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Abstract. 
A collocation finite element method for solving fractional diffusion equation for force-free case is considered. In this paper, we develop an approximation method based on collocation finite elements by cubic B-spline functions to solve fractional diffusion equation for force-free case formulated with Riemann-Liouville operator. Some numerical examples of interest are provided to show the accuracy of the method. A comparison between exact analytical solution and a numerical one has been made.


1. Introduction
Scientific and engineering problems including fractional derivatives have become more important in recent years. Since the description of physical and chemical processes by means of equations including fractional derivatives is more accurate and precise, their numerical solutions have been the primary interest of many recently published articles. The applications are so wide that they include such diverse areas as control theory [1], transport problems [2], tumor development [3], subdiffusive anomalous transport in the presence of an external field [4–7], and viscoelastic and viscoplastic flow [8]. These diverse areas of applications have led to an increase in the number of studies on fractional differential equations and have caused it to be an important topic in mathematics and science. Yuste [9] has used weighted average finite difference methods for fractional diffusion equations and provided some examples in which the new methods' numerical solutions are obtained and compared against exact solutions. Langlands and Henry [10] have investigated the accuracy and stability of an implicit numerical scheme for solving the fractional diffusion equation. Murio [11] has developed an implicit unconditionally stable numerical method to solve the one-dimensional linear time fractional diffusion equation, formulated with Caputo's fractional derivative, on a finite slab. Yuste and Acedo [12] have combined the forward time centered space (FTCS) method, well known for the numerical integration of ordinary diffusion equations, with the Grünwald-Letnikov discretization of the Riemann-Liouville derivative to obtain an FTCS scheme for solving the fractional diffusion equation.




The general form of the fractional diffusion equation for force-free case is given by [4, 13, 14]
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					The exact analytical solution of (1) is found by the method of separation of variables [9] as
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 is the Mittag-Leffler function [15].
In our numerical solutions, to obtain a finite element scheme for solving the fractional diffusion equation for force-free case 
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, we will also discretize the Riemann-Liouville operator [9, 16] as
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2. Cubic B-Spline Finite Element Collocation Solutions
To solve (1) with the boundary conditions (3) and the initial condition (4) using collocation finite element method, first of all, we define cubic B-spline base functions. Let us consider that the interval 
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2.1. Initial State
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				𝐖
				𝐝
			

			

				0
			

			
				=
				𝐛
				,
			

		
	

							where 
								
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				⋱
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				,
				
				𝑈
				
				𝑥
				𝐖
				=
				6
				0
				1
				4
				1
				1
				4
				1
				1
				4
				1
				0
				6
				𝐛
				=
			

			

				0
			

			
				
				+
				ℎ
				,
				0
			

			

				2
			

			
				
			
			
				3
				
				𝑥
				,
				𝑈
			

			

				1
			

			
				
				
				𝑥
				,
				0
				,
				𝑈
			

			

				2
			

			
				
				
				𝑥
				,
				0
				,
				…
				,
				𝑈
			

			
				𝑁
				−
				2
			

			
				
				,
				𝑈
				
				𝑥
				,
				0
			

			
				𝑁
				−
				1
			

			
				
				,
				0
				,
				𝑈
				(
				𝑥
			

			

				𝑁
			

			
				ℎ
				,
				0
				)
				+
			

			

				2
			

			
				
			
			
				3
				
			

			

				𝑇
			

			

				.
			

		
	

Solving this system yields the values of element parameters at  
	
		
			
				𝑡
				=
				0
			

		
	
. Now, it is time to find out the values of element parameters at different time levels using the iterative system (15).
2.2. Stability Analysis
The study of the stability of the approximation obtained by the present scheme will be based on the von Neumann stability analysis. In this analysis, the growth factor of a typical Fourier mode is defined as
								
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			

				𝛿
			

			
				𝑛
				𝑚
			

			
				=
				𝜉
			

			

				𝑛
			

			

				𝑒
			

			
				𝑖
				𝑚
				𝜑
			

			

				,
			

		
	

							where 
	
		
			
				√
				𝑖
				=
			

			
				
			
			
				−
				1
			

		
	
. First of all, substituting the Fourier mode (21) into the recurrence relationship (15) results in the following equation:
								
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			

				𝜉
			

			
				𝑛
				+
				1
			

			
				
				(
				1
				−
				𝛼
				)
				𝑒
			

			
				−
				𝑖
				𝜑
			

			
				+
				(
				4
				+
				2
				𝛼
				)
				+
				(
				1
				−
				𝛼
				)
				𝑒
			

			
				𝑖
				𝜑
			

			
				
				=
				𝜉
			

			

				𝑛
			

			
				
				(
				1
				+
				𝛼
				)
				𝑒
			

			
				−
				𝑖
				𝜑
			

			
				+
				(
				4
				−
				2
				𝛼
				)
				+
				(
				1
				+
				𝛼
				)
				𝑒
			

			
				𝑖
				𝜑
			

			
				
				+
				𝛼
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝜔
			

			
				𝑘
				1
				−
				𝛾
			

			
				𝜉
				
				
			

			
				𝑛
				−
				𝑘
				+
				1
			

			
				+
				𝜉
			

			
				𝑛
				−
				𝑘
			

			
				𝑒
				
				
			

			
				−
				𝑖
				𝜑
			

			
				−
				2
				+
				𝑒
			

			
				𝑖
				𝜑
			

			
				.
				
				
			

		
	

							Secondly, if we write 
								
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			

				𝜉
			

			
				𝑛
				+
				1
			

			
				=
				𝜁
				𝜉
			

			

				𝑛
			

		
	

							and assume that 
								
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				𝜁
				≡
				𝜁
				(
				𝜑
				)
			

		
	

							is independent of time, then we get the following expression for the amplification factor 
	
		
			

				𝜁
			

		
	
 of the subdiffusion mode: 
								
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			
				𝜁
				
				(
				1
				−
				𝛼
				)
				𝑒
			

			
				−
				𝑖
				𝜑
			

			
				+
				(
				4
				+
				2
				𝛼
				)
				+
				(
				1
				−
				𝛼
				)
				𝑒
			

			
				𝑖
				𝜑
			

			
				
				=
				
				(
				1
				+
				𝛼
				)
				𝑒
			

			
				−
				𝑖
				𝜑
			

			
				+
				(
				4
				−
				2
				𝛼
				)
				+
				(
				1
				+
				𝛼
				)
				𝑒
			

			
				𝑖
				𝜑
			

			
				
				+
				𝛼
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝜔
			

			
				𝑘
				1
				−
				𝛾
			

			
				𝜁
				
				
			

			
				1
				−
				𝑘
			

			
				+
				𝜁
			

			
				−
				𝑘
			

			
				𝑒
				
				
			

			
				−
				𝑖
				𝜑
			

			
				−
				2
				+
				𝑒
			

			
				𝑖
				𝜑
			

			
				.
				
				
			

		
	

							If we want the given scheme to be stable in terms of Fourier stability analysis, then the condition 
	
		
			
				|
				𝜁
				|
				≤
				1
			

		
	
 must be satisfied. Considering the extreme value 
	
		
			
				𝜁
				=
				1
			

		
	
, from (22) and (25), we obtain the following inequality:
								
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			
				8
				𝛼
				s
				i
				n
			

			

				2
			

			
				
				𝜑
			

			
				
			
			
				2
				
				≥
				0
				.
			

		
	

							Since 
	
		
			
				𝛼
				>
				0
			

		
	
, we can say that the scheme is unconditionally stable. 
3. Numerical Examples and Results
Numerical results for the diffusion and diffusion-wave problems are obtained by collocation method using cubic B-spline base functions. The accuracy of the present method is measured by the error norm 
	
		
			

				𝐿
			

			

				2
			

		
	
 as
						
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			

				𝐿
			

			

				2
			

			
				=
				‖
				‖
				𝑈
			

			
				e
				x
				a
				c
				t
			

			
				−
				𝑈
			

			

				𝑁
			

			
				‖
				‖
			

			

				2
			

			
				=
				
				
				
				
				⎷
			

			
				
			
			

				ℎ
			

			

				𝑁
			

			

				
			

			
				𝑗
				=
				0
			

			
				|
				|
				|
				𝑈
			

			
				e
				x
				a
				c
				t
			

			

				𝑗
			

			
				−
				
				𝑈
			

			

				𝑁
			

			

				
			

			

				𝑗
			

			
				|
				|
				|
			

			

				2
			

		
	

					and the error norm 
	
		
			

				𝐿
			

			

				∞
			

		
	
 as
						
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			

				𝐿
			

			

				∞
			

			
				=
				‖
				‖
				𝑈
			

			
				e
				x
				a
				c
				t
			

			
				−
				𝑈
			

			

				𝑁
			

			
				‖
				‖
			

			

				∞
			

			
				=
				m
				a
				x
			

			

				𝑗
			

			
				|
				|
				|
				𝑈
			

			
				e
				x
				a
				c
				t
			

			

				𝑗
			

			
				−
				
				𝑈
			

			

				𝑁
			

			

				
			

			

				𝑗
			

			
				|
				|
				|
				.
			

		
	

Figures 1 and 2 show the graphs of the exact (denoted by lines) solutions and the numerical ones for 
	
		
			
				Δ
				𝑡
				=
				0
				.
				0
				0
				0
				1
			

		
	
 and 
	
		
			
				𝑁
				=
				4
				0
			

		
	
 at 
	
		
			
				𝑡
				=
				0
				.
				0
				0
				1
			

		
	
 (denoted by triangles), 
	
		
			
				𝑡
				=
				0
				.
				0
				1
			

		
	
 (denoted by squares), and 
	
		
			
				𝑡
				=
				0
				.
				1
			

		
	
 (denoted by stars) for two different values of 
	
		
			
				𝛾
				=
				0
				.
				5
				0
			

		
	
 and 
	
		
			
				𝛾
				=
				0
				.
				7
				5
			

		
	
, respectively. Table 1 shows the comparison of the exact solutions with the numerical ones with 
	
		
			
				𝛾
				=
				0
				.
				5
			

		
	
, 
	
		
			
				Δ
				𝑡
				=
				0
				.
				0
				0
				1
			

		
	
, and 
	
		
			

				𝑡
			

			

				𝑓
			

			
				=
				0
				.
				1
			

		
	
 for different values of 
	
		
			

				𝑁
			

		
	
. The calculated error norms 
	
		
			

				𝐿
			

			

				2
			

		
	
 and 
	
		
			

				𝐿
			

			

				∞
			

		
	
 at those time levels are also presented in the table. In Table 2, the comparison of the exact solutions with the numerical ones with 
	
		
			
				𝛾
				=
				0
				.
				5
			

		
	
, 
	
		
			
				𝑁
				=
				4
				0
			

		
	
 and 
	
		
			

				𝑡
			

			

				𝑓
			

			
				=
				0
				.
				1
			

		
	
 for different values of 
	
		
			
				Δ
				𝑡
			

		
	
 is illustrated and then the error norms 
	
		
			

				𝐿
			

			

				2
			

		
	
 and 
	
		
			

				𝐿
			

			

				∞
			

		
	
 are computed and presented in the table. In Table 3, we have listed the numerical and exact solutions of the problem for 
	
		
			
				𝛾
				=
				0
				.
				7
				5
			

		
	
, 
	
		
			
				Δ
				𝑡
				=
				0
				.
				0
				0
				1
			

		
	
, and 
	
		
			

				𝑡
			

			

				𝑓
			

			
				=
				0
				.
				1
			

		
	
 for different values of 
	
		
			

				𝑁
			

		
	
 and the error norms 
	
		
			

				𝐿
			

			

				2
			

		
	
 and 
	
		
			

				𝐿
			

			

				∞
			

		
	
. Table 4 illustrates the comparison of the exact solutions with the numerical solutions for 
	
		
			
				𝛾
				=
				0
				.
				7
				5
			

		
	
, 
	
		
			
				𝑁
				=
				4
				0
			

		
	
, and 
	
		
			

				𝑡
			

			

				𝑓
			

			
				=
				0
				.
				1
			

		
	
 for different values of 
	
		
			
				Δ
				𝑡
			

		
	
 and the error norms 
	
		
			

				𝐿
			

			

				2
			

		
	
 and 
	
		
			

				𝐿
			

			

				∞
			

		
	
. 
Table 1: The comparison of the exact solutions with the numerical solutions with 
	
		
			
				𝛾
				=
				0
				.
				5
			

		
	
, 
	
		
			
				Δ
				𝑡
				=
				0
				.
				0
				0
				1
			

		
	
, and 
	
		
			

				𝑡
			

			

				𝑓
			

			
				=
				0
				.
				1
			

		
	
 for different values of 
	
		
			

				𝑁
			

		
	
 and the error norms 
	
		
			

				𝐿
			

			

				2
			

		
	
 and 
	
		
			

				𝐿
			

			

				∞
			

		
	
.
	

	
	
		
			

				𝑥
			

		
	
	
	
		
			
				𝑁
				=
				1
				0
			

		
	
	
	
		
			
				𝑁
				=
				2
				0
			

		
	
	
	
		
			
				𝑁
				=
				4
				0
			

		
	
	
	
		
			
				𝑁
				=
				8
				0
			

		
	
	
	
		
			
				𝑁
				=
				1
				0
				0
			

		
	
	Exact
	

	0.0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
	0.1	0.013806	0.013886	0.013920	0.013925	0.013926	0.013765
	0.2	0.026128	0.026284	0.026325	0.026335	0.026336	0.026183
	0.3	0.035777	0.035982	0.036034	0.036046	0.036048	0.036037
	0.4	0.041903	0.042137	0.042195	0.042210	0.042212	0.042364
	0.5	0.044001	0.044245	0.044306	0.044321	0.044323	0.044544
	0.6	0.041903	0.042137	0.042195	0.042210	0.042212	0.042364
	0.7	0.035777	0.035982	0.036034	0.036046	0.036048	0.036037
	0.8	0.026128	0.026284	0.026325	0.026335	0.026336	0.026183
	0.9	0.013806	0.013886	0.013920	0.013925	0.013926	0.013765
	1.0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
	

	
	
		
			

				𝐿
			

			

				2
			

			
				×
				1
				0
			

			

				3
			

		
	
	0.294172	0.159576	0.142246	0.139756	0.139501	 
	
	
		
			

				𝐿
			

			

				∞
			

			
				×
				1
				0
			

			

				3
			

		
	
	0.543026	0.299690	0.238942	0.223758	0.221936	 
	



Table 2: The comparison of the exact solutions with the numerical solutions with 
	
		
			
				𝛾
				=
				0
				.
				5
			

		
	
, 
	
		
			
				𝑁
				=
				4
				0
			

		
	
, and 
	
		
			

				𝑡
			

			

				𝑓
			

			
				=
				0
				.
				1
			

		
	
 for different values of 
	
		
			
				Δ
				𝑡
			

		
	
 and the error norms 
	
		
			

				𝐿
			

			

				2
			

		
	
 and 
	
		
			

				𝐿
			

			

				∞
			

		
	
.
	

	
	
		
			

				𝑥
			

		
	
	
	
		
			
				Δ
				𝑡
				=
				0
				.
				0
				1
			

		
	
	
	
		
			
				Δ
				𝑡
				=
				0
				.
				0
				0
				1
			

		
	
	
	
		
			
				Δ
				𝑡
				=
				0
				.
				0
				0
				0
				1
			

		
	
	
	
		
			
				Δ
				𝑡
				=
				0
				.
				0
				0
				0
				0
				1
			

		
	
	Exact
	

	0.0	0.000000	0.000000	0.000000	0.000000	0.000000
	0.1	0.015039	0.013920	0.013929	0.013930	0.013765
	0.2	0.026111	0.026325	0.026347	0.026349	0.026183
	0.3	0.035392	0.036034	0.036063	0.036065	0.036037
	0.4	0.041638	0.042195	0.042229	0.042233	0.042364
	0.5	0.043830	0.044306	0.044341	0.044345	0.044544
	0.6	0.041638	0.042195	0.042229	0.042233	0.042364
	0.7	0.035392	0.036034	0.036063	0.036065	0.036037
	0.8	0.026111	0.026325	0.026347	0.026349	0.026183
	0.9	0.015039	0.013920	0.013929	0.013930	0.013765
	1.0	0.000000	0.000000	0.000000	0.000000	0.000000
	

	
	
		
			

				𝐿
			

			

				2
			

			
				×
				1
				0
			

			

				3
			

		
	
	0.836889	0.142246	0.136548	0.136264	 
	
	
		
			

				𝐿
			

			

				∞
			

			
				×
				1
				0
			

			

				3
			

		
	
	1.589369	0.238942	0.203235	0.199723	 
	



Table 3: The comparison of the exact solutions with the numerical solutions with 
	
		
			
				𝛾
				=
				0
				.
				7
				5
			

		
	
, 
	
		
			
				Δ
				𝑡
				=
				0
				.
				0
				0
				1
			

		
	
, and 
	
		
			

				𝑡
			

			

				𝑓
			

			
				=
				0
				.
				1
			

		
	
 for different values of 
	
		
			

				𝑁
			

		
	
 and the error norms 
	
		
			

				𝐿
			

			

				2
			

		
	
 and 
	
		
			

				𝐿
			

			

				∞
			

		
	
.
	

	
	
		
			

				𝑥
			

		
	
	
	
		
			
				𝑁
				=
				1
				0
			

		
	
	
	
		
			
				𝑁
				=
				2
				0
			

		
	
	
	
		
			
				𝑁
				=
				4
				0
			

		
	
	
	
		
			
				𝑁
				=
				8
				0
			

		
	
	
	
		
			
				𝑁
				=
				1
				0
				0
			

		
	
	Exact
	

	0.0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
	0.1	0.018544	0.018677	0.018710	0.018718	0.018719	0.018574
	0.2	0.035151	0.035393	0.035453	0.035468	0.035470	0.035331
	0.3	0.048210	0.048531	0.048611	0.048631	0.048633	0.048629
	0.4	0.056530	0.056900	0.056992	0.057015	0.057018	0.057166
	0.5	0.048210	0.059771	0.059868	0.059892	0.059895	0.060108
	0.6	0.056530	0.056900	0.056992	0.057015	0.057018	0.057166
	0.7	0.048210	0.048531	0.048611	0.048631	0.048633	0.048629
	0.8	0.035151	0.035393	0.035453	0.035468	0.035470	0.035331
	0.9	0.018544	0.018677	0.018710	0.018718	0.018719	0.018574
	1.0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
	

	
	
		
			

				𝐿
			

			

				2
			

			
				×
				1
				0
			

			

				3
			

		
	
	0.418167	0.174101	0.136253	0.130959	0.130466	 
	
	
		
			

				𝐿
			

			

				∞
			

			
				×
				1
				0
			

			

				3
			

		
	
	0.722901	0.336912	0.240523	0.216433	0.213542	 
	



Table 4: The comparison of the exact solutions with the numerical solutions with 
	
		
			
				𝛾
				=
				0
				.
				7
				5
			

		
	
, 
	
		
			
				𝑁
				=
				4
				0
			

		
	
, and 
	
		
			

				𝑡
			

			

				𝑓
			

			
				=
				0
				.
				1
			

		
	
 for different values of 
	
		
			
				Δ
				𝑡
			

		
	
 and the error norms 
	
		
			

				𝐿
			

			

				2
			

		
	
 and 
	
		
			

				𝐿
			

			

				∞
			

		
	
.
	

	
	
		
			

				𝑥
			

		
	
	
	
		
			
				Δ
				𝑡
				=
				0
				.
				0
				1
			

		
	
	
	
		
			
				Δ
				𝑡
				=
				0
				.
				0
				0
				1
			

		
	
	
	
		
			
				Δ
				𝑡
				=
				0
				.
				0
				0
				0
				1
			

		
	
	
	
		
			
				Δ
				𝑡
				=
				0
				.
				0
				0
				0
				0
				1
			

		
	
	Exact
	

	0.0	0.000000 	0.000000	0.000000	0.000000	0.000000
	0.1	0.018556 	0.018710	0.018722	0.018723	0.018574
	0.2	0.035089 	0.035453	0.035475	0.035477	0.035331
	0.3	0.048219 	0.048611	0.048642	0.048644	0.048629
	0.4	0.056522 	0.056992	0.057028	0.057031	0.057166
	0.5	0.059360 	0.059868	0.059905	0.059909	0.060108
	0.6	0.056522 	0.056992	0.057028	0.057031	0.057166
	0.7	0.048219 	0.048611	0.048642	0.048644	0.048629
	0.8	0.035089 	0.035453	0.035475	0.035477	0.035331
	0.9	0.018556 	0.018710	0.018722	0.018723	0.018574
	1.0	0.000000 	0.000000	0.000000	0.000000	0.000000
	

	
	
		
			

				𝐿
			

			

				2
			

			
				×
				1
				0
			

			

				3
			

		
	
	0.449135 	0.136253	0.128451	0.127966	 
	
	
		
			

				𝐿
			

			

				∞
			

			
				×
				1
				0
			

			

				3
			

		
	
	0.747758 	0.240523	0.203042	0.199418	 
	





	
		
	
		
	
		
	
		
	
		
	
		
	
	
		
	
	
	
	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
		
	
	
	
	
		
	
		
	
		


	
		
			
			
			
		
	
	
		
			
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
			
		
	
	
		
			
		
	
	
		
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
		
	
	
		
			
		
	
	
		
			
		
		
			
		
		
			
			
			
			
			
		
	
	
		
			
		
		
			
		
		
			
			
			
			
		
	
	
		
			
		
		
			
		
		
			
			
			
		
	
	
		
			
		
		
			
			
		
		
			
		
		
			
		
		
			
		
	

Figure 1: The comparison of the exact (lines) and numerical solutions for 
	
		
			
				𝛾
				=
				0
				.
				5
				0
			

		
	
, 
	
		
			
				Δ
				𝑡
				=
				0
				.
				0
				0
				0
				1
			

		
	
, and 
	
		
			
				𝑁
				=
				4
				0
			

		
	
 at 
	
		
			
				𝑡
				=
				0
				.
				0
				0
				1
			

		
	
 (triangles), 
	
		
			
				𝑡
				=
				0
				.
				0
				1
			

		
	
 (squares), and 
	
		
			
				𝑡
				=
				0
				.
				1
			

		
	
 (stars). 




	
		
	
		
	
		
	
		
	
	
		
	
	
	
	
	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
		
	
	
	
	
		
	
		
	
		


	
		
			
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
			
		
	
	
		
			
		
	
	
		
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
			
			
		
	
	
		
			
		
	
	
		
			
		
	
	
		
			
		
		
			
		
		
			
			
			
			
			
		
	
	
		
			
		
		
			
		
		
			
			
			
			
		
	
	
		
			
		
		
			
		
		
			
			
			
		
	
	
		
			
		
		
			
			
		
		
			
		
		
			
		
		
			
		
	
	
	
	
	
	
	
	
	
	
	
	
	

Figure 2: The comparison of the exact and numerical solutions for 
	
		
			
				𝛾
				=
				0
				.
				7
				5
			

		
	
, 
	
		
			
				Δ
				𝑡
				=
				0
				.
				0
				0
				0
				1
			

		
	
, and 
	
		
			
				𝑁
				=
				4
				0
			

		
	
 at at 
	
		
			
				𝑡
				=
				0
				.
				0
				0
				1
			

		
	
 (triangles), 
	
		
			
				𝑡
				=
				0
				.
				0
				1
			

		
	
 (squares), and 
	
		
			
				𝑡
				=
				0
				.
				1
			

		
	
 (stars). 


4. Conclusion
In the present study, first of all, a collocation finite element method has been constructed. Then, the method has been applied using cubic B-spline base functions. During the implementation of the method, Crank-Nicolson formula and first-order difference formula have been applied for discretization process. The stability of the method presented in the paper has been tested  using the von Neumann stability analysis in which the growth factor of a typical Fourier mode is used. The accuracy of the method is also measured by the error norms 
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. The successful application of the present method prompts the probability of extending it to other finite element methods and other kinds of fractional differential equations. The available results suggest that this is highly probable.
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