1. Introduction and Main Results

In this paper, a meromorphic function will mean meromorphic in the whole complex plane. We will use the standard notations of Nevanlinna’s value distribution theory such as $T(r, f)$, $N(r, f)$, $N_1(r, f)$, and $m(r, f)$, as explained in Hayman [1], Yang [2], and Yang and Yi [3]. We denote by $S(r, f)$ any quantity satisfying $S(r, f) = o(T(r, f))$, as $r \to \infty$ possibly outside a set of finite linear measures. For f meromorphic in \mathbb{C}, denote by $S(f)$ the family of all meromorphic functions $a(z)$ that satisfy $T(r, a) = o(T(r, f))$ for $r \to \infty$ outside a possible exceptional set of finite linear measure. In addition, we denote by $\rho(f)$ and $\rho_1(f)$ the order of f and the hyper-order of f [3, 4]. Moreover, we define difference operators by $\Delta_c f = f(z + c) - f(z)$ where c is a nonzero constant. If $c = 1$, we use the usual difference notation $\Delta f = \Delta_1 f$.

Let f and g be two nonconstant meromorphic functions and a be a finite complex number. We say that f, g share the value a CM (counting multiplicities) if f, g have the same a-points with the same multiplicities, and we say that f, g share the value a IM (ignoring multiplicities) if we do not consider the multiplicities. We denote by $N_{12}(r, 1/(f - a))$ the counting function for a-points of both f and g about which f has larger multiplicity than g, with multiplicity not being counted. Similarly, we have the notation $N_{11}(r, 1/(g - a))$. Next, we denote by $N_{0}(r, 1/F')$ the counting function of those zeros of F' that are not the zeros of $F(F - 1)$ and denote by $N_{11}(r, 1/(f - a))$ the counting function for common simple 1-point of both f and g. In addition, we need the following three definitions.

Definition 1. Let k be a positive integer. Let f and g be two nonconstant meromorphic functions such that f' and g' share the value 1 IM. Let z_0 be a 1-point of f with multiplicity p and a 1-point of g with multiplicity q. We denote by $N_{f\geq k}(r, 1/(g - 1))$ the reduced counting function of those 1-points of f and g such that $p > q = k$. $N_{g\leq k}(r, 1/(f - 1))$ is defined analogously.

Definition 2 (see [5]). Let k be a nonnegative integer or infinity. For $a \in \mathbb{C} \cup \{\infty\}$, we denote by $E_k(a, f)$ the set of all a-points of f, where an a-point of multiplicity m is counted m times if $m \leq k$ and $m + 1$ times if $m > k$. If $E_k(a, f) = E_k(a, g)$, we say that f, g share the value a with weight k.

The definition implies that if f, g share a value a with weight k, then z_0 is an a-point of f with multiplicity $m(\leq k)$ if and only if it is an a-point of g with multiplicity $m(\leq k)$ and z_0 is an a-point of f with multiplicity $m(> k)$ if and only if it is an a-point of g with multiplicity $m(> k)$, where m is not necessarily equal to n.

We write that f, g share (a, k) to mean that f, g share the value a with weight k. Clearly if f, g share (a, k), then f, g share (a, p) for any integer p, $0 \leq p < k$. Also we note that f, g share a value a IM or CM if and only if f, g share $(a, 0)$ or (a, ∞), respectively.

Definition 3. Let f be a nonconstant meromorphic function, and let p be a positive integer and $a \in \mathbb{C} \cup \{\infty\}$. Then, by
Abstract and Applied Analysis

Let \(f \) and \(g \) be transcendental entire functions of finite order, let \(t \) be a nonzero complex constant, and set \(F(z) = f(z)^n \Delta_c f \); then

\[
nt'(r, f) + S(r, f) \leq nT(r, F) \leq (n + 1)T(r, f) + S(r, f).
\]

Proof. Since

\[
T(r, F) = T'(r, f(z)^n \Delta_c f) \leq nT'(r, f) + T'(r, \Delta_c f) \\
\leq nT'(r, f) + m(r, \Delta_c f) \leq nT'(r, f) + m(r, f) + S(r, f) \\
= (n + 1)T(r, f) + S(r, f),
\]

then

\[
(n + 1)T(r, f) = T'(r, f(z)^{n+1}) = m(r, f(z)^{n+1}) \\
\leq m(r, \frac{f(z)^{n+1}}{F}) + m(r, F) + S(r, f) \\
\leq m(r, \frac{f(z)}{\Delta_c f}) + m(r, F) + S(r, f) \\
\leq T'(r, \frac{f(z)}{\Delta_c f}) + T'(r, F) + S(r, f) \\
\leq T'(r, \frac{\Delta_c f}{f(z)}) + T'(r, F) + S(r, f) \\
= m(r, \frac{\Delta_c f}{f(z)}) + N(r, \frac{\Delta_c f}{f(z)}) \\
+ T(r, F) + S(r, f) \\
\leq T(r, F) + N\left(r, \frac{1}{f(z)} \right) + S(r, f) \\
\leq T(r, F) + T(r, f) + S(r, f).
\]

Lemma 8 (see [9]). Let \(f \) be a meromorphic function of finite order, and let \(c \in \mathbb{C} \) and \(\delta \in (0, 1) \). Then

\[
m\left(r, \frac{f(z+c)}{f(z)} \right) + m\left(r, \frac{f(z)}{f(z+c)} \right) = o\left(\frac{T(r, f)}{r^\delta} \right) = S(r, f).
\]

Lemma 9 (see [10]). Let \(f_1, f_2, \) and \(f_3 \) be nonconstant meromorphic functions such that \(f_1 + f_2 + f_3 = 1 \). If \(f_1, f_2, \) and \(f_3 \) are linearly independent, then

\[
T(r, f_1) \leq \sum_{j=1}^{3} N_2\left(r, \frac{1}{f_j} \right) + \sum_{j=1}^{3} N\left(r, f_j \right) + o(T(r)),
\]

where \(T(r) = \max_{1 \leq j \leq 3} T(r, f_j), r \notin E, \) and \(E \) denote a set of positive real numbers of finite linear measure.

Lemma 10. Let \(f \) be transcendental entire functions of finite order, let \(c \) be a nonzero complex constant, and set \(F(z) = f(z)^n \Delta_c f; \) then

\[
nT(r, f) + S(r, f) \leq T(r, F) \leq (n + 1)T(r, f) + S(r, f).
\]

2. Some Lemmas

Lemma 7 (see [8]). Let \(f \) be a nonconstant meromorphic function of finite order \(\sigma \), and let \(c \) be a nonzero constant. Then, for each \(\varepsilon > 0 \),

\[
T(r, f(z+c)) = T(r, f(z)) + O(r^{\sigma-1+\varepsilon}) + O(\log r).
\]
That is,
\[nT(r, f) + S(r, f) \leq T(r, F) \leq (n + 1)T(r, f) + S(r, f). \]
(7)

Lemma 11 (see [11]). Let \(f_1 \) and \(f_2 \) be two nonconstant meromorphic functions. If \(c_1 f_1 + c_2 f_2 = c_3 \), where \(c_1, c_2, \) and \(c_3 \) are nonzero constants, then
\[T(r, f_1) \leq N(\gamma, f) + N\left(r, \frac{1}{f_1} \right) + S(r, f_1). \]
(8)

Lemma 12 (see [12]). Let \(f(z) \) be a nonconstant meromorphic function, and let \(k \) be a positive integer. Suppose that \(f^{(k)} \neq 0 \); then
\[N\left(r, \frac{1}{f^{(k)}} \right) \leq N\left(r, \frac{1}{f} \right) + kN(r, f) + S(r, f). \]
(9)

Lemma 13 (see [13]). Let \(f, g \) share \((1, 0)\). Then
(i) \(N_{f^{(1)}}(r, \frac{1}{(g-1)}) \leq N_{f^{(1)}}(r, \frac{1}{f}) + N_{f^{(1)}}(r, f) - N_{f^{(1)}}(r, \frac{1}{f'}), \)
(ii) \(N_{g^{(1)}}(r, \frac{1}{(f-1)}) \leq N_{g^{(1)}}(r, g) + N_{g^{(1)}}(r, g) - N_{g^{(1)}}(r, \frac{1}{g'}). \)

Lemma 14. Let \(f(z) \) and \(g(z) \) be two nonconstant entire functions. If \(f \) and \(g \) share 1IM, then one of the following cases holds:
(i) \(T(r, g) \leq N_2(r, 1/g) + N_2(r, 1/f) + N(r, 1/f) + 2N(r, 1/g) + S(r, f) + S(r, g), \)
(ii) \(f \equiv (Ag + B)/(Cg + D), \) where \(A, B, C, \) and \(D \) are finite complex numbers satisfying \(AD \neq BC. \)

Proof. Let
\[\Phi(z) = \frac{f''}{f'} - \frac{2f' f''}{f - 1} - \frac{g'g''}{g - 1} + 2 \frac{g'}{g - 1}. \]
(10)
Clearly \(m(r, \Phi) = S(r, f) + S(r, g). \) We consider the cases \(\Phi(z) \neq 0 \) and \(\Phi(z) \equiv 0. \)

If \(\Phi(z) \neq 0, \) then if \(z_0 \) is a common simple l-point of \(f' \) and \(g', \) substituting their Taylor series at \(z_0 \) into (10), we see that \(z_0 \) is a zero of \(\Phi(z). \) Thus, we have
\[N_{11}(r, \frac{1}{f - 1}) = N_{11}(r, \frac{1}{g - 1}) \leq N\left(r, \frac{1}{f'} \right) \leq T(r, \Phi) + O(1) \leq N(r, \Phi) + S(r, f) + S(r, g). \]
(11)

Our assumptions are that \(\Phi(z) \) has poles; all are simple only at zeros of \(f' \) and \(g' \) and poles of \(f \) and \(g, \) and l-points of \(f \) whose multiplicities are not equal to the multiplicities of the corresponding l-points of \(g. \) Thus, we deduce from (10) that
\[N(r, \Phi) \leq N_{12}(r, \frac{1}{f'}) + N_{12}(r, \frac{1}{g'}) + N_0\left(r, \frac{1}{f'} \right) + N_0\left(r, \frac{1}{g'} \right) + N_{12}(r, \frac{1}{g - 1}) + N_{12}(r, \frac{1}{f - 1}). \]
(12)

where \(N_0(r, 1/f') \) is the counting function which only counts those points such that \(f' = 0, \) but \(f(f - 1) \neq 0. \) By the second fundamental theorem, we have
\[T(r, g) \leq N\left(r, \frac{1}{g - 1} \right) \leq N_{g^{(1)}}(r, \frac{1}{g' - 1}) + N_{g^{(1)}}(r, \frac{1}{g - 1}) \]
(13)

Thus, we deduce from (11)–(14) that
\[T(r, g) \leq N\left(r, \frac{1}{g - 1} \right) + N\left(r, \frac{1}{g' - 1} \right) \leq N_{g^{(1)}}(r, \frac{1}{g' - 1}) + N_{g^{(1)}}(r, \frac{1}{g - 1}) \]
(14)

Since
\[N\left(r, \frac{1}{g - 1} \right) = N_{11}(r, \frac{1}{g - 1}) + N_{12}(r, \frac{1}{g' - 1}) + N_{12}(r, \frac{1}{g - 1}) \]
(15)

From the definition of \(N_0(r, 1/f'), \) we see that
\[N_0\left(r, \frac{1}{f'} \right) + N_{12}(r, \frac{1}{g' - 1}) + N_{12}(r, \frac{1}{g - 1}) \]
(16)

The above inequality and Lemma 12 give
\[N_0\left(r, \frac{1}{f'} \right) + N_{12}(r, \frac{1}{g' - 1}) \leq N\left(r, \frac{1}{f'} \right) \leq N\left(r, \frac{1}{g' - 1} \right) \]
(17)
Substituting (17) in (15), we get

\[T(r, g) \leq N\left(r, \frac{1}{g} \right) + N_2\left(r, \frac{1}{f} \right) + N_2\left(r, \frac{1}{g} \right) + N\left(r, \frac{1}{f-1} \right) + N\left(r, \frac{1}{g-1} \right) + N_g\left(r, \frac{1}{f-1} \right) + S\left(r, f \right) + S\left(r, g \right) \leq N\left(r, \frac{1}{g} \right) + N_2\left(r, \frac{1}{f} \right) + N\left(r, \frac{1}{f} \right) + N\left(r, \frac{1}{g} \right) + N\left(r, \frac{1}{f-1} \right) + N\left(r, \frac{1}{g-1} \right) + N_g\left(r, \frac{1}{f-1} \right) + S\left(r, f \right) + S\left(r, g \right), \]

(18)

since

\[N_L\left(r, \frac{1}{f-1} \right) \leq N\left(r, \frac{1}{f-1} \right) = N\left(r, \frac{1}{f} \right) - N\left(r, \frac{1}{f} \right) \leq N\left(r, \frac{1}{f} \right) \leq N\left(r, \frac{1}{f} \right) + S\left(r, f \right) \]

(19)

\[\leq N\left(r, \frac{1}{f} \right) + S\left(r, f \right). \]

Similarly,

\[N_L\left(r, \frac{1}{g-1} \right) \leq N\left(r, \frac{1}{g-1} \right) \leq N\left(r, \frac{1}{g} \right) + S\left(r, g \right). \]

(20)

Combining the above inequalities, Lemma 13, and (18), we obtain

\[T(r, g) \leq N_2\left(r, \frac{1}{g} \right) + N_2\left(r, \frac{1}{f} \right) + N\left(r, \frac{1}{f} \right) + 2N\left(r, \frac{1}{g} \right) - N_0\left(r, \frac{1}{g} \right) + S\left(r, f \right) + S\left(r, g \right) \leq N_2\left(r, \frac{1}{g} \right) + N_2\left(r, \frac{1}{f} \right) + N\left(r, \frac{1}{f} \right) + 2N\left(r, \frac{1}{g} \right) + S\left(r, f \right) + S\left(r, g \right). \]

(21)

Thus, we obtain (i).

If \(\Phi(z) \equiv 0 \), then by (10), we have

\[\frac{f''}{f'} - \frac{2f'}{f-1} \equiv \frac{g''}{g'} - \frac{2g'}{g-1}. \]

(22)

By integrating two sides of the above equality, we obtain

\[f \equiv \frac{Ag + B}{Cg + D}, \]

(23)

where \(A, B, C, \) and \(D \) are finite complex numbers satisfying \(AD \neq BC \). This proves the lemma.

\[\square \]

\[\text{Lemma 15 (see [14]). Let } f(z) \text{ be a nonconstant meromorphic function, } s, k \text{ be two positive integers; then} \]

\[N_{rk}\left(r, \frac{1}{f(k)} \right) \leq T(r, f) + S\left(r, f \right) \]

(24)

\[+ N_{sk}\left(r, \frac{1}{f(k) f} \right) + S\left(r, f \right). \]

Clearly, \(N(r, 1/f(k)) = N_1(r, 1/f^{(k)}) \).

\[\text{Lemma 16 (see [15]). Let } a_0(z), a_1(z), \ldots, a_n(z), b(z) \text{ be polynomials such that } a_0(z)a_n(z) \neq 0; \text{ let } c_i \text{ be constants and} \]

\[\deg \left(\sum_{\deg a_i \neq 0} a_i \right) = d, \]

(25)

where \(d = \max_{0 \leq j \leq n} \{ \deg a_j \} \). If \(f(z) \) is a transcendental meromorphic solution of

\[\sum_{j=0}^{n} a_j \left(z + c_j \right) = b(z), \]

(26)

then \(\rho(f) \geq 1 \).

3. Proof of Theorems

3.1. Proof of Theorem 4. Let \(G(z) = f(z)^n(f(z + c) - 1)\Delta_z f \).

Since \(f \) is a transcendental entire function of finite order, from Lemma 7, we have

\[(n+2)T(r, f(z)) \leq T(r, f(z) + S(r, f)) \leq nT(r, f(z) - 1) + S(r, f) \leq mT(r, f(z) + S(r, f)) \leq mT(r, f(z) + S(r, f)) \leq T(r, f) + S(r, f). \]

(27)

By the second main theorem, we deduce that

\[T(r, G) \leq N(r, G) + N\left(r, \frac{1}{G} \right) + N\left(r, \frac{1}{G - a} \right) + S(r, G) \]

\[\leq N\left(r, \frac{1}{G - a} \right) + N\left(r, \frac{1}{f} \right) + N\left(r, \frac{1}{f(z + c)} \right) + S(r, f) \]

\[+ N\left(r, \frac{1}{G} \right) + S(r, f). \]

(28)

Abstract and Applied Analysis
\[
\leq N\left(r, \frac{1}{G-a}\right) + N\left(r, \frac{1}{f}\right) + T\left(r, f(z+c) - 1\right) \\
+ T\left(r, \Delta_c f\right) + S\left(r, f\right) \\
\leq N\left(r, \frac{1}{G-a}\right) + N\left(r, \frac{1}{f}\right) + T\left(r, f(z+c) - 1\right) \\
+ m\left(r, \frac{\Delta_c f}{f}\right) + S\left(r, f\right) \\
\leq N\left(r, \frac{1}{G-a}\right) + N\left(r, \frac{1}{f}\right) + 3T\left(r, f\right) + S\left(r, f\right).
\]

(28)

According to (27) and (28), we have

\[
(n-1)T\left(r, f\right) \leq N\left(r, \frac{1}{G-a}\right) + S\left(r, f\right).
\]

(29)

Noting that \(n \geq 2 \), we get that \(G-a \) has infinitely many zeros. This completes the proof of Theorem 4.

3.2. Proof of Theorem 5. Since \([f(z)^n\Delta_c f]^{(k)} \) and \([g(z)^n\Delta_c g]^{(k)} \) share 1 CM, we have

\[
\frac{[f(z)^n\Delta_c f]^{(k)} - 1}{[g(z)^n\Delta_c g]^{(k)} - 1} = e^{h(z)},
\]

where \(h(z) \) is a polynomial. Set \(F = f(z)^n\Delta_c f, G = g(z)^n\Delta_c g, \)

\[
F_1 = F^{(k)}, \quad F_2 = -e^{h(z)}G^{(k)}, \quad F_3 = e^{h(z)},
\]

then \(F_1 + F_2 + F_3 = 1 \).

\[
T\left(r\right) = \max_{1 \leq j \leq 3} T\left(r, F_j\right), \quad S\left(r\right) = o\left(T\left(r\right)\right).
\]

(31)

Next, we will prove that \(F_1, F_2, \) and \(F_3 \) are linearly independent and either \(F_2 \) or \(F_3 \) is a constant.

Now, we suppose that neither \(F_2 \) nor \(F_3 \) is a constant and \(F_1, F_2, \) and \(F_3 \) are linearly independent; then by Lemma 9, we have

\[
T\left(r, F_i\right) \leq \sum_{j=1}^{3} N_2\left(r, \frac{1}{F_j}\right) + \sum_{j=1}^{3} N\left(r, F_j\right) + o\left(T\left(r\right)\right).
\]

(32)

Since \(F_j \) (\(j = 1, 2, 3 \)) are entire functions, by the above inequality, we get

\[
T\left(r, F_i\right) \leq N_2\left(r, \frac{1}{F^{(k)}}\right) + N_2\left(r, \frac{1}{G^{(k)}}\right) + o\left(T\left(r\right)\right).
\]

(33)

From (33) and the first main theorem, we have

\[
T\left(r, \frac{1}{F^{(k)}}\right) = T\left(r, F^{(k)}\right) + O\left(1\right) = T\left(r, F_i\right) + O\left(1\right) \\
\leq N_2\left(r, \frac{1}{F^{(k)}}\right) + N_2\left(r, \frac{1}{G^{(k)}}\right) + o\left(T\left(r\right)\right) \\
\leq N\left(r, \frac{1}{F^{(k)}}\right) \\
- \left[N_3\left(r, \frac{1}{F^{(k)}}\right) - 2N_3\left(r, \frac{1}{G^{(k)}}\right)\right] \\
+ N\left(r, \frac{1}{G^{(k)}}\right) \\
- \left[N_3\left(r, \frac{1}{G^{(k)}}\right) - 2N_3\left(r, \frac{1}{F^{(k)}}\right)\right] \\
+ o\left(T\left(r\right)\right).
\]

(34)

Assuming that \(z_0 \) is zero of \(f(z) \) (or \(g(z) \)) with multiplicity \(p \), if \(z_0 \) is zero of \(f(z+c) \) (or \(g(z+c) \)) with multiplicity \(q(\geq 1) \), let \(m = \min\{p, q\} \), then \(z_0 \) is a zero of \(F^{(k)} \) (or \(G^{(k)} \)) with multiplicity \(np + m - k \geq np - k \geq 3 \), and if \(z_0 \) is not zero of \(f(z+c) \) (or \(g(z + c) \)), then \(z_0 \) is a zero of \(F^{(k)} \) (or \(G^{(k)} \)) with multiplicity \(np - k \geq 3 \). Therefore, we get that

\[
N_3\left(r, \frac{1}{F^{(k)}}\right) - 2N_3\left(r, \frac{1}{G^{(k)}}\right) \geq \left(n-k-2\right)N\left(r, \frac{1}{f}\right),
\]

(35)

\[
N_3\left(r, \frac{1}{G^{(k)}}\right) - 2N_3\left(r, \frac{1}{F^{(k)}}\right) \geq \left(n-k-2\right)N\left(r, \frac{1}{g}\right),
\]

(36)

since

\[
m\left(r, \frac{1}{f}\right) = m\left(r, \frac{1}{F^{(k)}}\right) = m\left(r, \frac{\Delta_c f}{F}\right) \\
\leq m\left(r, \frac{1}{F}\right) + m\left(r, \frac{\Delta_c f}{F}\right) \cdot f \\
\leq m\left(r, \frac{F^{(k)}}{F}\right) \cdot \frac{1}{F^{(k)}} \quad + m\left(r, \Delta_c f \frac{1}{F}\right) \\
+ m\left(r, f\right) + S\left(r, f\right) \\
\leq m\left(r, \frac{1}{F^{(k)}}\right) + T\left(r, f\right) + S\left(r, f\right) \\
+ T\left(r, \frac{1}{F^{(k)}}\right) - N\left(r, \frac{1}{F^{(k)}}\right) + T\left(r, f\right) + S\left(r, f\right).
\]

(37)

Therefore, from (34), (35), (36), (37), and Lemma 12,

\[
(n-1)T\left(r, f\right) \leq (k+2)N\left(r, \frac{1}{f}\right) + (k+2)N\left(r, \frac{1}{g}\right) \\
+ T\left(r, g\right) + o\left(T\left(r\right)\right).
\]

(38)
On the other hand, from (30), we have $A^{(k)} + e^{-h} - e^{-h}F^{(k)} = 1$. Obviously, according to our assumptions, neither e^{-h} nor $e^{-h}F^{(k)}$ is a constant and F_1, F_2, and F_3 are linearly independent. Similarly, we have

$$(n-1)T(r,g) \leq (k+2)N\left(r, \frac{1}{g}\right) + (k+2)N\left(r, \frac{1}{f}\right) + T(r,f) + o(T(r)).$$

From (38) and (39), we obtain that

$$[n-2k-6](T(r,f)+T(r,g)) \leq o(T(r)),$$

which is a contradiction to $n \geq 2k + 7$.

Therefore, F_1, F_2, and F_3 are linearly dependent, and there exist constants C_1, C_2, C_3 which are not all equal to zero such that

$$C_1 F_1 + C_2 F_2 + C_3 F_3 = 0.$$

Suppose that $C_1 = 0$; we have $C_2 F_2 + C_3 F_3 = 0$. If $C_2 \neq 0$, we get $F_2 = -(C_3/C_2) F_3$; that is, $G^{(k)} = C_3/C_2$; thus $g(z)$ is a polynomial; it is impossible. Similarly, if $C_3 = 0$, we also deduce a contradiction.

Suppose that $C_1 \neq 0$, from (41); we know that $(C_2, C_3) \neq (0, 0)$. If $C_2 \neq 0$, from (41), we have

$$\left(1 - \frac{C_2}{C_1}\right) F_2 + \left(1 - \frac{C_3}{C_1}\right) F_3 = 1$$

and $C_1 \neq C_2, C_1 \neq C_3$. That is,

$$(1 - C_2/C_1) G^{(k)} + 1/\epsilon = 1 - C_3/C_1.$$

From Lemma II, we have

$$T(r, G^{(k)}) \leq N\left(r, \frac{1}{G^{(k)}}\right) + N\left(r, G^{(k)}\right) + N\left(r, e^h\right) + S(r, g)$$

$$= N\left(r, \frac{1}{G^{(k)}}\right) + S(r, g) \leq N\left(r, \frac{1}{G^{(k)}}\right)$$

$$- \left[N_2\left(r, \frac{1}{G^{(k)}}\right) - N_2\left(r, \frac{1}{G^{(k)}}\right)\right] + S(r, g).$$

By the similar argument in (37), we have

$$\left(n-1\right)T\left(r, \frac{1}{g}\right) \leq \left(n-1\right)N\left(r, \frac{1}{G^{(k)}}\right) + T\left(r, \frac{1}{g}\right) + S(r, g).$$

From $n \geq 2k+7 > k+2$, if z_0 is zero of $g(z)$ with multiplicity p, then z_0 is a zero of $G^{(k)}$ with multiplicity $np-k \geq 2$, and we get

$$N_2\left(r, \frac{1}{G^{(k)}}\right) - N_2\left(r, \frac{1}{G^{(k)}}\right) \geq (n-k-1)N\left(r, \frac{1}{g}\right).$$

According to (44), (45), and (46), we have

$$(n-1)T(r,g) \leq (k+1)N\left(r, \frac{1}{g}\right) + S(r,g),$$

which is a contradiction to $n \geq 2k + 7$.

Therefore, $C_2 = 0, C_3 \neq 0$, which gives $(1-C_1/C_3)F_1 + F_2 = 1$. Similarly, we derive a contradiction by calculation.

Hence, we deduce that either F_2 or F_3 is a constant.

Suppose $F_2 = c \neq 1$; from $F_1 + F_2 + F_3 = 1$, we have $F^{(k)} + e^h = 1 - c$; in the same manner as above, we get a contradiction. Therefore, $c = 1$; that is, $F_2 = 0$. Suppose $F_3 = c \neq 1$; similarly as above, we get $c = 1$; that is, $F_3 = 1$.

Therefore, we conclude that $F_2 = 0$ or $F_3 = 1$.

If $F_2 = 1$, since $F_1 + F_2 + F_3 = 1$, we have $F_1 = -F_3 = -e^{h(z)}$.

That is

$$\left[f^n \Delta \epsilon \cdot g^m \Delta \epsilon \right]^{(k)} = 1.$$
Method as above, we also deduce a contradiction. Therefore, there are not transcendental entire functions $f(z)$ and $g(z)$ satisfying (48).

If $F_3 = 1$, that is, $e^{h(z)} = 1$, from (30), we get

$$[f^n \Delta_c f]^{(k)} \equiv [g^n \Delta_c g]^{(k)}.$$ \hfill (54)

From (54), we have

$$f^n \Delta_c f \equiv g^n \Delta_c g + p(z),$$ \hfill (55)

where $p(z)$ is a polynomial of degree at most $k - 1$. Suppose $p(z) \not\equiv 0$; then we get

$$\frac{f^n \Delta_c f}{p(z)} = \frac{g^n \Delta_c g}{p(z)} + 1.$$ \hfill (56)

Therefore, from the second main theorem, we have

$$(n + 1) T(r, f) \leq T\left(\frac{f^n \Delta_c f}{p(z)}\right) + S(r, f)$$

$$\leq N\left(\frac{f^n \Delta_c f}{p(z)}\right) + N\left(\frac{p(z)}{f^n \Delta_c f}\right) + N\left(\frac{1}{\Delta_c f}\right) + N\left(\frac{1}{g}\right) + S(r, f)$$

$$\leq 2T(r, f) + 2T(r, g) + S(r, f).$$ \hfill (57)

Similarly, we have

$$(n + 1) T(r, g) \leq 2T(r, f) + 2T(r, g) + S(r, f).$$ \hfill (58)

Therefore,

$$(n + 1) [T(r, f) + T(r, g)] \leq 4 [T(r, f) + T(r, g)] + S(r, f) + S(r, g),$$ \hfill (59)

which is a contradiction to $n \geq 2k + 7$. Thus, $p(z) \equiv 0$, which implies that

$$f^n \Delta_c f \equiv g^n \Delta_c g.$$ \hfill (60)

Let $f/g = h$; if h is not a constant, then by (60), we have

$$h^{n+1} = \frac{f}{\Delta_c f} \cdot \frac{\Delta_c g}{g}.$$ \hfill (61)

Thus,

$$(n + 1) T(r, h) \leq T\left(r, \frac{\Delta_c f}{f}\right) + T\left(r, \frac{\Delta_c g}{g}\right) + O(1)$$

$$\leq N\left(r, \frac{\Delta_c f}{f}\right) + N\left(r, \frac{\Delta_c g}{g}\right) + S(r, f) + S(r, g)$$

$$\leq T(r, f) + T(r, g) + S(r, f) + S(r, g).$$ \hfill (62)

Combining $T(r, h) = T(r, f/g) = T(r, f) + T(r, g) + O(1)$, we obtain $n(T(r, f) + T(r, g)) \leq S(r, f) + S(r, g)$, which is impossible.

Therefore, h is a constant; then substituting $f = gh$ into (60), we have $h^{n+1} \equiv 1$. Hence $f(z) = tg(z)$, where t is a constant and $f^{n+1} \equiv 1$.

The proof of Theorem 5 is complete.

3.3. Proof of Theorem 6. Let

$$F(z) = [f(z)^n \Delta_c f]^{(k)}, \quad G(z) = [g(z)^n \Delta_c g]^{(k)},$$

$$F_1(z) = f(z)^n \Delta_c f, \quad G_1(z) = g(z)^n \Delta_c g.$$ \hfill (63)

Then $F(z)$ and $G(z)$ share 1 IM, and $F_1^{(k)} = F, G_1^{(k)} = G$. By Lemma 10, we have

$$nT(r, f) + S(r, f) \leq T(r, F_1) \leq (n + 1) T(r, f) + S(r, f),$$ \hfill (64)

$$nT(r, g) + S(r, g) \leq T(r, G_1) \leq (n + 1) T(r, g) + S(r, g).$$ \hfill (65)

Since f is transcendental entire, by the definition of F, we have

$$N_2\left(r, \frac{1}{F}\right) = N\left(r, \frac{1}{F}\right) + N\left(r, \frac{1}{F}\right)$$

$$= N\left(r, \frac{1}{F}\right) - \left[N\left(r, \frac{1}{F}\right) - 2N\left(r, \frac{1}{F}\right)\right].$$ \hfill (66)

Using the argument in (35), we have

$$N_{13}\left(r, \frac{1}{F}\right) - 2N_{13}\left(r, \frac{1}{F}\right) \geq (n - k - 2) N\left(r, \frac{1}{F}\right).$$ \hfill (67)

It follows from Lemma 12 and (66), (67), we have

$$N_2\left(r, \frac{1}{F}\right) \leq N\left(r, \frac{1}{F}\right) - (n - k - 2) N\left(r, \frac{1}{F}\right)$$

$$\leq N\left(r, \frac{1}{f^n \Delta_c f}\right) - (n - k - 2) N\left(r, \frac{1}{f}\right)$$

$$+ S(r, f) \leq n N\left(r, \frac{1}{f}\right) + N\left(r, \frac{1}{\Delta_c f}\right)$$

$$- (n - k - 2) N\left(r, \frac{1}{f}\right) + S(r, f)$$

$$\leq (k + 3) T(r, f) + S(r, f).$$ \hfill (68)

From Lemma 15, we have

$$N\left(r, \frac{1}{F}\right) \leq N_{k+1}\left(r, \frac{1}{f^n \Delta_c f}\right) + S(r, f)$$

$$\leq (k + 1) N\left(r, \frac{1}{f}\right) + N\left(r, \frac{1}{\Delta_c f}\right) + S(r, f)$$

$$\leq (k + 2) T(r, f) + S(r, f).$$ \hfill (69)
Similarly,
\[
N_2 \left(r, \frac{1}{G} \right) \leq (k + 3) T(r, g) + S(r, g),
\]

\[
N \left(r, \frac{1}{G} \right) \leq (k + 2) T(r, g) + S(r, f).
\]

By Lemma 14, one of the following cases holds:

(i) \(T(r, G) \leq N_2(r, 1/G) + N_2(r, 1/F) + N(r, 1/F) + 2N(r, 1/G) + S(r, F) + S(r, G), \) the same inequality holding for \(T(r, F) \);

(ii) \(F \equiv \frac{AG + B}{CG + D} \).

For case (i), we have
\[
T(r, G) \leq N_2 \left(r, \frac{1}{F} \right) + N_2 \left(r, \frac{1}{G} \right) + 2N \left(r, \frac{1}{G} \right) + S(r, F) + S(r, G),
\]

\[
= N \left(r, \frac{1}{G} \right) + N \left(r, \frac{1}{F} \right) + S(r, F) + S(r, G).
\]

Therefore, we get
\[
T(r, F) + T(r, G) \leq 2 \left[N_2 \left(r, \frac{1}{F} \right) + N_2 \left(r, \frac{1}{G} \right) \right] + 3 \left[N \left(r, \frac{1}{G} \right) + N \left(r, \frac{1}{F} \right) \right] + S(r, F) + S(r, G).
\]

By (64) and Lemma 15, we have
\[
n T(r, f) \leq T(r, F_1) + S(r, f) \leq T(r, F) - N_2 \left(r, \frac{1}{F} \right) + N_{k+2} \left(r, \frac{1}{F} \right) + S(r, f)
\]

\[
\leq T(r, F) - N_2 \left(r, \frac{1}{F} \right) + (k + 2) N \left(r, \frac{1}{F} \right)
\]

\[
+ N \left(r, \frac{1}{\Delta \omega f} \right) + S(r, f)
\]

\[
\leq T(r, F) - N_2 \left(r, \frac{1}{F} \right) + (k + 3) T(r, f) + S(r, f).
\]

Similarly,
\[
n T(r, g) \leq T(r, G) - N_2 \left(r, \frac{1}{G} \right) + (k + 3) T(r, g) + S(r, g).
\]

By (70), (72), (73), and (74), we obtain
\[
(n - 5k - 12) \left[T(r, f) + T(r, g) \right] \leq S(r, f) + S(r, g),
\]

which is a contradiction since \(n \geq 5k + 13 \).

For case (ii), we have
\[
F \equiv \frac{AG + B}{CG + D},
\]

where \(A, B, C, \) and \(D \) are finite complex numbers satisfying \(AD \neq BC \). Therefore, by the first fundamental theorem, \(T(r, F) = T(r, G) + S(r, F) \).

Next, we consider three cases.

Case I. \(AC \neq 0; \) from (76), we get
\[
F - \frac{A}{C} = \frac{B - AD}{CG + D}.
\]

By the second fundamental theorem and (69), we have
\[
T(r, F) \leq N \left(r, \frac{1}{F - A/C} \right) + N \left(r, \frac{1}{F} \right) + S(r, F)
\]

\[
= N \left(r, g \right) + (k + 2) T(r, f) + S(r, F)
\]

\[
\leq (k + 2) T(r, f) + S(r, F).
\]

From (73), we obtain \((n - 2k - 5)T(r, f) \leq S(r, f), \) contradicting to \(n \geq 5k + 13 \).

Case 2. \(A \neq 0, \) and \(C = 0 \). Then, \(F \equiv AG + B/D \).

If \(B \neq 0 \), by the second fundamental theorem and (69), (70), we have
\[
T(r, F) \leq N \left(r, \frac{1}{F - B/D} \right) + N \left(r, \frac{1}{F} \right) + S(r, F)
\]

\[
= N \left(r, G \right) + (k + 2) T(r, f) + S(r, F)
\]

\[
\leq (k + 2) T(r, f) + S(r, F).
\]

Similarly,
\[
T(r, G) \leq (k + 2) T(r, f) + (k + 2) T(r, g) + S(r, G).
\]

From (73), (74), (79), and (80), we get
\[
(n - 3k - 7) \left[T(r, f) + T(r, g) \right] \leq S(r, f) + S(r, g),
\]

which is a contradiction to \(n \geq 5k + 13 \).

If \(B = 0 \), then \(F \equiv AG/D\). If \(A/D = 1 \), then \(F \equiv G \); that is, \(\left[f^n \Delta \omega f \right]^{[k]} = \left[g^n \Delta \omega g \right]^{[k]} \); using the argument in (54) and noting that \(n \geq 5k + 13 \), we obtain \(f(z) = tg(z) \), where \(t \) is a constant and \(t^{n+1} = 1 \). If \(A/D \neq 1 \), by the condition that \(F \) and \(G \) share 1 IM, then \(F \neq 1 \) and \(G \neq 1 \). We obtain then \(F \neq 1 \) and \(F \neq A/D \). By the second fundamental theorem, we have
\[
T(r, F) \leq N \left(r, \frac{1}{F - A/D} \right) + N \left(r, \frac{1}{F - 1} \right) + S(r, F) \leq S(r, F),
\]

which is impossible.
Case 3. $A = 0$, and $C \neq 0$. Then, $F \equiv B/(CG + D)$.

If $D \neq 0$, by the second fundamental theorem and (69), (70), we have

$$T(r, F) \leq N\left(r, \frac{1}{F - B/D} \right) + N\left(r, \frac{1}{F} \right) + S(r, F)$$

$$= N\left(r, \frac{1}{G} \right) + N\left(r, \frac{1}{F} \right) + S(r, F) \tag{83}$$

$$\leq (k + 2) T(r, f) + (k + 2) T(r, g) + S(r, F).$$

Similarly,

$$T(r, G) \leq (k + 2) T(r, f) + (k + 2) T(r, g) + S(r, G). \tag{84}$$

From (73), (74), (83), and (84), we get

$$(n - 3k - 7) \left[T(r, f) + T(r, g) \right] \leq S(r, F) + S(r, G), \tag{85}$$

which is a contradiction to $n \geq 5k + 13$.

If $D = 0$, then $F \equiv B/CG$. If $B/C = 1$, then $F \cdot G \equiv 1$; using the argument in (48) in Theorem 5 and noting that $n \geq 5k + 13$, we get a contradiction. If $B/C \neq 1$, by the condition that F and G share IIM, we obtain $F \neq 1$ and $F \neq B/C$. By the second fundamental theorem, we have

$$T(r, F) \leq N\left(\frac{1}{F - 1} \right) + N\left(\frac{1}{F - B/C} \right) + S(r, F) \leq S(r, F), \tag{86}$$

which is impossible.

The proof of Theorem 6 is complete.

Acknowledgments

This work is supported by Youth Foundation of Chongqing Normal University (12XWQ17), partially by Chongqing City Board of Education Science, and Technology Project (KJJ30632), and partially by the fund of Chongqing Normal University (13XLB006).

References
