1 - r_{11} K_1/\gamma - 2\varepsilon}{a_{11}} \leq \langle x_1(t) \rangle \leq \langle x_1(t) \rangle
\]
(42)
\[
\leq \frac{\theta_1 - r_{11} K_1/\gamma + 2\varepsilon}{a_{11}} \text{ a.s.}
\]
An application of the arbitrariness of \(\varepsilon \) gives
\[
\lim_{t \to +\infty} \langle x_1(t) \rangle = \frac{\theta_1 - r_{11} K_1/\gamma}{a_{11}}, \text{ a.s.}
\]
(43)
(iii) Clearly, \(\bar{\Delta}_2 \geq \bar{\Delta}_2 \) implies \(\theta_1 > r_{11} K_1/\gamma \), and then, by Lemma 7,
\[
\lim_{t \to +\infty} \langle y_2(t) \rangle = \frac{\bar{\Delta}_2 - \bar{\Delta}_2}{a_{11} a_{22}}.
\]
(44)
Thus, similar to the proof of (28), we get
\[
\lim_{t \to +\infty} t^{-1} \int_{t-r_1}^t y_2(s) \, ds = 0 \text{ a.s.}
\]
(45)
Therefore, by (26), (28), and (38), we can observe that
\[
\lim_{t \to +\infty} t^{-1} \ln x_1(t) \leq \lim_{t \to +\infty} t^{-1} \ln y_1(t) = 0
\]
(46)
\[
\lim_{t \to +\infty} t^{-1} \int_{t-r_1}^t x_1(s) \, ds = 0,
\]
(47)
\[
\lim_{t \to +\infty} t^{-1} \int_{t-r_1}^t x_2(s) \, ds = 0, \text{ a.s.}
\]
Employing (33) and (34) in the expression $a_{21} \ln(x_1(t)/x_1(0)) + a_{11} \ln(x_2(t)/x_2(0))$ yields

$$
\begin{align*}
\tau^{-1}a_{21} \ln \frac{x_1(t)}{x_1(0)} + \tau^{-1}a_{11} \ln \frac{x_2(t)}{x_2(0)} &= a_{12}a_{21}^{-1} \int_{t-\tau}^{t} x_2(s) ds - \int_{t-\tau}^{0} x_2(s) ds \\
 &- a_{11}a_{21}^{-1} \int_{t-\tau}^{t} x_1(s) ds - \int_{t-\tau}^{0} x_1(s) ds \\
 + \Delta_2 - a_{21}r_{11} \langle C_{10}(t) \rangle - a_{11}r_{21} \langle C_{20}(t) \rangle \\
 - \Delta \langle x_2(t) \rangle + r^{-1}a_{12} \alpha_1 B_1(t) + r^{-1}a_{11} \alpha_2 B_2(t).
\end{align*}
$$

When (18), (46) and (47), are used in (48), one can obtain

$$
\tau^{-1}a_{11} \ln \frac{x_2(t)}{x_2(0)} \geq \Delta_2 - \Delta_2 - \varepsilon - \Delta \langle x_2(t) \rangle \\
+ \tau^{-1}a_{12} \alpha_1 B_1(t) + \tau^{-1}a_{11} \alpha_2 B_2(t)
$$

for sufficiently large t, where $\varepsilon > 0$ obeys $\Delta_2 - \Delta_2 - \varepsilon > 0$. It then follows from (II) in Lemma 6 that

$$
\langle x_2(t) \rangle_{\ast} \geq \frac{\Delta_2 - \Delta_2}{\Delta}.
$$

By virtue of the arbitrariness of ε, we can see that

$$
\langle x_2(t) \rangle_{\ast} \geq \frac{\Delta_2 - \Delta_2}{\Delta}.
$$

Consequently, for every $0 < \varepsilon < a_{12}(\Delta_2 - \Delta_2)/\Delta$, there is $T > 0$ such that

$$
a_{12} \langle x_2(t) \rangle \geq a_{12} \langle x_2(t) \rangle_{\ast} - \varepsilon \geq \frac{a_{12}(\Delta_2 - \Delta_2)}{\Delta} - \varepsilon, \quad t > T.
$$

Substituting the above inequality into (33) and then using (18) and (47), one can see that

$$
\begin{align*}
\tau^{-1} \ln \frac{x_2(t)}{x_2(0)} &\leq \theta_2 - a_{21} \frac{\Delta_2 - \Delta_2}{\Delta} + 3\varepsilon \\
&- a_{11}t^{-1} \int_{0}^{t} x_1(s) ds + \tau^{-1} \alpha_1 B_1(t) \\
&= a_{11} \frac{\Delta_1 - \Delta_1}{\Delta} + 3\varepsilon - a_{11}t^{-1} \int_{0}^{t} x_1(s) ds \\
&+ \tau^{-1} \alpha_1 B_1(t)
\end{align*}
$$

for sufficiently large t. Since $\Delta_1 - \Delta_1 > 0$, and then, by Lemma 6 and the arbitrariness of ε, one can observe that

$$
\langle x_1(t) \rangle_{\ast} \leq \frac{\Delta_1 - \Delta_1}{\Delta}.
$$

When this inequality, (18) and (47), are used in (34), we can see that

$$
\begin{align*}
\tau^{-1} \ln \frac{x_2(t)}{x_2(0)} &\leq \theta_2 + a_{21} \frac{\Delta_1 - \Delta_1}{\Delta} + 3\varepsilon \\
&- a_{22} \tau^{-1} \int_{0}^{t} x_2(s) ds + \tau^{-1} \alpha_2 B_2(t) \\
&= a_{22} \frac{\Delta_2 - \Delta_2}{\Delta} + 3\varepsilon - a_{22} \tau^{-1} \int_{0}^{t} x_2(s) ds \\
&+ \tau^{-1} \alpha_2 B_2(t)
\end{align*}
$$

for sufficiently large t. Then, it follows from Lemma 6 and the arbitrariness of ε that

$$
\langle x_2(t) \rangle_{\ast} \leq \frac{\Delta_2 - \Delta_2}{\Delta}.
$$

Substituting the above inequality and (18) into (33), we get

$$
\begin{align*}
\tau^{-1} \ln \frac{x_2(t)}{x_2(0)} &\leq \theta_1 - a_{12} \frac{\Delta_1 - \Delta_1}{\Delta} + 3\varepsilon \\
&- a_{11}t^{-1} \int_{0}^{t} x_1(s) ds + \tau^{-1} \alpha_1 B_1(t) \\
&= a_{11} \frac{\Delta_1 - \Delta_1}{\Delta} + 3\varepsilon - a_{11}t^{-1} \int_{0}^{t} x_1(s) ds \\
&+ \tau^{-1} \alpha_1 B_1(t)
\end{align*}
$$

for sufficiently large t. By (II) in Lemma 6 and the arbitrariness of ε again, we obtain

$$
\langle x_1(t) \rangle_{\ast} \geq \frac{\Delta_1 - \Delta_1}{\Delta}.
$$

Then, the required assertion follows from (51), (54), (56), and (58).}

3. Numerical Simulations

Let us use the famous Milstein method (see, e.g., [41]) to illustrate the analytical results.

To begin with, we choose $r_{10} = 0.85, r_{20} = 0.05, r_{11} = r_{21} = 1, a_{11} = 0.4, a_{12} = 0.4, a_{21} = 0.3, a_{22} = 0.3, \tau_1 = 3, \tau_2 = 8, a_1^2 = 0.1, k_i = g_i = m_i = 0.1, i = 1, 2, h = 0.5, b = 0.6, and \gamma = 12$. Then,

$$
K_i = \frac{k_i b}{h(g_i + m_i)} = 0.6,
$$

$$
\Delta_2 = r_{10}a_{21} - r_{20}a_{11} = 0.235 > \Delta_2
$$

$$
= \frac{a_{31}r_{11}K_1}{\gamma} + \frac{a_{11}r_{21}K_2}{\gamma} = 0.035.
$$
By (c) in Lemma 1, the solution of model (1) obeys

\[
\lim_{t \to +\infty} \frac{1}{t} \int_0^t x_1(s) \, ds > 0, \quad \lim_{t \to +\infty} \frac{1}{t} \int_0^t x_2(s) \, ds > 0.
\]

(60)

However, when the white noises are taken into account, the properties of the system may be changed greatly. In Figure 1, we let the coefficients be same with the above. The only difference between conditions of Figures 1(a), 1(b), and 1(c) is that the value of \(\alpha_1^2 \) is different. In Figure 1(a), we choose \(\alpha_1^2/2 = 0.82 \). Therefore,

\[
\theta_1 = r_{10} - \frac{\alpha_1^2}{2} = 0.03 < \frac{r_{11}K_1}{\gamma} = 0.05.
\]

(61)

Then, by (i) in Theorem 2, both \(x_1 \) and \(x_2 \) are extinctive. Figure 1(a) confirms these. In Figure 1(b), we choose \(\alpha_1^2/2 = 0.65 \). That is to say \(\theta_1 = 0.2 > \frac{r_{11}K_1}{\gamma} = 0.05 \) and \(\Delta_2 = 0.02 < \Delta_2 = 0.035 \). It then follows from (ii) in

![Graph showing solutions of system (3) for different values of parameters.](image-url)
Theorem 2 that x_2 is extinctive and x_1 is stable in time average:

$$
\lim_{t \to +\infty} \langle x_1 (t) \rangle = \frac{\theta_1 - r_{11} K_1 / \gamma}{a_{11}} = 0.375.
$$

(62)

See Figure 1(b). In Figure 1(c), we choose $\alpha_i^2 / 2 = 0.2$. Then, $\Delta_2 = 0.155 > \Delta_2 = 0.035$. In view of (iii) in Theorem 2, we can obtain that both x_1 and x_2 are stable in time average:

$$
\lim_{t \to +\infty} \langle x_1 (t) \rangle = \frac{\Delta_1 - \Delta_1}{\Delta} = \frac{0.24}{0.24} = 1,
$$

$$
\lim_{t \to +\infty} \langle x_2 (t) \rangle = \frac{\Delta_2 - \Delta_2}{\Delta} = \frac{0.12}{0.24} = 0.5.
$$

(63)

Figure 1(c) confirms these.

In Figure 2, we choose $r_{10} = 0.85, r_{20} = 0.05, r_{11} = r_{21} = 1, a_{11} = 0.4, a_{12} = 0.4, a_{21} = 0.3, a_{22} = 0.3, r_1 = 3, r_2 = 8, \alpha_1^2 = 0.4, \alpha_2^2 = 0.1, k_i = g_i = m_i = 0.1, i = 1, 2, h = 0.5, b = 0.6$. The only difference between conditions of Figures 1(c) and 2 is that the value of γ is different. In Figure 2, we choose $\gamma = 0.8$. Then, $\theta_i = 0.65 < r_{11} K_1 / \gamma = 0.75$. It follows from (i) in Theorem 2 that both x_1 and x_2 are extinctive. Figure 2 confirms these. By comparing Figure 1(c) with Figure 2, one can see that the impulsive period γ plays a key role in determining the stability in time average and the extinction of the species.

4. Conclusions and Future Directions

This paper is concerned with stochastic delay predator-prey model in a polluted environment with impulsive toxicant input. For each species, the threshold between stability in time average and extinction is established. Some recent results are improved and extended. Our Theorem 2 reveals some interesting and important results.

(A) Firstly, time delay is harmless for stability in time average and extinction of the stochastic system (3).

(B) The white noise $\alpha_i dB_i(t)$ and $\alpha_i dB_i(t)$ can change the properties of the system greatly.

(C) The impulsive period γ plays an important role in determining the stability in time average and the extinction of the species.

Some interesting questions deserve further investigations. One may consider some more realistic but more complex systems, for example, stochastic delay model with Markov switching (see, e.g., [30, 32, 39]). It is also interesting to investigate what happens if a_{ij} is stochastic.

Acknowledgments

The author thanks the editor and reviewer for these valuable and important comments. This research is supported by NSFC of China (nos. 11301207, 1171081, 11301112 and 1171056), Natural Science Foundation of Jiangsu Province (No. BK20130411) and Natural Science Research Project of Ordinary Universities in Jiangsu Province (no. 13KJB110002).

References

Submit your manuscripts at http://www.hindawi.com