Research Article

Existence and Monotone Iteration of Positive Pseudosymmetric Solutions for a Third-Order Four-Point BVP with \(p \)-Laplacian

Dan Li, Libo Wang, and Minghe Pei

Department of Mathematics, Beihua University, Jilin 132013, China

Correspondence should be addressed to Minghe Pei; peiminghe@163.com

Received 25 February 2013; Revised 27 April 2013; Accepted 28 April 2013

Academic Editor: Guoyin Li

Copyright © 2013 Dan Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study the existence and monotone iteration of solutions for a third-order four-point boundary value problem with \(p \)-Laplacian. An existence result of positive, concave, and pseudosymmetric solutions and its monotone iterative scheme are established by using the monotone iterative technique. Meanwhile, as an application of our result, an example is given.

1. Introduction

The third-order equations arise in many areas of applied mathematics and physics [1] and thus have been discussed by many authors and many excellent results were obtained; see [1–31] and the references therein. Recently, wide attention has been paid to the third-order boundary value problems with the \(p \)-Laplace operator. In fact, the third-order equations involving the \(p \)-Laplace operator can be seen as a generalized model for various physical, natural or physiological phenomena such as the flow of a thin film of viscous fluid over a solid surface, the solitary wave solution of the Korteweg-de Vries equation or a thyroid-pituitary interaction [17].

In 2005, Cabada et al. [7] studied the one-dimensional nonlinear third-order \(\phi \)-Laplacian equation

\[
-(\phi(u''(t)))' = f(t, u(t)), \quad t \in [a, b]
\]

with the boundary conditions

\[
u(a) = A, \quad u''(a) = B, \quad u''(b) = C,
\]

where \(\phi : \mathbb{R} \to \mathbb{R} \) is an increasing homeomorphism with \(\phi(0) = 0 \). By applying the monotone iterative technique based on suitable antimaximum principles, they obtained the existence of extremal solutions for the problem.

In 2006, using the monotone iterative technique, Zhou and Ma [30] obtained the existence of positive solutions and established a corresponding iterative scheme for the following third-order \(p \)-Laplacian problem of the form:

\[
\left(\phi_p \left(u''(t) \right) \right)' = q(t) f(t, u(t)), \quad t \in [0, 1],
\]

\[
u(0) = \sum_{i=1}^{m} \alpha_i u(\xi_i), \quad u'(\eta) = 0,
\]

\[
u''(1) = \sum_{i=1}^{n} \beta_i u''(\theta_i).
\]

In 2007, Wang and Ge [26] considered third-order differential equation

\[
\left(\phi \left(u''(t) \right) \right)' + f(t, u(t), u'(t), u''(t)) = 0, \quad t \in (0, 1)
\]

subject to the following integral boundary conditions:

\[
u(0) = 0,
\]

\[
u'(0) - k_1 u''(0) = \int_{0}^{1} h_1(u(s)) \, ds,
\]

\[
u'(1) + k_2 u''(1) = \int_{0}^{1} h_2(u(s)) \, ds.
\]

The existence result to the problem is obtained by applying the method of upper and lower solutions and Leray-Schauder degree theory.
In 2009, Sun et al. [24] studied the existence of positive solutions for the following third-order \(p \)-Laplacian problem:

\[
\left(\phi_p \left(u'' (t) \right) \right)' = q(t) f \left(t, u(t), u'(t), u''(t) \right), \quad t \in [0, 1],
\]

\[
u(0) = \sum_{i=1}^{m} \alpha_i u(\xi_i), \quad u'(\eta) = 0, \quad u'' (1) = \sum_{i=1}^{n} \beta_i u'' (\theta_i).
\]

(6)

By applying a monotone iterative method, the authors obtained the existence of positive solutions for the problem and established iterative schemes for approximating the solutions.

In 2010, Jin and Lu [17] considered the following third-order \(p \)-Laplacian resonant problem of the form:

\[
\left(\phi_p \left(x'' (t) \right) \right)' = f \left(t, x(t), x'(t), x''(t) \right), \quad t \in (0, 1),
\]

\[
x(0) = 0, \quad x'(1) = \sum_{i=1}^{m-2} \alpha_i x'(\xi_i), \quad x'' (0) = 0.
\]

(7)

The authors obtained the existence of solutions for the problem by using Mawhin’s continuation theorem.

In 2010, by using the fixed point index method, Yang and Yan [31] established the existence of at least one or at least two positive solutions for the following third-order \(p \)-Laplacian problem:

\[
\left(\phi_p \left(u'' (t) \right) \right)' + q(t) f \left(t, u(t), u'(t) \right) = 0, \quad t \in (0, 1),
\]

\[
a u(0) - \beta u'(0) = 0, \quad \gamma u(1) + \delta u'(1) = 0,
\]

\[
u'' (0) = 0.
\]

(8)

Motivated by the above works and [32, 33], in this paper, we consider the existence and monotone iteration of positive, pseudosymmetric solutions of the following third-order four-point \(p \)-Laplacian boundary value problem:

\[
\left(\phi_p \left(u'' (t) \right) \right)' + q(t) f \left(t, u(t), u'(t) \right) = 0, \quad t \in (0, 1)
\]

subject to boundary conditions

\[
u(0) = 0, \quad u(1) = u(\eta), \quad u'' \left(\frac{1 + \eta}{2} \right) = 0,
\]

(9)

(10)

where \(\phi_p(s) = |s|^{p-2} \), \(p > 1 \), and \(\eta \in (0, 1) \) be constant. Here \(u''(t) \) is said to be a positive solution of BVP (9), (10) if and only if \(u''(t) \) is the solution of BVP (9), (10) and satisfies \(u''(t) > 0 \) for \(t \in (0, 1) \). BVP (9), (10) can model the static deflection of an elastic beam with linear supports at both endpoints.

To the best of our knowledge, the existence results of the pseudosymmetric solutions for the third-order boundary value problem has not been considered.

This work is organized as follows. In Section 2, some notations and preliminaries are introduced. The main results are discussed in Section 3. As applications of our results, an example is given in the last section.
Now, we define an operator $T : C^1[0, 1] \rightarrow C^1[0, 1]$ as follows: for $u \in C^1[0, 1],$

$$
\begin{align*}
(Tu)(t) &= \int_0^t \int_{(1+\eta)/2} \phi_p^{-1} \left(\int_s^{(1+\eta)/2} q(r) \right. \\
& \quad \times f \left(r, u(r), u'(r) \right) dr ds dr, \\
& \quad 0 \leq t \leq \frac{1 + \eta}{2}, \\
& \quad 0 \leq s \leq (1+\eta)/2, \\
& \quad \int_0^t \int_{(1+\eta)/2} \phi_p^{-1} \left(\int_s^{(1+\eta)/2} q(r) \right. \\
& \quad \times f \left(r, u(r), u'(r) \right) dr ds dr, \\
& \quad \int_{1+\eta-t}^t \phi_p^{-1} \left(\int_s^{(1+\eta)/2} q(r) \right. \\
& \quad \times f \left(r, u(r), u'(r) \right) dr ds dr, \\
& \quad 1 + \eta \leq t \leq 1.
\end{align*}
$$

(17)

(18)

Obviously under assumptions (H_6) and (H_7), the operator T is well defined and it is easy to verify that BVP (9), (10) has a solution if and only if $T : C^1[0, 1] \rightarrow C^1[0, 1]$ has a fixed point.

The next lemmas are some properties of the operator T.

Lemma 3. Assume that $(H_6), (H_7),$ and (H_2) hold. Then $TP \subset P$.

Proof. From the definition of T, it is easy to check that Tu is nonnegative on $[0, 1]$ and satisfies (10) for all $u \in P$. Furthermore, since

$$
(Tu)'(t) = q(r) f \left(r, u(r), u'(r) \right)
$$

it follows that Tu is concave on $[0, 1]$.

Next we prove that Tu is pseudosymmetric about η on $[0, 1]$. In fact, if $t \in [\eta, (1+\eta)/2]$, then $1 + \eta - t \in [(1+\eta)/2, 1]$, and it follows that

$$
(Tu)(1 + \eta - t) = \int_0^{(1+\eta)/2} \phi_p^{-1} \left(\int_s^{(1+\eta)/2} q(r) \right. \\
& \quad \times f \left(r, u(r), u'(r) \right) dr ds dr
$$

Hence $q(r)f(r, u(r), u'(r))$ is pseudo-antisymmetric about η on $[0, 1]$, and thus $\int_0^{(1+\eta)/2} q(r) f(r, u(r), u'(r)) dr$ is pseudosymmetric about η on $[0, 1]$. Furthermore $\phi_p^{-1} \left(\int_s^{(1+\eta)/2} q(r) f(r, u(r), u'(r)) dr \right)$ is pseudo-symmetric about η on $[0, 1]$. Thus the function $\int_0^{(1+\eta)/2} \phi_p^{-1} \left(\int_s^{(1+\eta)/2} q(r) f(r, u(r), u'(r)) dr \right)$ is pseudo-antisymmetric about η on $[0, 1]$, and hence

$$
\int_0^{\eta} \int_{(1+\eta)/2} \phi_p^{-1} \left(\int_s^{(1+\eta)/2} q(r) f(r, u(r), u'(r)) dr \right) ds dr
$$

Also since u is pseudosymmetric about η on $[0, 1]$, that is, $u(t) = u(1 + \eta - t)$ for $t \in [\eta, 1]$, then

$$
u'(t) = -u'(1 + \eta - t), \quad t \in [\eta, 1].
$$

(20)

Thus, for all $t \in [\eta, 1]$, from (H_2), we have

$$
q(r) f \left(r, u(r), u'(r) \right)
$$

Hence $q(r)f(r, u(r), u'(r))$ is pseudo-antisymmetric about η on $[0, 1]$, and thus $\int_0^{(1+\eta)/2} q(r) f(r, u(r), u'(r)) dr$ is pseudosymmetric about η on $[0, 1]$. Furthermore $\phi_p^{-1} \left(\int_s^{(1+\eta)/2} q(r) f(r, u(r), u'(r)) dr \right)$ is pseudo-symmetric about η on $[0, 1]$. Thus the function $\int_0^{(1+\eta)/2} \phi_p^{-1} \left(\int_s^{(1+\eta)/2} q(r) f(r, u(r), u'(r)) dr \right)$ is pseudo-antisymmetric about η on $[0, 1]$, and hence

$$
\int_0^{\eta} \int_{(1+\eta)/2} \phi_p^{-1} \left(\int_s^{(1+\eta)/2} q(r) f(r, u(r), u'(r)) dr \right) ds dr
$$

(22)
Using the similar technique, we can get
\[
\int_2^{1+\eta-\tau} \int_{(1+\eta)/2}^\tau \phi_p^{-1} \left(\int_{(1+\eta)/2}^r q(r) f(r, u(r), u'(r)) \, dr \right) \, ds \, dr
\]
\[
= 0.
\] (23)

From (19), (22), and (23), it follows that
\[
(Tu)(1 + \eta - t) = \int_0^\tau \int_{(1+\eta)/2}^r \phi_p^{-1} \left(\int_{(1+\eta)/2}^s q(r) f(r, u(r), u'(r)) \, dr \right) \, ds \, dr
\]
\[
+ \int_\tau^r \int_{(1+\eta)/2}^r \phi_p^{-1} \left(\int_{(1+\eta)/2}^{s'} q(r) f(r, u(r), u'(r)) \, dr \right) \, ds \, dr
\]
\[
= \int_0^r \int_{(1+\eta)/2}^r \phi_p^{-1} \left(\int_{(1+\eta)/2}^{s'} q(r) f(r, u(r), u'(r)) \, dr \right) \, ds \, dr
\]
\[
= (Tu)(t), \quad t \in \left[\eta, \frac{1+\eta}{2} \right].
\] (24)

If \(t \in [(1+\eta)/2, 1] \), then \(1 + \eta - t \in [\eta, (1+\eta)/2] \). From (24), it follows that
\[
(Tu) (1 + \eta - t) = (Tu) (1 + \eta - (1 + \eta - t))
\]
\[
= (Tu)(t), \quad t \in \left[\frac{1+\eta}{2}, 1 \right].
\] (25)

This together with (24) implies that
\[
(Tu)(t) = (Tu)(1 + \eta - t), \quad t \in [\eta, 1].
\] (26)

In summary, \(Tu \in P \), and then \(TP \subset P \).

The following lemma can be easily verified by a standard argument.

Lemma 4. Assume that \((H_0), (H_1), \text{ and } (H_2)\) hold. Then \(T : P \rightarrow P\) is completely continuous.

Lemma 5. Assume that \((H_0), (H_1), \text{ and } (H_2)\) hold. Suppose also that there exists \(a > 0 \) such that for \(0 \leq t \leq (1 + \eta)/2 \), \(0 \leq u_1 \leq u_2 \leq a \), \(0 \leq |v_1| \leq |v_2| \leq a \),
\[
f(t, u_1, v_1) \leq f(t, u_2, v_2).
\] (27)

Then for \(u_1, u_2 \in \mathbb{F}_a \) with
\[
u_1(t) \leq u_2(t), \quad |v_1(t)| \leq |u'_2(t)|, \quad t \in [0, 1],
\] (28)
we have
\[
(Tu_1)(t) \leq (Tu_2)(t), \quad \left| (Tu_1)'(t) \right| \leq \left| (Tu_2)'(t) \right|.
\] (29)

Proof. First we prove that, for all \(t \in [0, (1 + \eta)/2] \),
\[
(Tu_1)(t) \leq (Tu_2)(t), \quad \left| (Tu_1)'(t) \right| \leq \left| (Tu_2)'(t) \right|.
\] (30)

From assumptions, we have
\[
f(r, u_1(r), u'_1(r)) \leq f(r, u_2(r), u'_2(r)), \quad r \in \left[0, \frac{1+\eta}{2} \right],
\] (31)
and hence
\[
\int_s^{(1+\eta)/2} f(r, u_1(r), u'_1(r)) \, dr
\]
\[
\leq \int_s^{(1+\eta)/2} f(r, u_2(r), u'_2(r)) \, dr, \quad s \in \left[0, \frac{1+\eta}{2} \right].
\] (32)

Since \(\phi_p^{-1} \) is strictly increasing on \(\mathbb{R} \), then for all \(s \in [0, (1+\eta)/2] \), we have
\[
\phi_p^{-1} \left(\int_s^{(1+\eta)/2} f(r, u_1(r), u'_1(r)) \, dr \right)
\]
\[
\leq \phi_p^{-1} \left(\int_s^{(1+\eta)/2} f(r, u_2(r), u'_2(r)) \, dr \right).
\] (33)

Thus for \(t \in [0, (1 + \eta)/2] \),
\[
(Tu_1)(t) - (Tu_2)(t)
\]
\[
= \int_0^t \left[\phi_p^{-1} \left(\int_s^{(1+\eta)/2} q(r) f(r, u_1(r), u'_1(r)) \, dr \right) \right. \]
\[
- \left. \phi_p^{-1} \left(\int_s^{(1+\eta)/2} q(r) f(r, u_2(r), u'_2(r)) \, dr \right) \right] \, ds \, dr
\]
\[
\leq 0,
\]
\[
\left| (Tu_1)'(t) \right| - \left| (Tu_2)'(t) \right|
\]
\[
= \int_t^{(1+\eta)/2} \left[\phi_p^{-1} \left(\int_s^{(1+\eta)/2} q(r) f(r, u_1(r), u'_1(r)) \, dr \right) \right. \]
\[
- \left. \phi_p^{-1} \left(\int_s^{(1+\eta)/2} q(r) f(r, u_2(r), u'_2(r)) \, dr \right) \right] \, ds \, dr
\]
\[
\leq 0.
\] (34)

Therefore, (30) holds for \(t \in [0, (1 + \eta)/2] \).

Next we prove that (30) holds for \(t \in [(1 + \eta)/2, 1] \). In fact, if \(t \in [(1 + \eta)/2, 1] \), then \(1 + \eta - t \in [0, (1 + \eta)/2] \), and hence
from the fact that Tu_1 and Tu_2 are pseudosymmetric about η on $[0, 1]$, it follows that, for $t \in [(1 + \eta)/2, 1]$, $$(Tu_1)'(t) - (Tu_2)'(t) = (Tu_1)'(1 + \eta - t) - (Tu_2)'(1 + \eta - t) \leq 0.$$ (35)

In summary, $$(Tu_1)(t) < (Tu_2)(t), \quad |(Tu_1)'(t)| \leq |(Tu_2)'(t)|, \quad t \in [0, 1].$$ (36)

Now, we introduce some notations as follows:

$$A_1 = \int_0^{(1+\eta)/2} \phi_p^{-1} \left(\int_s^{(1+\eta)/2} q(r) dr \right) ds, \quad A_2 = \phi_p^{-1} \left(\int_0^{(1+\eta)/2} q(r) dr \right),$$

$$A = \max \left\{ \sqrt{2}A_1, \sqrt{2}A_2 \right\} = \sqrt{2}A_2.$$ (37)

Lemma 6. Assume that (H_0), (H_1), and (H_2) hold. Suppose also that there exists $a > 0$ such that for $0 \leq t < (1 + \eta)/2$, $0 \leq u_1 \leq u_2 \leq a$, $0 \leq |V_1| \leq |V_2| \leq a$,

$$f(t, u_1, V_1) \leq f(t, u_2, V_2), \quad \max_{0 \leq t \leq (1+\eta)/2} f(t, a, a) \leq \phi_p \left(\frac{a}{A} \right).$$ (38)

Then $T: \overline{P}_a \to \overline{P}_a$.

Proof. Define two functionals on E as follows:

$$\alpha(u) := \max_{0 \leq t \leq 1} |u(t)|, \quad \beta(u) := \max_{0 \leq t \leq 1} |u'(t)|.$$ (39)

Then

$$\|u\| \leq \sqrt{2} \max \left\{ \alpha(u), \beta(u) \right\}.$$ (40)

If $u \in \overline{P}_a$, then

$$0 \leq u(t) \leq \max_{0 \leq t \leq 1} |u(t)| \leq |u| \leq a, \quad t \in [0, 1],$$ (41)

$$0 \leq |u'(t)| \leq \max_{0 \leq t \leq 1} |u'(t)| \leq |u| \leq a, \quad t \in [0, 1].$$ (42)

From the assumptions, for all $t \in [0, (1 + \eta)/2]$,

$$0 \leq f(t, u(t), u'(t)) \leq f(t, a, a) \leq \max_{0 \leq t \leq (1+\eta)/2} f(t, a, a) \leq \phi_p \left(\frac{a}{A} \right).$$ (43)

Then,

$$\alpha(Tu) = \max_{0 \leq t \leq 1} |(Tu)(t)| = (Tu) \left(\frac{1 + \eta}{2} \right)$$

$$= \int_0^{(1+\eta)/2} \int_s^{(1+\eta)/2} \phi_p^{-1} \left(\int_s^{(1+\eta)/2} q(r) f(r, u(r), u'(r)) dr \right) ds$$

$$\leq \int_0^{(1+\eta)/2} \int_s^{(1+\eta)/2} \phi_p^{-1} \left(\int_s^{(1+\eta)/2} q(r) \phi_p \left(\frac{a}{A} \right) dr \right) ds$$

$$\leq A_1 \cdot \frac{a}{A} \leq \sqrt{2} \cdot \frac{a}{2}.$$ (44)

So we have

$$\|Tu\| \leq \sqrt{2} \max \{ \alpha(Tu), \beta(Tu) \} \leq \sqrt{2} \cdot \frac{\sqrt{2}}{2} \cdot a = a.$$ (45)

Thus $T: \overline{P}_a \to \overline{P}_a$.

3. Main Result

Now we establish existence result of positive, concave, and pseudosymmetric solutions and its monotone iterative scheme for BVP (9), (10).

Theorem 7. Assume that (H_0), (H_1), (H_2), and (H_3) hold. Suppose also that there exists $a > 0$ such that for $0 \leq t < (1 + \eta)/2$, $0 \leq u_1 \leq u_2 \leq a$, $0 \leq |V_1| \leq |V_2| \leq a$,

$$f(t, u_1, V_1) \leq f(t, u_2, V_2), \quad \max_{0 \leq t \leq (1+\eta)/2} f(t, a, a) \leq \phi_p \left(\frac{a}{A} \right).$$ (46)
Then BVP (9), (10) has two positive, concave, and pseudosymmetric solutions \(w^* \) and \(v^* \) with
\[
0 < w^*(t) \leq \frac{\sqrt{2}}{2}a, \quad t \in (0, 1],
\]
\[
\lim_{n \to \infty} w_n = \lim_{n \to \infty} T^n w_0 = w^* \quad \text{(in C^1 norm)}, \quad (46)
\]
\[
0 < v^*(t) \leq a, \quad t \in (0, 1],
\]
\[
\lim_{n \to \infty} v_n = \lim_{n \to \infty} T^n v_0 = v^* \quad \text{(in C^1 norm)},
\]
where
\[
w_0(t) = \begin{cases}
\frac{\sqrt{2}}{2}at, & 0 \leq t \leq \frac{1+\eta}{2}, \\
\frac{\sqrt{2}}{2}a(1+\eta-t), & \frac{1+\eta}{2} \leq t \leq 1;
\end{cases}
\]
\[
v_0(t) = 0, \quad 0 \leq t \leq 1, \quad (47)
\]
\[
(Tu)(t) = \begin{cases}
\int_0^t \int_r^{(1+\eta)/2} \phi_p^{-1} \left(\int_s^{(1+\eta)/2} q(r)
\times f(r, u(r), u'(r)) dr \right) ds dr, & 0 \leq t \leq \frac{1+\eta}{2}, \\
0, & \frac{1+\eta}{2} \leq t \leq 1,
\end{cases}
\]
\[
(48)
\]
\[
\text{Proof. Let}
\]
\[
w_0(t) = \begin{cases}
\frac{\sqrt{2}}{2}at, & 0 \leq t \leq \frac{1+\eta}{2}, \\
\frac{\sqrt{2}}{2}a(1+\eta-t), & \frac{1+\eta}{2} \leq t \leq 1;
\end{cases}
\]
\[
w_1(t) = \begin{cases}
\int_0^t \int_r^{(1+\eta)/2} \phi_p^{-1} \left(\int_s^{(1+\eta)/2} q(r)
\times f(r, u_0(r), u'_0(r)) dr \right) ds dr, & 0 \leq t \leq \frac{1+\eta}{2}, \\
0, & \frac{1+\eta}{2} \leq t \leq 1,
\end{cases}
\]
\[
(49)
\]
Then \(w_1(t) \in C^1[0, (1+\eta)/2] \cap C^1[(1+\eta)/2, 1]. \)

Next we prove that
\[
\lim_{t \to ((1+\eta)/2)^-} w_1(t) = \lim_{t \to ((1+\eta)/2)^+} w_1(t), \quad (49)
\]
\[
\lim_{t \to ((1+\eta)/2)^-} w'_1(t) = \lim_{t \to ((1+\eta)/2)^+} w'_1(t). \quad (50)
\]
In fact, from (H2) it follows that
\[
\lim_{t \to ((1+\eta)/2)^+} w_1(t) = \int_0^{(1+\eta)/2} \int_t^{(1+\eta)/2} \phi_p^{-1} \left(\int_s^{(1+\eta)/2} q(r) f \left(r, \frac{\sqrt{2}}{2}ar, \frac{\sqrt{2}}{2}a \right) dr \right) ds dr
\]
\[
\int_0^{(1+\eta)/2} \int_t^{(1+\eta)/2} \phi_p^{-1} \left(\int_s^{(1+\eta)/2} q(r) f \left(r, \frac{\sqrt{2}}{2}ar, \frac{\sqrt{2}}{2}a \right) dr \right) ds dr
\]
\[
\int_0^{(1+\eta)/2} \int_t^{(1+\eta)/2} \phi_p^{-1} \left(\int_s^{(1+\eta)/2} q(r) f \left(r, \frac{\sqrt{2}}{2}ar, \frac{\sqrt{2}}{2}a \right) dr \right) ds dr
\]
\[
\int_0^{(1+\eta)/2} \int_t^{(1+\eta)/2} \phi_p^{-1} \left(\int_s^{(1+\eta)/2} q(r) f \left(r, \frac{\sqrt{2}}{2}ar, \frac{\sqrt{2}}{2}a \right) dr \right) ds dr
\]
\[
\int_0^{(1+\eta)/2} \int_r^{(1+\eta)/2} \phi_p^{-1}
\times \left(\int_s^{(1+\eta)/2} q(r) f \left(r, \sqrt{\frac{\eta}{2}} ar, \sqrt{\frac{\eta}{2}} a \right) dr \right) ds dr
= \lim_{t \to \frac{(1+\eta)}{2}} w_1(t).
\]

(51)

Then (49) holds. Equation (50) can be obtained in a similar way. Thus from (49) and (50), it follows that

\[
w_1(t) \in C^1 [0, 1].
\]

(52)

We note that for \(t \in [0, (1 + \eta)/2] \),

\[
0 \leq w_1(t)
= \int_0^{t} \int_r^{(1+\eta)/2} \phi_p^{-1} \times \left(\int_s^{(1+\eta)/2} q(r) f \left(r, \sqrt{\frac{\eta}{2}} ar, \sqrt{\frac{\eta}{2}} a \right) dr \right) ds dr
\leq \int_0^{t} \int_r^{(1+\eta)/2} \phi_p^{-1} \left(\int_0^{(1+\eta)/2} q(r) \phi_p \left(\frac{a}{A} \right) dr \right) ds dr
\leq \frac{a}{A} \int_0^{t} \int_r^{(1+\eta)/2} q(r) ds dr
\leq \frac{a}{A} A_2 t = w_0(t),
\]

(53)

and for \(t \in [(1 + \eta)/2, 1] \),

\[
w_1(t)
= \int_{(1+\eta)/2}^{t} \int_r^{(1+\eta)/2} \phi_p^{-1} \times \left(\int_s^{(1+\eta)/2} q(r) f \left(r, \sqrt{\frac{\eta}{2}} ar, \sqrt{\frac{\eta}{2}} a \right) dr \right) ds dr
\]

\[
\leq \int_{(1+\eta)/2}^{t} \int_r^{(1+\eta)/2} \phi_p^{-1} \left(\int_0^{(1+\eta)/2} q(r) \phi_p \left(\frac{a}{A} \right) dr \right) ds dr
\leq \frac{a}{A} \int_{(1+\eta)/2}^{t} \int_r^{(1+\eta)/2} q(r) ds dr
\leq \frac{a}{A} \int_{(1+\eta)/2}^{t} \int_r^{(1+\eta)/2} q(r) \phi_p \left(\frac{a}{A} \right) dr ds
\leq \frac{a}{A} A_2 \leq \frac{\sqrt{\eta}}{2} a = \left| w'_0(t) \right|,
\]

(57)
and for $t \in [(1+\eta)/2, 1]$,
\[
\begin{align*}
|w'_1(t)|
&= \left| \int_{(1+\eta)/2}^{t} \frac{\phi_p^{-1}}{q(r)^{1/p}} \left(\int_{(1+\eta)/2}^{r} q(s)^{1/p} \phi_p \left(\frac{a}{A} \right) ds \right) dr \right| \\
&\leq \int_{(1+\eta)/2}^{t} \frac{\phi_p^{-1}}{q(r)^{1/p}} \left(\int_{1}^{1+\eta/2} q(r)^{1/p} \phi_p \left(\frac{a}{A} \right) dr \right) ds \\
&\leq \frac{a}{A} \int_{(1+\eta)/2}^{t} \phi_p^{-1} \left(\int_{0}^{1+\eta/2} q(r)^{1/p} \phi_p \left(\frac{a}{A} \right) dr \right) ds \\
&\leq \frac{a}{A} \sqrt{2} a \leq \frac{\sqrt{2}}{2} a = |w'_0(t)|.
\end{align*}
\] (58)

Hence from (57) and (58), we have
\[
\beta(w_1) := \max_{0 \leq t \leq 1} |w'_1(t)| \leq \frac{\sqrt{2}}{2} a. \quad (59)
\]

Consequently, from (56) and (59), it follows that
\[
\|w_1\| \leq \sqrt{2} \max \{\alpha(w_1), \beta(w_1)\} \leq a. \quad (60)
\]

From the proof of Lemma 3, we see that w_1 is nonnegative, concave, and pseudosymmetric about η on $[0, 1]$, and hence
\[
w_1 \in \overline{P}_a. \quad (61)
\]

Define $\{w_n\}$ as follows:
\[
w_{n+1} = T w_n = T^a w_1 = T^{n+1} w_0, \quad n = 0, 1, \ldots.
\] (62)

Then $\{w_n\}$ is well defined and for $n = 1, 2, \ldots$
\[
w_{n+1}(t) \leq w_n(t), \quad |w'_{n+1}(t)| \leq |w'_n(t)|, \quad t \in [0, 1]. \quad (63)
\]

In fact, for $t \in [0, (1+\eta)/2]$,
\[
w_2(t) = Tw_1(t) = \int_{0}^{t} \left(\int_{s}^{t} \frac{\phi_p^{-1}}{q(r)^{1/p}} \phi_p \left(\frac{a}{A} \right) dr \right) ds
\]
\[
\times f \left(r, w_1(r), w'_1(r) \right) dr \quad (64)
\]

Consequently, from (56) and (59), it follows that
\[
\|w_1\| \leq \sqrt{2} \max \{\alpha(w_1), \beta(w_1)\} \leq a. \quad (60)
\]

From the proof of Lemma 3, we see that w_1 is nonnegative, concave, and pseudosymmetric about η on $[0, 1]$, and hence
\[
w_1 \in \overline{P}_a. \quad (61)
\]

Define $\{w_n\}$ as follows:
\[
w_{n+1} = T w_n = T^a w_1 = T^{n+1} w_0, \quad n = 0, 1, \ldots.
\] (62)

Then $\{w_n\}$ is well defined and for $n = 1, 2, \ldots$
\[
w_{n+1}(t) \leq w_n(t), \quad |w'_{n+1}(t)| \leq |w'_n(t)|, \quad t \in [0, 1]. \quad (63)
\]

For $t \in [(1+\eta)/2, 1]$, since $w_1, w_2 \in \overline{P}_a$, it follows from (64) and (65) that
\[
w_2(t) = w_2(1+\eta-t) \leq w_1(1+\eta-t) = w_1(t), \quad (66)
\]
\[
|w'_2(t)| = |w'_2(1+\eta-t)| \leq |w'_1(1+\eta-t)| = |w'_1(t)|. \quad (67)
\]

So from (64)–(67), we have
\[
w_2(t) \leq w_1(t), \quad |w'_2(t)| \leq |w'_1(t)|, \quad t \in [0, 1], \quad (68)
\]

that is, (63) holds when $n = 1$. Assume that (63) holds when $n = k$, that is,
\[
w_{k+1}(t) \leq w_k(t), \quad |w'_{k+1}(t)| \leq |w'_k(t)|, \quad t \in [0, 1]. \quad (69)
\]
Then from Lemma 5, we obtain
\[w_{k+2}(t) = (T w_{k+1})(t) \leq (T w_k)(t) \]
\[= w_{k+1}(t), \quad t \in [0, 1], \] \hspace{1cm} (70)
\[|w'_{k+2}(t)| = |(T w_{k+1})'(t)| \leq |(T w_k)'(t)| \]
\[= |w'_{k+1}(t)|, \quad t \in [0, 1]. \]

So by induction (63) holds.

Since \(T : \mathbb{P}_a \to \mathbb{P}_a \) is completely continuous, it follows that \(\{w_n \}_{n=1}^{\infty} \) is relative compact. Then \(\{w_n\} \) has a convergent subsequence \(\{w_{n_k}\} \) and \(w^* \in \mathbb{P}_a \) such that
\[w_{n_k} \to w^* \quad (k \to \infty), \] \hspace{1cm} (71)
that is,
\[w_{n_k}(t) \to w^*(t) \quad (k \to \infty), \]
\[w'_{n_k}(t) \to w'^*(t) \quad (k \to \infty) \quad \text{on} \ [0, 1]. \] \hspace{1cm} (72)

While from (63) and the fact for each \(n = 1, 2, \ldots, w''_n((1 + \eta)/2) > 0 \) and \(w_n''(t) \leq 0 \) on \([0, 1] \), it follows that
\[w_1(t) \geq w_2(t) \geq \cdots \geq w_n(t) \geq w_{n+1}(t) \geq \cdots, \]
\[n = 1, 2, \ldots, \quad \text{on} \ [0, 1], \]
\[w'_1(t) \geq w'_2(t) \geq \cdots \geq w'_n(t) \geq w'_{n+1}(t) \geq \cdots, \]
\[n = 1, 2, \ldots, \quad \text{on} \left[\frac{1 + \eta}{2}, 1 \right]. \] \hspace{1cm} (73)
\[w'_1(t) \leq w'_2(t) \leq \cdots \leq w'_n(t) \leq w'_{n+1}(t) \leq \cdots, \]
\[n = 1, 2, \ldots, \quad \text{on} \left[\frac{1 + \eta}{2}, 1 \right]. \]

Hence,
\[w_n(t) \to w^*(t) \quad (n \to \infty), \]
\[w'_n(t) \to w'^*(t) \quad (n \to \infty) \quad \text{on} \ [0, 1], \] \hspace{1cm} (74)
that is,
\[w_n \to w^* \quad (n \to \infty). \] \hspace{1cm} (75)

This together with the continuity of \(T \) and \(w_{n+1} = Tw_n \), implies that
\[Tw^* = w^*. \] \hspace{1cm} (76)

Also, since
\[0 \leq w_n(t) \leq w_0(t) \]
\[= \begin{cases} \frac{\sqrt{2}}{2} at, & 0 \leq t \leq \frac{1 + \eta}{2}, \\ \frac{\sqrt{2}}{2} a (1 + \eta - t), & \frac{1 + \eta}{2} \leq t \leq 1, \end{cases} \] \hspace{1cm} (77)
we have
\[0 \leq w^*(t) \leq \frac{\sqrt{2}}{2} a, \quad 0 \leq |w'^*(t)| \leq \frac{\sqrt{2}}{2} a, \quad t \in [0, 1]. \] \hspace{1cm} (78)

Furthermore, we have
\[w^*(t) > 0, \quad t \in (0, 1). \] \hspace{1cm} (79)

In fact, from (H2) and \(w^*(t) \neq 0 \) on \([0, 1] \), we have \(w^* ((1 + \eta)/2) > 0 \). Since \(w^*(t) \) is concave on \([0, 1] \), then
\[w^*(t) \geq \frac{w^* ((1 + \eta)/2)}{((1 + \eta)/2) - 0} t - \frac{2}{1 + \eta} \]
\[= \frac{2}{1 + \eta} \left(1 + \frac{\eta}{2} \right) t, \quad t \in \left(0, \frac{1 + \eta}{2} \right). \] \hspace{1cm} (80)

Consequently from the fact \(w^* \) is pseudosymmetric on \([0, 1] \), we have
\[w^*(t) > 0, \quad t \in (0, 1). \] \hspace{1cm} (81)

Let \(v_0(t) \equiv 0 \) on \([0, 1] \), then \(v_0 \in \mathbb{P}_a \). Set \(v_{n+1} = Tw_n, n = 0, 1, 2, \ldots \) Then from Lemma 6, it follows that
\[v_n \in \mathbb{P}_a, \quad n = 1, 2, \ldots. \] \hspace{1cm} (82)

From Lemma 4, we see that \(\{v_n\}_{n=1}^{\infty} \) is relative compact, and hence there exists a convergent subsequence \(\{v_{n_k}\} \subset \{v_n\} \) and \(v^* \in \mathbb{P}_a \) such that
\[v_{n_k} \to v^* \quad (k \to \infty), \] \hspace{1cm} (83)
that is,
\[v_{n_k}(t) \to v^*(t) \quad (k \to \infty) \quad \text{on} \ [0, 1], \]
\[v'_{n_k}(t) \to v'^*(t) \quad (k \to \infty) \quad \text{on} \ [0, 1]. \] \hspace{1cm} (84)

Since \(v_1 = Tw_0 = T0 \in \mathbb{P}_a \), then
\[v_1(t) = Tv_0(t) = (T0)(t) \geq 0, \quad t \in [0, 1], \]
\[v'_1(t) = |(Tv_0)'(t)| = |(T0)'(t)| \geq 0, \quad t \in [0, 1]. \] \hspace{1cm} (86)

Thus from Lemma 5,
\[v_2(t) = Tv_1(t) \geq Tv_0(t) = v_1(t), \quad t \in [0, 1], \]
\[v'_2(t) = |(Tv_1)'(t)| \geq |(Tv_0)'(t)| = v'_1(t), \quad t \in [0, 1]. \] \hspace{1cm} (87)

By induction, it is easy to see that for \(n = 1, 2, \ldots \),
\[v_{n+1}(t) \geq v_n(t), \quad t \in [0, 1], \]
\[v'_{n+1}(t) \geq v'_n(t), \quad t \in [0, 1]. \] \hspace{1cm} (88)

\text{Abstract and Applied Analysis}
From (84)–(89), we see that
\[v_n(t) \equiv v^*(t) \quad (n \to \infty), \]
\[v'_n(t) \equiv v'^*(t) \quad (n \to \infty) \quad \text{on} \ [0,1]. \]
\[(90) \]

Therefore, \(v_n \to v^* (n \to \infty) \), \(v^* \in \overline{P}_a \). By the continuity of \(T \) and \(v_{n+1} = TV_n \), we have
\[T v^* = v^*. \]
\[(91) \]

Again from (H3), we have \(v^*(t) > 0 \) for \((0,1)\).

Since every fixed point of \(T \) in \(P \) is the solution of BVP (9), (10), then \(w^* \) and \(v^* \) are two positive, concave and pseudosymmetric solutions of BVP (9), (10). This completes the proof of the theorem.

\[\Box \]

4. An Example

Consider the following third-order four-point boundary value problem:
\[u'''(t) + f \left(t, u(t), u'(t) \right) = 0, \quad t \in (0,1), \]
\[u(0) = 0, \quad u(1) = u \left(\frac{1}{2} \right), \quad u'' \left(\frac{3}{4} \right) = 0, \]
\[(92) \]

where
\[f \left(t, u, v \right) = \frac{\sqrt{2}}{84} \left(\frac{3}{4} - t \right) \left(u^2 + 16 \sqrt{2} \right), \]
\[\left(t, u, v \right) \in \left[0,1 \right] \times \left[0, \infty \right) \times \mathbb{R}. \]
\[(93) \]

It is easy to see that BVP (92) corresponds to BVP (9), (10) when \(p = 2 \), \(q(t) \equiv 1 \), and \(\eta = 1/2 \). Take \(a = 6 \sqrt{2} \), and then \(A = 3 \sqrt{2}/4 \).

Next we verify that all conditions of Theorem 7 are satisfied. In fact, obviously the conditions \((H_0), (H_1), (H_2), \) and \((H_3)\) hold. In addition, for \(0 \leq t \leq 3/4 \), \(0 \leq u_1 \leq u_2 \leq 6 \sqrt{2} \), \(0 \leq \left| v_1 \right| \leq \left| v_2 \right| \leq 6 \sqrt{2} \),
\[f \left(t, u_1, v_1 \right) \leq f \left(t, u_2, v_2 \right), \]
\[\max_{0 \leq t \leq 3/4} f \left(t, a, a \right) = f \left(0, 6 \sqrt{2}, 6 \sqrt{2} \right) = 8 \phi_2 \left(\frac{a}{A} \right). \]
\[(94) \]

Hence, from Theorem 7, BVP (92) has two positive, concave, and pseudosymmetric solutions \(w^* \) and \(v^* \) such that
\[0 < w^*(t) \leq 6, \quad 0 < \left| w'^*(t) \right| \leq 6, \quad t \in [0,1], \]
\[\lim_{n \to \infty} w_n = \lim_{n \to \infty} T^n w_0 = w^*, \]
\[\lim_{n \to \infty} w'_n = \lim_{n \to \infty} \left(T^n w_0 \right)' = w'^*, \]
\[(95) \]

where
\[w_0(t) = \begin{cases}
6t, & 0 \leq t \leq \frac{3}{4}, \\
-6t, & \frac{3}{4} < t \leq 1,
\end{cases} \]
\[(96) \]

and three terms of \(\{w_n(t)\} \), respectively, are as follows:
\[w_n(t) = \begin{cases}
6t, & 0 \leq t \leq \frac{3}{4}, \\
-6t, & \frac{3}{4} < t \leq 1;
\end{cases} \]
\[(97) \]

The first two terms of \(\{w_n(t)\} \) and three terms of \(\{v_n(t)\} \), respectively, are as follows:
\[v_n(t) = \begin{cases}
6t, & 0 \leq t \leq \frac{3}{4}, \\
-6t, & \frac{3}{4} < t \leq 1;
\end{cases} \]
\[(98) \]
Abstract and Applied Analysis

Abstract and Applied Analysis 11

\[w_1(t) = \begin{cases}
\frac{3\sqrt{2}}{70}t^5 + \left(\frac{9\sqrt{2}}{112} - \frac{1}{63}\right)t^4 + \frac{1}{21}t^3 \\
\left(\frac{81\sqrt{2}}{896} + \frac{3}{56}\right)t^2 \\
+ \frac{243\sqrt{2}}{3584} + \frac{3}{112} \\
- \left(\frac{405\sqrt{2}}{896} + \frac{3}{56}\right)t^2 + \left(\frac{729\sqrt{2}}{3584} + \frac{3}{112}\right)t \\
- \frac{729\sqrt{2}}{3584}, \\
\end{cases} \quad 0 \leq t \leq \frac{3}{4},
\]

\[v_0(t) = 0, \quad t \in [0, 1],
\]

\[v_1(t) = -\frac{1}{63}t^4 + \frac{1}{21}t^3 - \frac{3}{56}t^2 + \frac{3}{112}t, \quad t \in [0, 1],
\]

\[v_2(t) = \frac{\sqrt{2}}{2867038902}t^{14} - \sqrt{2} \frac{273051324}{18670176}t^{13}
\]

\[+ \frac{\sqrt{2}}{56010528}t^{12} - \frac{\sqrt{2}}{398297088}t^{11}
\]

\[+ \frac{47\sqrt{2}}{426746880}t^{10} - \frac{65\sqrt{2}}{413048832}t^9
\]

\[+ \frac{\sqrt{2}}{5619712}t^8 - \frac{\sqrt{2}}{157351936}t^7
\]

\[+ \frac{13\sqrt{2}}{157351936}t^6 - \frac{51\sqrt{2}}{1573519360}t^5
\]

\[+ \left(\frac{9\sqrt{2}}{1258815488} - \frac{1}{63}\right)t^4 + \frac{1}{21}t^3
\]

\[- \left(\frac{81\sqrt{2}}{161128382464} + \frac{3}{56}\right)t^2 \\
+ \left(\frac{81\sqrt{2}}{598476849152} + \frac{3}{112}\right)t, \quad t \in [0, 1].
\]

(100)

Acknowledgment

This work was supported by the NSFC (11126339 and 11201008).

References

Submit your manuscripts at http://www.hindawi.com