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Abstract. 
Mahmudov (2012, 2013) introduced and investigated some 
	
		
			

				𝑞
			

		
	
-extensions of the 
	
		
			

				𝑞
			

		
	
-Bernoulli polynomials 
	
		
			

				ℬ
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
			

		
	
 of order 
	
		
			

				𝛼
			

		
	
, the 
	
		
			

				𝑞
			

		
	
-Euler polynomials 
	
		
			

				ℰ
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
			

		
	
 of order 
	
		
			

				𝛼
			

		
	
, and the 
	
		
			

				𝑞
			

		
	
-Genocchi polynomials 
	
		
			

				𝒢
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
			

		
	
 of order 
	
		
			

				𝛼
			

		
	
. In this paper, we give some identities
for 
	
		
			

				ℬ
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
			

		
	
, 
	
		
			

				𝒢
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
			

		
	
, and 
	
		
			

				ℰ
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
			

		
	
 and the recurrence relations between these polynomials. This is an analogous result to the 
	
		
			

				𝑞
			

		
	
-extension of the Srivastava-Pintér addition theorem in Mahmudov (2013).
 

1. Introduction, Definitions, and Notations
Throughout this paper, we always make use of the following notation: 
	
		
			

				ℕ
			

		
	
 denotes the set of natural numbers and 
	
		
			

				ℂ
			

		
	
 denotes the set of complex numbers. The 
	
		
			

				𝑞
			

		
	
-numbers and 
	
		
			

				𝑞
			

		
	
-factorial are defined by
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				[
				𝑎
				]
			

			

				𝑞
			

			
				=
				1
				−
				𝑞
			

			

				𝑎
			

			
				
			
			
				[
				𝑛
				]
				1
				−
				𝑞
				,
				𝑞
				≠
				1
				,
			

			

				𝑞
			

			
				[
				𝑛
				]
				!
				=
			

			

				𝑞
			

			
				[
				]
				𝑛
				−
				1
			

			

				𝑞
			

			
				⋯
				[
				2
				]
			

			

				𝑞
			

			
				[
				1
				]
			

			

				𝑞
			

			

				,
			

		
	

					respectively, where 
	
		
			
				[
				0
				]
			

			

				𝑞
			

			
				!
				=
				1
			

		
	
, 
	
		
			
				𝑛
				∈
				ℕ
			

		
	
, and 
	
		
			
				𝑎
				∈
				ℂ
			

		
	
. The 
	
		
			

				𝑞
			

		
	
-binomial coefficient is defined by
						
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝑛
				𝑘
				⎤
				⎥
				⎥
				⎥
				⎦
			

			

				𝑞
			

			
				=
				(
				𝑞
				∶
				𝑞
				)
			

			

				𝑛
			

			
				
			
			
				(
				𝑞
				∶
				𝑞
				)
			

			
				𝑛
				−
				𝑘
			

			
				(
				𝑞
				∶
				𝑞
				)
			

			

				𝑘
			

			

				,
			

		
	

					where 
	
		
			
				(
				𝑞
				∶
				𝑞
				)
			

			

				𝑛
			

			
				=
				(
				1
				−
				𝑞
				)
				⋯
				(
				1
				−
				𝑞
			

			

				𝑛
			

			

				)
			

		
	
. The 
	
		
			

				𝑞
			

		
	
-analogue of the function 
	
		
			
				(
				𝑥
				+
				𝑦
				)
			

			
				𝑛
				𝑞
			

		
	
 is defined by
						
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				(
				𝑥
				+
				𝑦
				)
			

			
				𝑛
				𝑞
			

			

				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝑛
				𝑘
				⎤
				⎥
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				𝑞
			

			
				(
				𝑘
				(
				𝑘
				−
				1
				)
				)
				/
				2
			

			

				𝑥
			

			
				𝑛
				−
				𝑘
			

			

				𝑦
			

			

				𝑘
			

			

				.
			

		
	

					The 
	
		
			

				𝑞
			

		
	
-binomial formula is known as
						
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			
				(
				𝑛
				;
				𝑞
				)
			

			

				𝑎
			

			
				=
				(
				1
				−
				𝑎
				)
			

			
				𝑛
				𝑞
			

			

				=
			

			
				𝑛
				−
				1
			

			

				
			

			
				𝑗
				=
				0
			

			
				
				1
				−
				𝑞
			

			

				𝑗
			

			
				𝑎
				
				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝑛
				𝑘
				⎤
				⎥
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				𝑞
			

			
				(
				𝑘
				(
				𝑘
				−
				1
				)
				)
				/
				2
			

			
				(
				−
				1
				)
			

			

				𝑘
			

			

				𝑎
			

			

				𝑘
			

			

				.
			

		
	

The 
	
		
			

				𝑞
			

		
	
-exponential functions are given by
						
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			

				𝑒
			

			

				𝑞
			

			
				(
				𝑧
				)
				=
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝑧
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				=
			

			

				∞
			

			

				
			

			
				𝑘
				=
				0
			

			

				1
			

			
				
			
			
				
				1
				−
				(
				1
				−
				𝑞
				)
				𝑞
			

			

				𝑘
			

			
				𝑧
				
				|
				|
				𝑞
				|
				|
				1
				,
				0
				<
				<
				1
				,
				|
				𝑧
				|
				<
			

			
				
			
			
				|
				|
				|
				|
				,
				𝐸
				1
				−
				𝑞
			

			

				𝑞
			

			
				(
				𝑧
				)
				=
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝑞
			

			
				(
				𝑛
				(
				𝑛
				−
				1
				)
				)
				/
				2
			

			

				𝑧
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				=
			

			

				∞
			

			

				
			

			
				𝑘
				=
				0
			

			
				
				1
				+
				(
				1
				−
				𝑞
				)
				𝑞
			

			

				𝑘
			

			
				𝑧
				
				,
				|
				|
				𝑞
				|
				|
				0
				<
				<
				1
				,
				𝑧
				∈
				ℂ
				.
			

		
	

					From these forms, we easily see that 
	
		
			

				𝑒
			

			

				𝑞
			

			
				(
				𝑧
				)
				𝐸
			

			

				𝑞
			

			
				(
				−
				𝑧
				)
				=
				1
			

		
	
. Moreover, 
	
		
			

				𝐷
			

			

				𝑞
			

			

				𝑒
			

			

				𝑞
			

			
				(
				𝑧
				)
				=
				𝑒
			

			

				𝑞
			

			
				(
				𝑧
				)
			

		
	
 and 
	
		
			

				𝐷
			

			

				𝑞
			

			

				𝐸
			

			

				𝑞
			

			
				(
				𝑧
				)
				=
				𝐸
			

			

				𝑞
			

			
				(
				𝑞
				𝑧
				)
			

		
	
, where 
	
		
			

				𝐷
			

			

				𝑞
			

		
	
 is defined by
						
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			

				𝐷
			

			

				𝑞
			

			
				𝑓
				(
				𝑧
				)
				=
				𝑓
				(
				𝑞
				𝑧
				)
				−
				𝑓
				(
				𝑧
				)
			

			
				
			
			
				|
				|
				𝑞
				|
				|
				𝑞
				𝑧
				−
				𝑧
				,
				0
				<
				<
				1
				,
				0
				≠
				𝑧
				∈
				ℂ
				.
			

		
	

The previous 
	
		
			

				𝑞
			

		
	
-standard notation can be found in [1, 2]. Carlitz firstly extended the classical Bernoulli numbers and polynomials and Euler numbers and polynomials [3, 4]. There are numerous recent investigations on this subject by many other authors. Among them are Cenkci et al. [5, 6], Choi et al. [1], Cheon [7], Kim [8], Kurt [9], Kurt [10], Luo and Srivastava [11–13], Srivastava et al. [14, 15], Natalini and Bernardini [16], Tremblay et al. [17, 18], Gaboury and Kurt [19], Mahmudov [2, 20, 21], Araci et al. [22], and Kupershmidt [23].
Mahmudov defined and studied the properties of the following generalized 
	
		
			

				𝑞
			

		
	
-Bernoulli polynomials 
	
		
			

				ℬ
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
			

		
	
 of order 
	
		
			

				𝛼
			

		
	
 and  
	
		
			

				𝑞
			

		
	
-Euler polynomials 
	
		
			

				ℰ
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
			

		
	
 of order 
	
		
			

				𝛼
			

		
	
 as follows [2].
Let 
	
		
			
				𝑞
				∈
				ℂ
			

		
	
, 
	
		
			
				𝛼
				∈
				ℕ
			

		
	
, and 
	
		
			
				0
				<
				|
				𝑞
				|
				<
				1
			

		
	
. The 
	
		
			

				𝑞
			

		
	
-Bernoulli numbers 
	
		
			

				ℬ
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

		
	
 and polynomials 
	
		
			

				ℬ
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
			

		
	
 in 
	
		
			

				𝑥
			

		
	
 and  
	
		
			

				𝑦
			

		
	
 of order 
	
		
			

				𝛼
			

		
	
 are defined by means of the generating functions:
						
	
 		
 			
				(
				7
				)
			
 			
				(
				8
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				ℬ
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			

				𝑡
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				=
				
				𝑡
			

			
				
			
			

				𝑒
			

			

				𝑞
			

			
				
				(
				𝑡
				)
				−
				1
			

			

				𝛼
			

			
				,
				|
				𝑡
				|
				<
				2
				𝜋
				,
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				ℬ
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				𝑡
				(
				𝑥
				,
				𝑦
				)
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				=
				
				𝑡
			

			
				
			
			

				𝑒
			

			

				𝑞
			

			
				
				(
				𝑡
				)
				−
				1
			

			

				𝛼
			

			

				𝑒
			

			

				𝑞
			

			
				(
				𝑡
				𝑥
				)
				𝐸
			

			

				𝑞
			

			
				(
				𝑡
				𝑦
				)
				,
				|
				𝑡
				|
				<
				2
				𝜋
				.
			

		
	

					The 
	
		
			

				𝑞
			

		
	
-Euler numbers 
	
		
			

				ℰ
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

		
	
 and polynomials 
	
		
			

				ℰ
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
			

		
	
 in 
	
		
			

				𝑥
			

		
	
 and 
	
		
			

				𝑦
			

		
	
 of order 
	
		
			

				𝛼
			

		
	
 are defined by means of the generating functions:
						
	
 		
 			
				(
				9
				)
			
 			
				(
				1
				0
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				ℰ
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			

				𝑡
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				=
				
				2
			

			
				
			
			

				𝑒
			

			

				𝑞
			

			
				
				(
				𝑡
				)
				+
				1
			

			

				𝛼
			

			
				,
				|
				𝑡
				|
				<
				𝜋
				,
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				ℰ
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				𝑡
				(
				𝑥
				,
				𝑦
				)
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				=
				
				2
			

			
				
			
			

				𝑒
			

			

				𝑞
			

			
				
				(
				𝑡
				)
				+
				1
			

			

				𝛼
			

			

				𝑒
			

			

				𝑞
			

			
				(
				𝑡
				𝑥
				)
				𝐸
			

			

				𝑞
			

			
				(
				𝑡
				𝑦
				)
				,
				|
				𝑡
				|
				<
				𝜋
				.
			

		
	

The 
	
		
			

				𝑞
			

		
	
-Genocchi numbers 
	
		
			

				𝒢
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

		
	
 and polynomials 
	
		
			

				𝒢
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
			

		
	
 in 
	
		
			

				𝑥
			

		
	
 and 
	
		
			

				𝑦
			

		
	
 of order 
	
		
			

				𝛼
			

		
	
 are defined by means of the generating functions:
						
	
 		
 			
				(
				1
				1
				)
			
 			
				(
				1
				2
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝒢
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			

				𝑡
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				=
				
				2
				𝑡
			

			
				
			
			

				𝑒
			

			

				𝑞
			

			
				
				(
				𝑡
				)
				+
				1
			

			

				𝛼
			

			
				,
				|
				𝑡
				|
				<
				𝜋
				,
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝒢
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				𝑡
				(
				𝑥
				,
				𝑦
				)
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				=
				
				2
				𝑡
			

			
				
			
			

				𝑒
			

			

				𝑞
			

			
				
				(
				𝑡
				)
				+
				1
			

			

				𝛼
			

			

				𝑒
			

			

				𝑞
			

			
				(
				𝑡
				𝑥
				)
				𝐸
			

			

				𝑞
			

			
				(
				𝑡
				𝑦
				)
				,
				|
				𝑡
				|
				<
				𝜋
				.
			

		
	

The familiar 
	
		
			

				𝑞
			

		
	
-Stirling numbers 
	
		
			

				𝑆
			

			
				2
				,
				𝑞
			

			
				(
				𝑛
				,
				𝑘
				)
			

		
	
 of the second kind are defined by
						
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			
				
				𝑒
			

			

				𝑞
			

			
				
				(
				𝑡
				)
				−
				1
			

			

				𝑘
			

			
				
			
			
				[
				𝑘
				]
			

			

				𝑞
			

			
				!
				=
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝑆
			

			
				2
				,
				𝑞
			

			
				𝑡
				(
				𝑛
				,
				𝑘
				)
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				.
			

		
	

It is obvious that
						
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			

				ℬ
			

			
				(
				1
				)
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
				∶
				=
				ℬ
			

			
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
				,
				ℰ
			

			
				(
				1
				)
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
				∶
				=
				ℰ
			

			
				𝑛
				,
				𝑞
			

			
				𝒢
				(
				𝑥
				,
				𝑦
				)
				,
			

			
				(
				1
				)
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
				∶
				=
				𝒢
			

			
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
				,
				ℬ
			

			
				𝑛
				,
				𝑞
			

			
				(
				0
				,
				0
				)
				∶
				=
				ℬ
			

			
				𝑛
				,
				𝑞
			

			
				,
				ℰ
			

			
				𝑛
				,
				𝑞
			

			
				(
				0
				,
				0
				)
				∶
				=
				ℰ
			

			
				𝑛
				,
				𝑞
			

			
				,
				𝒢
			

			
				𝑛
				,
				𝑞
			

			
				(
				0
				,
				0
				)
				∶
				=
				𝒢
			

			
				𝑛
				,
				𝑞
			

			
				,
				ℬ
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				=
				ℬ
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				0
				,
				0
				)
				,
				l
				i
				m
			

			
				𝑞
				→
				1
			

			

				−
			

			

				ℬ
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
				=
				ℬ
			

			
				𝑛
				(
				𝛼
				)
			

			
				(
				𝑥
				+
				𝑦
				)
				,
				l
				i
				m
			

			
				𝑞
				→
				1
			

			

				−
			

			

				ℬ
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				=
				ℬ
			

			
				𝑛
				(
				𝛼
				)
			

			
				,
				ℰ
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				=
				ℰ
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				0
				,
				0
				)
				,
				l
				i
				m
			

			
				𝑞
				→
				1
			

			

				−
			

			

				ℰ
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
				=
				ℰ
			

			
				𝑛
				(
				𝛼
				)
			

			
				(
				𝑥
				+
				𝑦
				)
				,
				l
				i
				m
			

			
				𝑞
				→
				1
			

			

				−
			

			

				ℰ
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				=
				ℰ
			

			
				𝑛
				(
				𝛼
				)
			

			
				,
				𝒢
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				=
				𝒢
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				0
				,
				0
				)
				,
				l
				i
				m
			

			
				𝑞
				→
				1
			

			

				−
			

			

				𝒢
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
				=
				𝒢
			

			
				𝑛
				(
				𝛼
				)
			

			
				(
				𝑥
				+
				𝑦
				)
				,
				l
				i
				m
			

			
				𝑞
				→
				1
			

			

				−
			

			

				𝒢
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				=
				𝒢
			

			
				𝑛
				(
				𝛼
				)
			

			

				.
			

		
	

					From (8) and (10), it is easy to check that
						
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			

				ℬ
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝑛
				𝑘
				⎤
				⎥
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				ℬ
			

			
				𝑛
				−
				𝑘
				,
				𝑞
			

			
				(
				𝑥
				,
				0
				)
				ℬ
			

			
				(
				𝛼
				−
				1
				)
				𝑘
				,
				𝑞
			

			
				ℰ
				(
				0
				,
				𝑦
				)
				,
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝑛
				𝑘
				⎤
				⎥
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				ℰ
			

			
				(
				𝛼
				−
				1
				)
				𝑛
				−
				𝑘
				,
				𝑞
			

			
				(
				𝑥
				,
				0
				)
				ℰ
			

			
				𝑘
				,
				𝑞
			

			
				(
				0
				,
				𝑦
				)
				.
			

		
	

In this work, we give some identities for the 
	
		
			

				𝑞
			

		
	
-Bernoulli polynomials. Also, we give some relations between the 
	
		
			

				𝑞
			

		
	
-Bernoulli polynomials and 
	
		
			

				𝑞
			

		
	
-Euler polynomials and the 
	
		
			

				𝑞
			

		
	
-Genocchi polynomials and 
	
		
			

				𝑞
			

		
	
-Bernoulli polynomials. Furthermore, we give a different form of the analogue of the Srivastava-Pintér addition theorem. More precisely, we prove the following theorems.
Theorem 1.  There are the following relations between the 
	
		
			

				𝑞
			

		
	
-Bernoulli polynomials and 
	
		
			

				𝑞
			

		
	
-Stirling numbers of the second kind:
							
	
 		
 			
				(
				1
				6
				)
			
 			
				(
				1
				7
				)
			
 		
	

	
		
			

				ℬ
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				[
				𝑘
				]
				(
				𝑥
				,
				𝑦
				)
				=
			

			

				𝑞
			

			
				!
				[
				𝑛
				]
			

			

				𝑞
			

			

				!
			

			
				
			
			
				[
				]
				𝑛
				+
				𝑘
			

			

				𝑞
			

			
				!
				×
			

			
				𝑛
				+
				𝑘
			

			

				
			

			
				𝑙
				=
				0
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝑙
				⎤
				⎥
				⎥
				⎥
				⎦
				𝑛
				+
				𝑘
			

			

				𝑞
			

			

				ℬ
			

			
				(
				𝛼
				+
				𝑘
				)
				𝑙
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
				×
				𝑆
			

			
				2
				,
				𝑞
			

			
				(
				𝑛
				+
				𝑘
				−
				𝑙
				,
				𝑘
				)
				,
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝑛
				𝑘
				⎤
				⎥
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				ℬ
			

			
				(
				𝛼
				)
				𝑛
				−
				𝑘
				,
				𝑞
			

			
				[
				𝛼
				]
				(
				𝑥
				,
				𝑦
				)
			

			

				𝑞
			

			
				!
				𝑆
			

			
				2
				,
				𝑞
			

			
				=
				(
				𝑘
				,
				𝛼
				)
			

			
				𝑛
				−
				𝛼
			

			

				
			

			
				𝑙
				=
				0
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝑙
				⎤
				⎥
				⎥
				⎥
				⎦
				𝑛
				−
				𝛼
			

			

				𝑞
			

			
				[
				𝑛
				]
			

			

				𝑞
			

			

				!
			

			
				
			
			
				[
				]
				𝑛
				−
				𝛼
			

			

				𝑞
			

			
				!
				𝑥
			

			
				𝑛
				−
				𝛼
				−
				𝑙
			

			

				𝑦
			

			

				𝑙
			

			

				𝑞
			

			
				
				𝑙
				2
				
			

			

				,
			

		
	

						where 
	
		
			
				𝑞
				∈
				ℂ
			

		
	
, 
	
		
			
				𝛼
				,
				𝑛
				∈
				ℕ
			

		
	
, and 
	
		
			
				0
				<
				|
				𝑞
				|
				<
				1
			

		
	
.
Theorem 2.  The 
	
		
			

				𝑞
			

		
	
-Stirling numbers of the second kind satisfy the following relations:
							
	
 		
 			
				(
				1
				8
				)
			
 			
				(
				1
				9
				)
			
 		
	

	
		
			

				ℰ
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
				=
			

			

				∞
			

			

				
			

			
				𝑗
				=
				0
			

			
				⎛
				⎜
				⎜
				⎜
				⎝
				𝑗
				⎞
				⎟
				⎟
				⎟
				⎠
				1
				−
				𝛼
			

			
				
			
			

				2
			

			

				𝑗
			

			
				[
				𝑗
				]
			

			

				𝑞
			

			
				!
				×
			

			

				𝑛
			

			

				
			

			
				𝑝
				=
				0
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝑛
				𝑝
				⎤
				⎥
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				𝑆
			

			
				2
				,
				𝑞
			

			
				×
				(
				𝑛
				−
				𝑝
				,
				𝑗
				)
			

			

				𝑝
			

			

				
			

			
				𝑙
				=
				0
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝑝
				𝑙
				⎤
				⎥
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				𝑥
			

			
				𝑝
				−
				𝑙
			

			

				𝑦
			

			

				𝑙
			

			

				𝑞
			

			
				
				𝑙
				2
				
			

			
				,
				ℬ
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				=
				[
				𝛼
				]
			

			

				𝑞
			

			

				!
			

			

				∞
			

			

				
			

			
				𝑗
				=
				0
			

			
				⎛
				⎜
				⎜
				⎜
				⎝
				𝑗
				⎞
				⎟
				⎟
				⎟
				⎠
				×
				−
				𝛼
			

			

				𝑗
			

			

				
			

			
				𝑘
				=
				0
			

			
				⎛
				⎜
				⎜
				⎜
				⎝
				𝑗
				𝑘
				⎞
				⎟
				⎟
				⎟
				⎠
				[
				𝑘
				]
			

			

				𝑞
			

			
				!
				𝑆
			

			
				2
				,
				𝑞
			

			
				(
				𝑛
				+
				𝑘
				,
				𝑘
				)
			

			
				
			
			
				[
				]
				𝑛
				+
				𝑘
			

			

				𝑞
			

			
				!
				[
				𝑘
				]
			

			

				𝑞
			

			
				!
				(
				−
				1
				)
			

			
				𝑗
				−
				𝑘
			

			
				,
				ℬ
			

			
				(
				−
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				=
				[
				𝛼
				]
				𝑥
				,
				𝑦
				)
			

			

				𝑞
			

			

				!
			

			
				𝑛
				+
				𝛼
			

			

				
			

			
				𝑚
				=
				0
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝑚
				⎤
				⎥
				⎥
				⎥
				⎦
				𝑛
				+
				𝛼
			

			

				𝑞
			

			

				𝑆
			

			
				2
				,
				𝑞
			

			
				(
				𝑚
				,
				𝛼
				)
				×
				(
				𝑥
				+
				𝑦
				)
			

			
				𝑞
				𝑛
				+
				𝛼
				−
				𝑚
			

			
				[
				𝑛
				]
			

			

				𝑞
			

			

				!
			

			
				
			
			
				[
				]
				𝑛
				+
				𝛼
			

			

				𝑞
			

			
				!
				,
			

		
	

						where 
	
		
			
				𝑞
				∈
				ℂ
			

		
	
, 
	
		
			
				𝛼
				,
				𝑛
				∈
				ℕ
			

		
	
, and 
	
		
			
				0
				<
				|
				𝑞
				|
				<
				1
			

		
	
.
Theorem 3.  The generalized 
	
		
			

				𝑞
			

		
	
-Euler polynomials satisfy the following relation:
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝑛
				𝑘
				⎤
				⎥
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				ℰ
			

			
				𝑘
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
				=
				2
				(
				𝑥
				+
				𝑦
				)
			

			
				𝑛
				𝑞
			

			
				−
				ℰ
			

			
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
				,
			

		
	

						where 
	
		
			
				𝑞
				∈
				ℂ
			

		
	
, 
	
		
			
				𝛼
				,
				𝑛
				∈
				ℕ
			

		
	
, and 
	
		
			
				0
				<
				|
				𝑞
				|
				<
				1
			

		
	
.
Theorem 4.  The polynomials 
	
		
			

				𝐵
			

			
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
			

		
	
 and 
	
		
			

				𝒢
			

			
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
			

		
	
 satisfy the following difference relationships:
							
	
 		
 			
				(
				2
				1
				)
			
 			
				(
				2
				2
				)
			
 		
	

	
		
			

				ℬ
			

			
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
				=
			

			
				𝑛
				+
				1
			

			

				
			

			
				𝑙
				=
				0
				𝑙
				≠
				𝑛
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝑙
				⎤
				⎥
				⎥
				⎥
				⎦
				𝑛
				+
				1
			

			

				𝑞
			

			

				1
			

			
				
			
			
				[
				]
				𝑛
				+
				1
			

			

				𝑞
			

			

				𝒢
			

			
				𝑙
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
				ℬ
			

			
				𝑛
				+
				1
				−
				𝑙
				,
				𝑞
			

			
				,
				𝒢
			

			
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
				=
				−
				2
			

			

				𝑛
			

			

				
			

			
				𝑙
				=
				0
				𝑙
				≠
				𝑛
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝑛
				𝑙
				⎤
				⎥
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				1
			

			
				
			
			
				[
				]
				𝑙
				+
				1
			

			

				𝑞
			

			

				𝒢
			

			
				𝑙
				+
				1
				,
				𝑞
			

			

				ℬ
			

			
				𝑛
				−
				𝑙
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
				,
			

		
	

						where 
	
		
			
				𝑞
				∈
				ℂ
			

		
	
, 
	
		
			
				𝛼
				,
				𝑛
				∈
				ℕ
			

		
	
, and 
	
		
			
				0
				<
				|
				𝑞
				|
				<
				1
			

		
	
.
Theorem 5.  There is the following relation between the generalized 
	
		
			

				𝑞
			

		
	
-Euler polynomials and generalized 
	
		
			

				𝑞
			

		
	
-Bernoulli polynomials:
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			

				ℰ
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				=
				⎧
				⎪
				⎨
				⎪
				⎩
				(
				𝑥
				,
				𝑦
				)
			

			
				𝑛
				+
				1
			

			

				
			

			
				𝑠
				=
				0
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝑠
				⎤
				⎥
				⎥
				⎥
				⎦
				𝑛
				+
				1
			

			
				𝑞
				𝑠
			

			

				
			

			
				𝑙
				=
				0
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝑠
				𝑙
				⎤
				⎥
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				ℬ
			

			
				𝑠
				−
				𝑙
				,
				𝑞
			

			
				−
				(
				𝑚
				𝑥
				,
				0
				)
			

			
				𝑛
				+
				1
			

			

				
			

			
				𝑙
				=
				0
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝑙
				⎤
				⎥
				⎥
				⎥
				⎦
				𝑛
				+
				1
			

			

				𝑞
			

			

				ℬ
			

			
				𝑛
				+
				1
				−
				𝑙
				,
				𝑞
			

			
				⎫
				⎪
				⎬
				⎪
				⎭
				×
				𝑚
				(
				𝑚
				𝑥
				,
				0
				)
			

			
				
			
			
				[
				]
				𝑛
				+
				1
			

			

				𝑞
			

			
				!
				ℰ
			

			
				(
				𝛼
				)
				𝑙
				,
				𝑞
			

			
				(
				0
				,
				𝑦
				)
				𝑚
			

			
				𝑙
				−
				𝑛
				−
				1
			

			

				,
			

		
	

						where 
	
		
			
				𝑞
				∈
				ℂ
			

		
	
, 
	
		
			
				𝛼
				,
				𝑛
				∈
				ℕ
			

		
	
, and 
	
		
			
				0
				<
				|
				𝑞
				|
				<
				1
			

		
	
.
2. Proof of the Theorems
Lemma 6.  The generalized 
	
		
			

				𝑞
			

		
	
-Bernoulli polynomials, 
	
		
			

				𝑞
			

		
	
-Euler polynomials, and 
	
		
			

				𝑞
			

		
	
-Genocchi polynomials satisfy the following relations:
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝑛
				𝑘
				⎤
				⎥
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				ℬ
			

			
				(
				𝛼
				)
				𝑘
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
				ℬ
			

			
				(
				−
				𝛼
				)
				𝑛
				−
				𝑘
				,
				𝑞
			

			
				=
				(
				𝑥
				+
				𝑦
				)
			

			
				𝑛
				𝑞
			

			

				,
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝑛
				𝑘
				⎤
				⎥
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				ℬ
			

			
				(
				𝛼
				)
				𝑘
				,
				𝑞
			

			
				(
				0
				,
				𝑦
				)
				ℬ
			

			
				(
				−
				𝛼
				)
				𝑛
				−
				𝑘
				,
				𝑞
			

			
				=
				𝑞
			

			
				(
				𝑛
				(
				𝑛
				−
				1
				)
				)
				/
				2
			

			

				𝑦
			

			

				𝑛
			

			
				,
				ℬ
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
				=
			

			

				𝑛
			

			

				
			

			
				𝑙
				=
				0
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝑛
				𝑙
				⎤
				⎥
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				ℬ
			

			
				(
				𝛼
				)
				𝑛
				−
				𝑙
				,
				𝑞
			

			
				×
				(
				0
				,
				𝑦
				)
			

			

				𝑙
			

			

				
			

			
				𝑘
				=
				0
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝑙
				𝑘
				⎤
				⎥
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				ℰ
			

			
				(
				𝛼
				)
				𝑘
				,
				𝑞
			

			
				(
				𝑥
				,
				0
				)
				ℰ
			

			
				(
				−
				𝛼
				)
				𝑙
				−
				𝑘
				,
				𝑞
			

			
				,
				ℰ
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
				=
			

			

				𝑛
			

			

				
			

			
				𝑙
				=
				0
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝑛
				𝑙
				⎤
				⎥
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				ℰ
			

			
				(
				𝛼
				)
				𝑛
				−
				𝑙
				,
				𝑞
			

			
				×
				(
				0
				,
				𝑦
				)
			

			

				𝑙
			

			

				
			

			
				𝑘
				=
				0
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝑙
				𝑘
				⎤
				⎥
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				ℬ
			

			
				(
				𝛼
				)
				𝑘
				,
				𝑞
			

			
				(
				𝑥
				,
				0
				)
				ℬ
			

			
				(
				−
				𝛼
				)
				𝑙
				−
				𝑘
				,
				𝑞
			

			

				,
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝑛
				𝑘
				⎤
				⎥
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				𝒢
			

			
				𝑘
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
				+
				𝒢
			

			
				𝑛
				,
				𝑞
			

			
				[
				𝑛
				]
				(
				𝑥
				,
				𝑦
				)
				=
				2
			

			

				𝑞
			

			
				(
				𝑥
				+
				𝑦
				)
			

			
				𝑞
				𝑛
				−
				1
			

			
				,
				𝒢
			

			
				(
				𝛼
				−
				𝛽
				)
				𝑛
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝑛
				𝑘
				⎤
				⎥
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				𝒢
			

			
				(
				𝛼
				)
				𝑘
				,
				𝑞
			

			
				(
				𝑥
				,
				0
				)
				𝒢
			

			
				(
				−
				𝛽
				)
				𝑛
				−
				𝑘
				,
				𝑞
			

			
				(
				0
				,
				𝑦
				)
				.
			

		
	

Proof. The proof of this lemma can be found from (7)–(12).
Proof of Theorem 1. By (8) and (13) we have
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				ℬ
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				𝑡
				(
				𝑥
				,
				𝑦
				)
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				=
				
				𝑡
			

			
				
			
			

				𝑒
			

			

				𝑞
			

			
				
				(
				𝑡
				)
				−
				1
			

			

				𝛼
			

			

				𝑒
			

			

				𝑞
			

			
				(
				𝑡
				𝑥
				)
				𝐸
			

			

				𝑞
			

			
				×
				[
				𝑘
				]
				(
				𝑡
				𝑦
				)
			

			

				𝑞
			

			

				!
			

			
				
			
			
				
				𝑒
			

			

				𝑞
			

			
				
				(
				𝑡
				)
				−
				1
			

			

				𝑘
			

			
				
				𝑒
			

			

				𝑞
			

			
				
				(
				𝑡
				)
				−
				1
			

			

				𝑘
			

			
				
			
			
				[
				𝑘
				]
			

			

				𝑞
			

			
				!
				=
				[
				𝑘
				]
			

			

				𝑞
			

			
				!
				𝑡
			

			

				𝛼
			

			
				
			
			
				
				𝑒
			

			

				𝑞
			

			
				
				(
				𝑡
				)
				−
				1
			

			
				𝛼
				+
				𝑘
			

			

				𝑒
			

			

				𝑞
			

			
				(
				𝑡
				𝑥
				)
				𝐸
			

			

				𝑞
			

			
				×
				(
				𝑡
				𝑦
				)
			

			

				∞
			

			

				
			

			
				𝑚
				=
				0
			

			

				𝑆
			

			
				2
				,
				𝑞
			

			
				(
				𝑡
				𝑚
				,
				𝑘
				)
			

			

				𝑚
			

			
				
			
			
				[
				𝑚
				]
			

			

				𝑞
			

			
				!
				=
				[
				𝑘
				]
			

			

				𝑞
			

			
				!
				𝑡
			

			
				∞
				−
				𝑘
			

			

				
			

			
				𝑛
				𝑛
				=
				0
			

			

				
			

			
				𝑙
				=
				0
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝑛
				𝑙
				⎤
				⎥
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				ℬ
			

			
				(
				𝛼
				+
				𝑘
				)
				𝑙
				,
				𝑞
			

			
				×
				(
				𝑥
				,
				𝑦
				)
				𝑆
			

			
				2
				,
				𝑞
			

			
				𝑡
				(
				𝑛
				−
				𝑙
				,
				𝑘
				)
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				=
				[
				𝑘
				]
			

			

				𝑞
			

			

				!
			

			

				∞
			

			

				
			

			
				𝑛
				𝑛
				=
				0
			

			

				
			

			
				𝑙
				=
				0
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝑛
				𝑙
				⎤
				⎥
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				ℬ
			

			
				(
				𝛼
				+
				𝑘
				)
				𝑙
				,
				𝑞
			

			
				×
				(
				𝑥
				,
				𝑦
				)
				𝑆
			

			
				2
				,
				𝑞
			

			
				𝑡
				(
				𝑛
				−
				𝑙
				,
				𝑘
				)
			

			
				𝑛
				−
				𝑘
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				=
				[
				𝑘
				]
			

			

				𝑞
			

			

				!
			

			

				∞
			

			

				
			

			
				𝑛
				=
				−
				𝑘
				𝑛
				+
				𝑘
			

			

				
			

			
				𝑙
				=
				0
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝑙
				⎤
				⎥
				⎥
				⎥
				⎦
				𝑛
				+
				𝑘
			

			

				𝑞
			

			

				ℬ
			

			
				(
				𝛼
				+
				𝑘
				)
				𝑙
				,
				𝑞
			

			
				×
				(
				𝑥
				,
				𝑦
				)
				𝑆
			

			
				2
				,
				𝑞
			

			
				(
				𝑡
				𝑛
				+
				𝑘
				−
				𝑙
				,
				𝑘
				)
			

			
				𝑛
				−
				𝑘
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				.
			

		
	

						Equating the coefficients of 
	
		
			
				(
				𝑡
			

			

				𝑛
			

			
				/
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				)
			

		
	
, we obtain (16).Similarly, we have (17).
Proof of Theorem 2. Combining (10) and (13), we obtain
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			
				
				2
			

			
				
			
			

				𝑒
			

			

				𝑞
			

			
				
				(
				𝑡
				)
				+
				1
			

			

				𝛼
			

			
				=
				
				𝑒
				1
				+
			

			

				𝑞
			

			
				(
				𝑡
				)
				−
				1
			

			
				
			
			
				2
				
			

			
				(
				−
				𝛼
				)
			

			

				=
			

			

				∞
			

			

				
			

			
				𝑗
				=
				0
			

			
				⎛
				⎜
				⎜
				⎜
				⎝
				𝑗
				⎞
				⎟
				⎟
				⎟
				⎠
				
				𝑒
				−
				𝛼
			

			

				𝑞
			

			
				(
				𝑡
				)
				−
				1
			

			
				
			
			
				2
				
			

			
				(
				𝑗
				)
			

			

				,
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				ℰ
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				𝑡
				(
				𝑥
				,
				𝑦
				)
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				=
			

			

				∞
			

			

				
			

			
				𝑗
				=
				0
			

			
				⎛
				⎜
				⎜
				⎜
				⎝
				𝑗
				⎞
				⎟
				⎟
				⎟
				⎠
				
				𝑒
				−
				𝛼
			

			

				𝑞
			

			
				(
				𝑡
				)
				−
				1
			

			
				
			
			
				2
				
			

			
				(
				𝑗
				)
			

			

				𝑒
			

			

				𝑞
			

			
				(
				𝑡
				𝑥
				)
				𝐸
			

			

				𝑞
			

			
				=
				(
				𝑡
				𝑦
				)
			

			

				∞
			

			

				
			

			
				𝑗
				=
				0
			

			
				⎛
				⎜
				⎜
				⎜
				⎝
				𝑗
				⎞
				⎟
				⎟
				⎟
				⎠
				1
				−
				𝛼
			

			
				
			
			

				2
			

			

				𝑗
			

			
				[
				𝑗
				]
			

			

				𝑞
			

			

				!
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝑆
			

			
				2
				,
				𝑞
			

			
				𝑡
				(
				𝑛
				,
				𝑗
				)
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				×
			

			

				∞
			

			

				
			

			
				𝑛
				𝑛
				=
				0
			

			

				
			

			
				𝑘
				=
				0
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝑛
				𝑘
				⎤
				⎥
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				𝑥
			

			
				𝑛
				−
				𝑘
			

			

				𝑦
			

			

				𝑘
			

			

				𝑞
			

			
				
				𝑘
				2
				
			

			

				𝑡
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				=
			

			

				∞
			

			

				
			

			
				𝑗
				=
				0
			

			
				⎛
				⎜
				⎜
				⎜
				⎝
				𝑗
				⎞
				⎟
				⎟
				⎟
				⎠
				1
				−
				𝛼
			

			
				
			
			

				2
			

			

				𝑗
			

			

				×
			

			

				∞
			

			

				
			

			
				𝑛
				𝑛
				=
				0
			

			

				
			

			
				𝑝
				=
				0
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝑛
				𝑝
				⎤
				⎥
				⎥
				⎥
				⎦
			

			

				𝑞
			

			
				[
				𝑗
				]
			

			

				𝑞
			

			
				!
				𝑆
			

			
				2
				,
				𝑞
			

			
				×
				(
				𝑛
				−
				𝑝
				,
				𝑗
				)
			

			

				𝑝
			

			

				
			

			
				𝑙
				=
				0
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝑝
				𝑙
				⎤
				⎥
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				𝑥
			

			
				𝑝
				−
				𝑙
			

			

				𝑦
			

			

				𝑙
			

			

				𝑞
			

			
				
				𝑙
				2
				
			

			

				𝑡
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				.
			

		
	
Comparing the coefficients of 
	
		
			
				(
				𝑡
			

			

				𝑛
			

			
				/
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				)
			

		
	
, we find (18). Similarly, we have (19).
Proof of Theorem 3. It is obvious that
							
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			
				−
				2
			

			
				
			
			
				
				𝑒
			

			

				𝑞
			

			
				
				𝑒
				(
				𝑡
				)
				+
				1
			

			

				𝑞
			

			
				=
				2
				(
				𝑡
				)
			

			
				
			
			
				
				𝑒
			

			

				𝑞
			

			
				
				−
				2
				(
				𝑡
				)
				+
				1
			

			
				
			
			

				𝑒
			

			

				𝑞
			

			
				.
				(
				𝑡
				)
			

		
	

						We write it as
							
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			
				−
				2
			

			
				
			
			

				𝑒
			

			

				𝑞
			

			
				𝑒
				(
				𝑡
				)
				+
				1
			

			

				𝑞
			

			
				(
				𝑡
				𝑥
				)
				𝐸
			

			

				𝑞
			

			
				(
				𝑡
				𝑦
				)
			

			
				
			
			

				𝑒
			

			

				𝑞
			

			
				=
				2
				(
				𝑡
				)
			

			
				
			
			

				𝑒
			

			

				𝑞
			

			
				𝑒
				(
				𝑡
				)
				+
				1
			

			

				𝑞
			

			
				(
				𝑡
				𝑥
				)
				𝐸
			

			

				𝑞
			

			
				−
				2
				(
				𝑡
				𝑦
				)
			

			
				
			
			

				𝑒
			

			

				𝑞
			

			
				𝑒
				(
				𝑡
				)
			

			

				𝑞
			

			
				(
				𝑡
				𝑥
				)
				𝐸
			

			

				𝑞
			

			
				(
				𝑡
				𝑦
				)
				,
				−
				2
			

			
				
			
			

				𝑒
			

			

				𝑞
			

			
				𝑒
				(
				𝑡
				)
				+
				1
			

			

				𝑞
			

			
				(
				𝑡
				𝑥
				)
				𝐸
			

			

				𝑞
			

			
				=
				2
				(
				𝑡
				𝑦
				)
			

			
				
			
			

				𝑒
			

			

				𝑞
			

			
				𝑒
				(
				𝑡
				)
				+
				1
			

			

				𝑞
			

			
				(
				𝑡
				𝑥
				)
				𝐸
			

			

				𝑞
			

			
				(
				𝑡
				𝑦
				)
				−
				2
				𝑒
			

			

				𝑞
			

			
				(
				𝑡
				𝑥
				)
				𝐸
			

			

				𝑞
			

			
				−
				(
				𝑡
				𝑦
				)
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				ℰ
			

			
				𝑛
				,
				𝑞
			

			
				𝑡
				(
				𝑥
				,
				𝑦
				)
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				=
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				ℰ
			

			
				𝑛
				,
				𝑞
			

			
				𝑡
				(
				𝑥
				,
				𝑦
				)
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				×
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝑡
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				−
				2
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			
				(
				𝑥
				+
				𝑦
				)
			

			
				𝑛
				𝑞
			

			

				𝑡
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				.
			

		
	

						Using the Cauchy product and comparing the coefficients of 
	
		
			
				(
				𝑡
			

			

				𝑛
			

			
				/
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				)
			

		
	
, we have
							
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			

				𝑛
			

			

				
			

			
				𝑘
				=
				0
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝑛
				𝑘
				⎤
				⎥
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				ℰ
			

			
				𝑘
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
				=
				2
				(
				𝑥
				+
				𝑦
				)
			

			
				𝑛
				𝑞
			

			
				−
				ℰ
			

			
				𝑘
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
				.
			

		
	

Finally, we consider the interesting relationships between the 
	
		
			

				𝑞
			

		
	
-Bernoulli polynomials and 
	
		
			

				𝑞
			

		
	
-Genocchi polynomials and the 
	
		
			

				𝑞
			

		
	
-Euler polynomials and 
	
		
			

				𝑞
			

		
	
-Bernoulli polynomials. These relations are 
	
		
			

				𝑞
			

		
	
-analogues to the  Srivastava-Pintér addition theorems.
Proof of Theorem 4. It follows immediately that
							
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				ℬ
			

			
				𝑛
				,
				𝑞
			

			
				𝑡
				(
				𝑥
				,
				𝑦
				)
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				=
				1
			

			
				
			
			
				2
				2
				𝑡
				𝑒
			

			

				𝑞
			

			
				(
				𝑡
				𝑥
				)
				𝐸
			

			

				𝑞
			

			
				(
				𝑡
				𝑦
				)
			

			
				
			
			

				𝑒
			

			

				𝑞
			

			
				+
				1
				(
				𝑡
				)
				+
				1
			

			
				
			
			
				𝑡
				
				𝑡
			

			
				
			
			

				𝑒
			

			

				𝑞
			

			
				
				(
				𝑡
				)
				−
				1
				2
				𝑡
			

			
				
			
			

				𝑒
			

			

				𝑞
			

			
				𝑒
				(
				𝑡
				)
				+
				1
			

			

				𝑞
			

			
				(
				𝑡
				𝑥
				)
				𝐸
			

			

				𝑞
			

			
				=
				1
				(
				𝑡
				𝑦
				)
			

			
				
			
			

				2
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝒢
			

			
				𝑛
				,
				𝑞
			

			
				𝑡
				(
				𝑥
				,
				𝑦
				)
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				+
				1
			

			
				
			
			
				𝑡
				×
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				ℬ
			

			
				𝑛
				,
				𝑞
			

			

				𝑡
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			

				!
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝒢
			

			
				𝑛
				,
				𝑞
			

			
				𝑡
				(
				𝑥
				,
				𝑦
				)
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				=
				1
			

			
				
			
			

				2
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝒢
			

			
				𝑛
				,
				𝑞
			

			
				𝑡
				(
				𝑥
				,
				𝑦
				)
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				+
			

			

				∞
			

			

				
			

			
				𝑛
				𝑛
				=
				0
			

			

				
			

			
				𝑙
				=
				0
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝑛
				𝑙
				⎤
				⎥
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				1
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			

				𝒢
			

			
				𝑙
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
				×
				ℬ
			

			
				𝑛
				−
				𝑙
				,
				𝑞
			

			

				𝑡
			

			
				𝑛
				−
				1
			

			
				
			
			
				[
				]
				𝑛
				−
				1
			

			

				𝑞
			

			
				!
				=
				1
			

			
				
			
			

				2
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝒢
			

			
				𝑛
				,
				𝑞
			

			
				𝑡
				(
				𝑥
				,
				𝑦
				)
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				+
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			
				⎛
				⎜
				⎜
				⎜
				⎝
				−
				1
			

			
				
			
			
				2
				𝒢
			

			
				𝑛
				,
				𝑞
			

			
				+
				(
				𝑥
				,
				𝑦
				)
			

			
				𝑛
				+
				1
			

			

				
			

			
				𝑙
				=
				0
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝑙
				⎤
				⎥
				⎥
				⎥
				⎦
				𝑛
				+
				1
			

			

				𝑞
			

			

				1
			

			
				
			
			
				[
				]
				𝑛
				+
				1
			

			

				𝑞
			

			
				×
				𝒢
			

			
				𝑙
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
				ℬ
			

			
				𝑛
				+
				1
				−
				𝑙
				,
				𝑞
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				𝑡
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				=
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			
				⎛
				⎜
				⎜
				⎜
				⎝
			

			
				𝑛
				+
				1
			

			

				
			

			
				𝑙
				=
				0
				𝑙
				≠
				𝑛
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝑙
				⎤
				⎥
				⎥
				⎥
				⎦
				𝑛
				+
				1
			

			

				𝑞
			

			

				1
			

			
				
			
			
				[
				]
				𝑛
				+
				1
			

			

				𝑞
			

			
				×
				𝒢
			

			
				𝑙
				,
				𝑞
			

			
				(
				𝑥
				,
				𝑦
				)
				ℬ
			

			
				𝑛
				+
				1
				−
				𝑙
				,
				𝑞
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				𝑡
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				.
			

		
	
Equating the coefficients of 
	
		
			
				(
				𝑡
			

			

				𝑛
			

			
				/
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				)
			

		
	
, we have (21).In a similar fashion, (12) yields
							
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝒢
			

			
				𝑛
				,
				𝑞
			

			
				𝑡
				(
				𝑥
				,
				𝑦
				)
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				=
				1
			

			
				
			
			
				𝑡
				
				2
				𝑡
			

			
				
			
			

				𝑒
			

			

				𝑞
			

			
				
				𝑒
				(
				𝑡
				)
				+
				1
			

			

				𝑞
			

			
				
				(
				𝑡
				)
				−
				1
				
				
				𝑡
				𝑒
			

			

				𝑞
			

			
				(
				𝑡
				𝑥
				)
				𝐸
			

			

				𝑞
			

			
				(
				𝑡
				𝑦
				)
			

			
				
			
			

				𝑒
			

			

				𝑞
			

			
				
				=
				1
				(
				𝑡
				)
				−
				1
			

			
				
			
			
				𝑡
				
				2
				𝑡
				−
				2
				2
				𝑡
			

			
				
			
			

				𝑒
			

			

				𝑞
			

			
				𝑡
				(
				𝑡
				)
				+
				1
				
				
			

			
				
			
			

				𝑒
			

			

				𝑞
			

			
				𝑒
				(
				𝑡
				)
				−
				1
			

			

				𝑞
			

			
				(
				𝑡
				𝑥
				)
				𝐸
			

			

				𝑞
			

			
				
				=
				1
				(
				𝑡
				𝑦
				)
			

			
				
			
			
				𝑡
				
				2
				𝑡
				−
				2
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝒢
			

			
				𝑛
				,
				𝑞
			

			

				𝑡
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				
				
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				ℬ
			

			
				𝑛
				,
				𝑞
			

			
				𝑡
				(
				𝑥
				,
				𝑦
				)
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				
				=
				1
			

			
				
			
			
				𝑡
				
				−
				2
			

			

				∞
			

			

				
			

			
				𝑙
				=
				0
			

			

				1
			

			
				
			
			
				[
				]
				𝑙
				+
				1
			

			

				𝑞
			

			
				!
				𝒢
			

			
				𝑙
				+
				1
				,
				𝑞
			

			

				𝑡
			

			
				𝑙
				+
				1
			

			
				
			
			
				[
				𝑙
				]
			

			

				𝑞
			

			
				!
				
				
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				ℬ
			

			
				𝑛
				,
				𝑞
			

			
				𝑡
				(
				𝑥
				,
				𝑦
				)
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				
				=
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			
				⎛
				⎜
				⎜
				⎜
				⎝
				−
				2
			

			

				𝑛
			

			

				
			

			
				𝑙
				=
				0
				𝑙
				≠
				𝑛
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝑛
				𝑙
				⎤
				⎥
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				𝒢
			

			
				𝑙
				+
				1
				,
				𝑞
			

			
				
			
			
				[
				]
				𝑙
				+
				1
			

			

				𝑞
			

			

				ℬ
			

			
				𝑛
				−
				𝑙
				,
				𝑞
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				𝑡
				(
				𝑥
				,
				𝑦
				)
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				.
			

		
	

						Comparing the coefficients of 
	
		
			
				(
				𝑡
			

			

				𝑛
			

			
				/
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				)
			

		
	
, we have (22).
Proof of Theorem 5. By (10), we write
							
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				ℰ
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				𝑡
				(
				𝑥
				,
				𝑦
				)
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				=
				
				2
			

			
				
			
			

				𝑒
			

			

				𝑞
			

			
				
				(
				𝑡
				)
				+
				1
			

			

				𝛼
			

			
				×
				𝐸
			

			

				𝑞
			

			
				𝑒
				(
				𝑡
				𝑦
				)
			

			

				𝑞
			

			
				(
				𝑡
				/
				𝑚
				)
				−
				1
			

			
				
			
			
				(
				𝑡
				/
				𝑚
				)
				(
				𝑡
				/
				𝑚
				)
			

			
				
			
			

				𝑒
			

			

				𝑞
			

			
				𝑒
				(
				𝑡
				/
				𝑚
				)
				−
				1
			

			

				𝑞
			

			
				=
				𝑚
				(
				(
				𝑡
				/
				𝑚
				)
				𝑚
				𝑥
				)
			

			
				
			
			
				𝑡
				
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				ℰ
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				𝑡
				(
				𝑥
				,
				𝑦
				)
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				×
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				ℬ
			

			
				𝑛
				,
				𝑞
			

			
				𝑡
				(
				𝑚
				𝑥
				,
				0
				)
			

			

				𝑛
			

			
				
			
			

				𝑚
			

			

				𝑛
			

			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				×
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝑡
			

			

				𝑛
			

			
				
			
			

				𝑚
			

			

				𝑛
			

			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				−
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				ℰ
			

			
				(
				𝛼
				)
				𝑛
				,
				𝑞
			

			
				(
				𝑡
				0
				,
				𝑦
				)
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				×
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				ℬ
			

			
				𝑛
				,
				𝑞
			

			
				𝑡
				(
				𝑚
				𝑥
				,
				0
				)
			

			

				𝑛
			

			
				
			
			

				𝑚
			

			

				𝑛
			

			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				
				=
				𝑚
			

			

				∞
			

			

				
			

			
				𝑛
				=
				−
				1
			

			

				1
			

			
				
			
			
				[
				]
				𝑛
				+
				1
			

			

				𝑞
			

			
				×
				⎧
				⎪
				⎨
				⎪
				⎩
			

			
				𝑛
				+
				1
			

			

				
			

			
				𝑠
				=
				0
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝑠
				⎤
				⎥
				⎥
				⎥
				⎦
				𝑛
				+
				1
			

			
				𝑞
				𝑠
			

			

				
			

			
				𝑙
				=
				0
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝑠
				𝑙
				⎤
				⎥
				⎥
				⎥
				⎦
			

			

				𝑞
			

			

				ℬ
			

			
				𝑠
				−
				𝑙
				,
				𝑞
			

			
				−
				(
				𝑚
				𝑥
				,
				0
				)
			

			
				𝑛
				+
				1
			

			

				
			

			
				𝑙
				=
				0
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				𝑙
				⎤
				⎥
				⎥
				⎥
				⎦
				𝑛
				+
				1
			

			

				𝑞
			

			

				ℬ
			

			
				𝑛
				+
				1
				−
				𝑙
				,
				𝑞
			

			
				⎫
				⎪
				⎬
				⎪
				⎭
				×
				𝑚
				(
				𝑚
				𝑥
				,
				0
				)
			

			
				
			
			
				[
				]
				𝑛
				+
				1
			

			

				𝑞
			

			
				!
				ℰ
			

			
				(
				𝛼
				)
				𝑙
				,
				𝑞
			

			
				(
				0
				,
				𝑦
				)
				𝑚
			

			
				𝑙
				−
				𝑛
				−
				1
			

			

				𝑡
			

			

				𝑛
			

			
				
			
			
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				.
			

		
	

						By equating the coefficients of 
	
		
			
				(
				𝑡
			

			

				𝑛
			

			
				/
				[
				𝑛
				]
			

			

				𝑞
			

			
				!
				)
			

		
	
, we get the theorem.
Remark 7. There are many different relationships which are analogues to the Srivastava-Pintér addition theorems at these polynomials.
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