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Abstract. 
 Let 
	
		
			
				𝐹
				∶
				ℝ
			

			

				𝑛
			

			
				×
				ℝ
				→
				ℝ
			

		
	
 be a real-valued polynomial function of the form 
	
		
			
				𝐹
				(
			

			
				
			
			
				𝑥
				,
				𝑦
				)
				=
				𝑎
			

			

				𝑠
			

			

				(
			

			
				
			
			
				𝑥
				)
				𝑦
			

			

				𝑠
			

			
				+
				𝑎
			

			
				𝑠
				−
				1
			

			

				(
			

			
				
			
			
				𝑥
				)
				𝑦
			

			
				𝑠
				−
				1
			

			
				+
				⋯
				+
				𝑎
			

			

				0
			

			

				(
			

			
				
			
			
				𝑥
				)
			

		
	
 where the degree 
	
		
			

				𝑠
			

		
	
 of 
	
		
			

				𝑦
			

		
	
 in 
	
		
			
				𝐹
				(
			

			
				
			
			
				𝑥
				,
				𝑦
				)
			

		
	
 is greater than 
	
		
			

				1
			

		
	
. For arbitrary polynomial function 
	
		
			
				𝑓
				(
			

			
				
			
			
				𝑥
				)
				∈
				ℝ
				[
			

			
				
			
			
				𝑥
				]
			

		
	
, 
	
		
			
				
			
			
				𝑥
				∈
				ℝ
			

			

				𝑛
			

		
	
, we will find a polynomial solution 
	
		
			
				𝑦
				(
			

			
				
			
			
				𝑥
				)
				∈
				ℝ
				[
			

			
				
			
			
				𝑥
				]
			

		
	
 to satisfy the following equation (
	
		
			

				⋆
			

		
	
): 
	
		
			
				𝐹
				(
			

			
				
			
			
				𝑥
				,
				𝑦
				(
			

			
				
			
			
				𝑥
				)
				)
				=
				𝑎
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 where 
	
		
			
				𝑎
				∈
				ℝ
			

		
	
 is a constant depending on the solution 
	
		
			
				𝑦
				(
			

			
				
			
			
				𝑥
				)
			

		
	
, namely a quasi-coincidence (point) solution of (
	
		
			

				⋆
			

		
	
), and 
	
		
			

				𝑎
			

		
	
 is called a quasi-coincidence value of (
	
		
			

				⋆
			

		
	
). In this paper, we prove that 
	
		
			
				(
				𝑖
				)
			

		
	
 the number of all solutions in (
	
		
			

				⋆
			

		
	
) does not exceed 
	
		
			
				d
				e
				g
			

			

				𝑦
			

			
				𝐹
				(
			

			
				
			
			
				𝑥
				,
				𝑦
				)
				(
				(
				2
			

			
				d
				e
				g
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				+
				𝑠
				+
				3
				)
				⋅
				2
			

			
				d
				e
				g
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				+
				1
				)
			

		
	
 provided those solutions are of finitely many exist, 
	
		
			
				(
				𝑖
				𝑖
				)
			

		
	
 if all solutions are of infinitely many exist, then any solution is represented as the form 
	
		
			
				𝑦
				(
			

			
				
			
			
				𝑥
				)
				=
				−
				𝑎
			

			
				𝑠
				−
				1
			

			

				(
			

			
				
			
			
				𝑥
				)
				/
				𝑠
				𝑎
			

			

				𝑠
			

			

				(
			

			
				
			
			
				𝑥
				)
				+
				𝜆
				𝑝
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 where 
	
		
			

				𝜆
			

		
	
 is arbitrary and 
	
		
			
				𝑝
				(
			

			
				
			
			
				𝑥
				)
				=
				(
				𝑓
				(
			

			
				
			
			
				𝑥
				)
				/
				𝑎
			

			

				𝑠
			

			

				(
			

			
				
			
			
				𝑥
				)
				)
			

			
				1
				/
				𝑠
			

		
	
 is also a factor of 
	
		
			
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
, provided the equation (
	
		
			

				⋆
			

		
	
) has infinitely many quasi-coincidence (point) solutions.


1. Introduction
In 1987, Lenstra [1] researched a polynomial function 
	
		
			
				𝐹
				(
				𝑥
				,
				𝑦
				)
				∈
				ℚ
				(
				𝛼
				)
			

		
	
  
	
		
			
				[
				𝑥
				,
				𝑦
				]
			

		
	
  (
	
		
			

				𝛼
			

		
	
 is an algebraic number) and attempted to search the factorization of 
	
		
			
				𝐹
				(
				𝑥
				,
				𝑦
				)
			

		
	
. Continuing his job, many scientists tried to find the roots of the polynomial equations (cf. [2–6]). Later, many authors also studied fixed point theory and fixed coincidence theory (cf. [7–11]). Recently, Lai and Chen ([12–15]) research the quasi-fixed (point) polynomial problem; they assumed 
	
		
			
				𝐹
				∶
				ℝ
			

			

				𝑛
			

			
				×
				ℝ
				→
				ℝ
			

		
	
 a polynomial function and solved 
	
		
			
				𝑦
				(
				𝑥
				)
				∈
				ℝ
				[
				𝑥
				]
			

		
	
 to satisfy the polynomial equation as the form
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				𝐹
				(
				𝑥
				,
				𝑦
				(
				𝑥
				)
				)
				=
				𝑎
				𝑝
			

			

				𝑚
			

			
				(
				𝑥
				)
				,
				𝑥
				∈
				ℝ
				,
			

		
	

					where 
	
		
			
				𝑎
				∈
				ℝ
			

		
	
, 
	
		
			
				𝑝
				(
				𝑥
				)
			

		
	
 is an irreducible polynomial in 
	
		
			
				ℝ
				[
				𝑥
				]
			

		
	
, and the polynomial function 
	
		
			
				𝐹
				(
				𝑥
				,
				𝑦
				)
			

		
	
 is written by 
						
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				𝐹
				(
				𝑥
				,
				𝑦
				)
				=
			

			

				𝑠
			

			

				
			

			
				𝑖
				=
				0
			

			

				𝑎
			

			

				𝑖
			

			
				(
				𝑥
				)
				𝑦
			

			

				𝑖
			

			
				w
				i
				t
				h
				𝑠
				≥
				1
				,
			

		
	

					where 
	
		
			
				𝑠
				=
				d
				e
				g
			

			

				𝑦
			

		
	
  
	
		
			

				𝐹
			

		
	
 denotes the degree of 
	
		
			

				𝑦
			

		
	
 in 
	
		
			
				𝐹
				(
				𝑥
				,
				𝑦
				)
			

		
	
.
Definition 1 (Lai and Chen [12]). A polynomial function 
	
		
			
				𝑦
				=
				𝑦
				(
				𝑥
				)
			

		
	
 satisfying (1) is called a quasi-fixed solution corresponding to some real number 
	
		
			

				𝑎
			

		
	
. This number 
	
		
			

				𝑎
			

		
	
 is called a quasi-fixed value corresponding to the polynomial solutions 
	
		
			
				𝑦
				=
				𝑦
				(
				𝑥
				)
			

		
	
.
Moreover, Chen and Lai [16] extended (1) to a more general coincidence (point) problem in which the 
	
		
			
				𝑓
				(
				𝑥
				)
				∈
				ℝ
				[
				𝑥
				]
			

		
	
 is replaced by the irreducible polynomial power 
	
		
			

				𝑝
			

			

				𝑚
			

			
				(
				𝑥
				)
				∈
				ℝ
				[
				𝑥
				]
			

		
	
, where 
	
		
			
				𝑓
				(
				𝑥
				)
			

		
	
 is an arbitrary polynomial. Then we restate (1) as the following equation: 
						
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				𝐹
				(
				𝑥
				,
				𝑦
				)
				=
				𝑎
				𝑓
				(
				𝑥
				)
				.
			

		
	

					It is a new development coincidence point-like problem. We call the polynomial solution 
	
		
			
				𝑦
				=
				𝑦
				(
				𝑥
				)
			

		
	
 for (3) a quasi-coincidence (point) solution. Precisely, we give the following definition like Definition 1.
Definition 2 (Chen and Lai [16]). A polynomial function 
	
		
			
				𝑦
				=
				𝑦
				(
				𝑥
				)
			

		
	
 satisfying (3) is called a quasi-coincidence (point) solution corresponding to some real number 
	
		
			

				𝑎
			

		
	
. This number 
	
		
			

				𝑎
			

		
	
 is called a quasi-coincidence value corresponding to the polynomial solutions 
	
		
			
				𝑦
				=
				𝑦
				(
				𝑥
				)
			

		
	
.
Furthermore, we consider a multivariate polynomial function 
	
		
			
				𝐹
				∶
				ℝ
			

			

				𝑛
			

			
				×
				ℝ
				→
				ℝ
			

		
	
 and extend (3) as a more general coincidence (point) problem in which the 
	
		
			
				
			
			
				𝑥
				=
				(
				𝑥
			

			

				1
			

			
				,
				𝑥
			

			

				2
			

			
				,
				…
				,
				𝑥
			

			

				𝑛
			

			

				)
			

		
	
 is replaced by 
	
		
			

				𝑥
			

		
	
 throughout this paper, where 
	
		
			
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 is a nonzero arbitrary polynomial in 
	
		
			
				ℝ
				[
			

			
				
			
			
				𝑥
				]
			

		
	
. Then we restate (3) as the following equation: 
						
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			
				𝐹
				
			

			
				
			
			
				
				
				𝑥
				,
				𝑦
				=
				𝑎
				𝑓
			

			
				
			
			
				𝑥
				
				.
			

		
	

					Thus, we can give some definitions like Definition 2 as follows.
Definition 3. A polynomial function 
	
		
			
				𝑦
				=
				𝑦
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 satisfying (4) is called a quasi-coincidence (point) solution corresponding to some real number 
	
		
			

				𝑎
			

		
	
. This number 
	
		
			

				𝑎
			

		
	
 is called a quasi-coincidence value corresponding to the polynomial solutions 
	
		
			
				𝑦
				=
				𝑦
				(
			

			
				
			
			
				𝑥
				)
			

		
	
.
The number of all solutions in (4) may be infinitely many, finitely many, or not solvable. In this paper, we solve all solutions of (4) if the number is infinitely many. Moreover, we provide an upper bound for the number of all solutions if the number is finitely many.
In Section 2, we derive some properties of quasi-coincidence solutions. If (4) has infinitely many quasi-coincidence solutions, the form of 
	
		
			
				𝐹
				(
			

			
				
			
			
				𝑥
				,
				𝑦
				)
			

		
	
 will be described in Section 3. In the last section, we solve all solutions if (4) has infinitely many solutions.
2. Preliminaries
For convenience, we denote the polynomial function by
						
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			
				𝐹
				
			

			
				
			
			
				
				𝑥
				,
				𝑦
				=
				𝑎
			

			

				𝑠
			

			

				
			

			
				
			
			
				𝑥
				
				𝑦
			

			

				𝑠
			

			
				+
				𝑎
			

			
				𝑠
				−
				1
			

			

				
			

			
				
			
			
				𝑥
				
				𝑦
			

			
				𝑠
				−
				1
			

			
				+
				⋯
				+
				𝑎
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				𝑦
				+
				𝑎
			

			

				0
			

			

				
			

			
				
			
			
				𝑥
				
				=
			

			

				𝑠
			

			

				
			

			
				𝑖
				=
				0
			

			

				𝑎
			

			

				𝑖
			

			

				
			

			
				
			
			
				𝑥
				
				𝑦
			

			

				𝑖
			

		
	

					throughout this paper and since there may exist many solutions corresponding to the same number 
	
		
			

				𝑎
			

		
	
, we use the similar notations like (Definition  2, [11]) to represent them.
Notation 1. (1) 
	
		
			
				Q
				c
				s
			

			

				𝐹
			

		
	
, the set of all solutions satisfying equation (4), the solution in 
	
		
			
				Q
				c
				s
			

			

				𝐹
			

		
	
 is also called a quasi-coincidence solution in (4) (like Definition 2).(2) 
	
		
			
				Q
				c
				v
			

			

				𝐹
			

		
	
, the set of all solutions 
	
		
			

				𝑎
			

		
	
 satisfying equation (4), the solution in 
	
		
			
				Q
				c
				v
			

			

				𝐹
			

		
	
 is also called a quasi-coincidence value in (4) (like Definition 2).(3) 
	
		
			
				Q
				c
				s
			

			

				𝐹
			

			
				(
				𝑎
				)
			

		
	
, the set of all quasi-coincidence solutions 
	
		
			
				𝑦
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 corresponding to a quasi-coincidence value 
	
		
			

				𝑎
			

		
	
.(4) For each 
	
		
			
				𝑎
				∈
				ℝ
			

		
	
, we denote 
	
		
			
				|
				Q
				c
				s
			

			

				𝐹
			

			
				(
				𝑎
				)
				|
			

		
	
 as the cardinal number of 
	
		
			
				Q
				c
				s
			

			

				𝐹
			

			
				(
				𝑎
				)
			

		
	
.
Evidently, by Notation 1, we have the following lemma.
Lemma 4.  (i) 
	
		
			
				𝑄
				𝑐
				𝑠
			

			

				𝐹
			

			
				=
				⋃
			

			
				𝑎
				∈
				𝑄
				𝑐
				𝑣
			

			

				𝐹
			

			
				𝑄
				𝑐
				𝑠
			

			

				𝐹
			

			
				(
				𝑎
				)
			

		
	
; (ii) 
	
		
			
				𝑄
				𝑐
				𝑠
			

			

				𝐹
			

			
				⋂
				(
				𝑎
				)
				𝑄
				𝑐
				𝑠
			

			

				𝐹
			

			
				(
				𝑏
				)
				=
				∅
			

		
	
 for any 
	
		
			
				𝑎
				≠
				𝑏
			

		
	
 in 
	
		
			
				𝑄
				𝑐
				𝑣
			

			

				𝐹
			

		
	
; (iii) 
	
		
			
				|
				𝑄
				𝑐
				𝑠
			

			

				𝐹
			

			
				(
				𝑎
				)
				|
				≤
				d
				e
				g
			

			

				𝑦
			

			
				𝐹
				(
			

			
				
			
			
				𝑥
				,
				𝑦
				)
			

		
	
 for any 
	
		
			
				𝑎
				∈
				ℝ
			

		
	
; (iv) 
	
		
			
				|
				𝑄
				𝑐
				𝑠
			

			

				𝐹
			

			
				|
				≤
				|
				𝑄
				𝑐
				𝑣
			

			

				𝐹
			

			
				|
				|
				𝑄
				𝑐
				𝑠
			

			

				𝐹
			

			
				(
				𝑎
				)
				|
			

		
	
 for any 
	
		
			
				𝑎
				∈
				𝑄
				𝑐
				𝑣
			

			

				𝐹
			

		
	
.
Proof. (i) 
	
		
			

				⋃
			

			
				𝑎
				∈
			

			
				Q
				c
				v
			

			

				𝐹
			

			
				Q
				c
				s
			

			

				𝐹
			

			
				(
				𝑎
				)
				⊆
				Q
				c
				s
			

			

				𝐹
			

		
	
 is obvious.Conversely, for any 
	
		
			
				𝑦
				(
			

			
				
			
			
				𝑥
				)
				∈
				Q
				c
				s
			

			

				𝐹
			

		
	
, by Notation 1(1), we have 
							
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			
				𝐹
				
			

			
				
			
			
				
				𝑥
				,
				𝑦
			

			
				
			
			
				𝑥
				
				
				
				=
				𝑎
				𝑓
			

			
				
			
			
				𝑥
				
			

		
	

						for some 
	
		
			
				𝑎
				∈
				Q
				c
				v
			

			

				𝐹
			

		
	
. This means 
	
		
			
				𝑦
				(
			

			
				
			
			
				𝑥
				)
				∈
				Q
				c
				s
			

			

				𝐹
			

			
				(
				𝑎
				)
			

		
	
 and we obtain 
							
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			
				Q
				c
				s
			

			

				𝐹
			

			
				⊆
				
			

			
				𝑎
				∈
			

			
				Q
				c
				v
			

			

				𝐹
			

			
				Q
				c
				s
			

			

				𝐹
			

			
				(
				𝑎
				)
				.
			

		
	
(ii) Let 
	
		
			
				𝑎
				≠
				𝑏
			

		
	
 in 
	
		
			
				Q
				c
				v
			

			

				𝐹
			

		
	
; if there exists 
	
		
			
				𝑦
				(
			

			
				
			
			
				𝑥
				)
				∈
				ℝ
				[
			

			
				
			
			
				𝑥
				]
			

		
	
 such that
							
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				𝑦
				
			

			
				
			
			
				𝑥
				
				∈
				Q
				c
				s
			

			

				𝐹
			

			
				
				(
				𝑎
				)
				Q
				c
				s
			

			

				𝐹
			

			
				(
				𝑏
				)
				,
			

		
	

						by Notation 1(3), we have 
							
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				
				𝑎
				𝑓
			

			
				
			
			
				𝑥
				
				
				=
				𝐹
			

			
				
			
			
				
				𝑥
				,
				𝑦
			

			
				
			
			
				𝑥
				
				
				
				=
				𝑏
				𝑓
			

			
				
			
			
				𝑥
				
				.
			

		
	

						This leads a contradiction to 
	
		
			
				𝑎
				≠
				𝑏
			

		
	
 and we have 
	
		
			
				Q
				c
				s
			

			

				𝐹
			

			
				⋂
				(
				𝑎
				)
				Q
				c
				s
			

			

				𝐹
			

			
				(
				𝑏
				)
				=
				∅
			

		
	
.(iii) For each 
	
		
			
				𝑎
				∈
				ℝ
			

		
	
, the number of all solutions 
	
		
			
				𝑦
				=
				𝑦
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 to the polynomial equation 
	
		
			
				𝐹
				(
			

			
				
			
			
				𝑥
				,
				𝑦
				)
				−
				𝑎
				𝑓
				(
			

			
				
			
			
				𝑥
				)
				=
				0
			

		
	
 is at most 
	
		
			
				d
				e
				g
			

			

				𝑦
			

			
				(
				𝐹
				(
			

			
				
			
			
				𝑥
				,
				𝑦
				)
				−
				𝑎
				𝑓
				(
			

			
				
			
			
				𝑥
				)
				)
				=
				d
				e
				g
			

			

				𝑦
			

			
				𝐹
				(
			

			
				
			
			
				𝑥
				,
				𝑦
				)
			

		
	
; then the result is obtained.(iv) By (i), we have 
							
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				Q
				c
				s
			

			

				𝐹
			

			
				=
				
			

			
				𝑎
				∈
			

			
				Q
				c
				v
			

			

				𝐹
			

			
				Q
				c
				s
			

			

				𝐹
			

			
				(
				𝑎
				)
				.
			

		
	

						It follows that
							
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			
				|
				|
				Q
				c
				s
			

			

				𝐹
			

			
				|
				|
				=
				|
				|
				|
				|
				|
				
			

			
				𝑎
				∈
			

			
				Q
				c
				v
			

			

				𝐹
			

			
				Q
				c
				s
			

			

				𝐹
			

			
				(
				|
				|
				|
				|
				|
				≤
				|
				|
				𝑎
				)
				Q
				c
				v
			

			

				𝐹
			

			
				|
				|
				|
				|
				Q
				c
				s
			

			

				𝐹
			

			
				|
				|
				(
				𝑎
				)
				,
				f
				o
				r
				a
				n
				y
				𝑎
				∈
				Q
				c
				v
			

			

				𝐹
			

			

				.
			

		
	

In the following lemma, we explain some interesting properties of the relations of quasi-coincidence point solutions. Throughout this paper, we consider (4) for polynomial function (5) and nonzero arbitrary polynomial 
	
		
			
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 in 
	
		
			
				ℝ
				[
			

			
				
			
			
				𝑥
				]
			

		
	
.
Lemma 5.  Let the cardinal number 
	
		
			
				|
				𝑄
				𝑐
				𝑣
			

			

				𝐹
			

			
				|
				≥
				2
			

		
	
 and 
	
		
			
				𝑎
				≠
				𝑏
			

		
	
 in 
	
		
			
				𝑄
				𝑐
				𝑣
			

			

				𝐹
			

		
	
. Then for any 
	
		
			

				𝑦
			

			

				1
			

			

				(
			

			
				
			
			
				𝑥
				)
				∈
				𝑄
				𝑐
				𝑠
			

			

				𝐹
			

			
				(
				𝑎
				)
			

		
	
 and 
	
		
			

				𝑦
			

			

				2
			

			

				(
			

			
				
			
			
				𝑥
				)
				∈
				𝑄
				𝑐
				𝑠
			

			

				𝐹
			

			
				(
				𝑏
				)
			

		
	
, one has
							
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			

				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				−
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				
				=
				𝑑
				𝑝
			

			
				
			
			
				𝑥
				
				𝑓
				𝑜
				𝑟
				𝑠
				𝑜
				𝑚
				𝑒
				𝑑
				∈
				ℝ
				,
			

		
	

						and this 
	
		
			
				𝑝
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 is a factor of 
	
		
			
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
, that is, 
	
		
			
				𝑝
				(
			

			
				
			
			
				𝑥
				)
				∣
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
.
Proof. Since 
	
		
			

				𝑦
			

			

				1
			

			

				(
			

			
				
			
			
				𝑥
				)
			

		
	
, 
	
		
			

				𝑦
			

			

				2
			

			

				(
			

			
				
			
			
				𝑥
				)
			

		
	
 correspond to 
	
		
			

				𝑎
			

		
	
, 
	
		
			

				𝑏
			

		
	
, respectively, we have
							
	
 		
 			
				(
				1
				3
				)
			
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				𝐹
				
			

			
				
			
			
				𝑥
				,
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				
				
				=
				𝑎
				𝑓
			

			
				
			
			
				𝑥
				
				,
				𝐹
				
			

			
				
			
			
				𝑥
				,
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				
				
				=
				𝑏
				𝑓
			

			
				
			
			
				𝑥
				
				.
			

		
	

						Subtracting (14) from (13) and using binomial formula, it yields that
							
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				
				(
				𝑎
				−
				𝑏
				)
				𝑓
			

			
				
			
			
				𝑥
				
				
				=
				𝐹
			

			
				
			
			
				𝑥
				,
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				
				
				−
				𝐹
			

			
				
			
			
				𝑥
				,
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				
				=
				𝑎
			

			

				𝑠
			

			

				
			

			
				
			
			
				𝑥
				𝑦
				
				
			

			
				𝑠
				1
			

			

				
			

			
				
			
			
				𝑥
				
				−
				𝑦
			

			
				𝑠
				2
			

			

				
			

			
				
			
			
				𝑥
				
				
				+
				𝑎
			

			
				𝑠
				−
				1
			

			

				
			

			
				
			
			
				𝑥
				𝑦
				
				
			

			
				1
				𝑠
				−
				1
			

			

				
			

			
				
			
			
				𝑥
				
				−
				𝑦
			

			
				2
				𝑠
				−
				1
			

			

				
			

			
				
			
			
				𝑥
				
				
				+
				⋯
				+
				𝑎
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				𝑦
				
				
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				−
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				=
				
				𝑦
				
				
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				−
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				×
				
				𝑎
				
				
			

			

				𝑠
			

			

				
			

			
				
			
			
				𝑥
				
				𝐺
			

			

				𝑠
			

			
				
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				,
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				
				+
				𝑎
			

			
				𝑠
				−
				1
			

			

				
			

			
				
			
			
				𝑥
				
				𝐺
			

			
				𝑠
				−
				1
			

			
				
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				,
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				
				+
				⋯
				+
				𝑎
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				=
				
				𝑦
				
				
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				−
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				𝑄
				
				
				
				𝑥
				,
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				,
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				,
				
				
			

		
	

						where
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			

				𝐺
			

			

				𝑗
			

			
				
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				,
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				
				=
				𝑦
			

			
				1
				𝑗
				−
				1
			

			

				
			

			
				
			
			
				𝑥
				
				+
				𝑦
			

			
				1
				𝑗
				−
				2
			

			

				
			

			
				
			
			
				𝑥
				
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				+
				⋯
				+
				𝑦
			

			
				2
				𝑗
				−
				1
			

			

				
			

			
				
			
			
				𝑥
				
				,
			

		
	

						for 
	
		
			
				𝑗
				=
				𝑠
			

		
	
, 
	
		
			
				𝑠
				−
				1
				,
				…
				,
				2
				,
				1
			

		
	
. Evidently, the factor 
	
		
			

				𝑦
			

			

				1
			

			

				(
			

			
				
			
			
				𝑥
				)
				−
				𝑦
			

			

				2
			

			

				(
			

			
				
			
			
				𝑥
				)
			

		
	
 is divisible to the term 
	
		
			
				(
				𝑎
				−
				𝑏
				)
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 and since 
	
		
			
				𝑎
				≠
				𝑏
			

		
	
, we obtain 
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			

				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				−
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				
				=
				𝑑
				𝑝
			

			
				
			
			
				𝑥
				
			

		
	

						for some real number 
	
		
			
				𝑑
				∈
				ℝ
			

		
	
 and factor 
	
		
			
				𝑝
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 of 
	
		
			
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
.
In Lemma 5, the difference of any two distinct quasi-coincidence solutions corresponding to distinct values is a factor of 
	
		
			
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
. Thus we may define a class of those factors in the following.
Notation 2. (i) Denote 
	
		
			
				Φ
				(
				𝑝
				(
			

			
				
			
			
				𝑥
				)
				)
				=
				{
				𝛼
				𝑝
				(
			

			
				
			
			
				𝑥
				)
				∶
				𝛼
				∈
				ℝ
				}
			

		
	
.(ii) Let 
	
		
			
				𝑦
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 be an arbitrary polynomial in 
	
		
			
				ℝ
				[
			

			
				
			
			
				𝑥
				]
			

		
	
, and we denote 
	
		
			
				𝑦
				(
			

			
				
			
			
				𝑥
				)
				+
				Φ
				(
				𝑝
				(
			

			
				
			
			
				𝑥
				)
				)
				=
				{
				𝑦
				(
			

			
				
			
			
				𝑥
				)
				+
				𝛼
				𝑝
				(
			

			
				
			
			
				𝑥
				)
				∶
				𝛼
				∈
				ℝ
				}
			

		
	
.(iii) 
	
		
			
				d
				e
				g
				𝑓
				(
			

			
				
			
			
				∑
				𝑥
				)
				=
			

			
				𝑛
				𝑖
				=
				1
			

			
				d
				e
				g
			

			

				𝑥
			

			

				𝑖
			

			
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
.
If 
	
		
			

				𝑦
			

			

				1
			

			
				(
				𝑥
				)
			

		
	
, 
	
		
			

				𝑦
			

			

				2
			

			
				(
				𝑥
				)
				∈
				Q
				c
				s
			

			

				𝐹
			

		
	
 correspond to distinct quasi-coincidence values, by Lemma 5 and Notation 2, we have 
						
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			

				𝑦
			

			

				1
			

			
				(
				𝑥
				)
				−
				𝑦
			

			

				2
			

			
				
				(
				𝑥
				)
				∈
			

			
				𝑝
				(
			

			
				
			
			
				𝑥
				)
				∣
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				Φ
				
				𝑝
				
			

			
				
			
			
				𝑥
				.
				
				
			

		
	

Since the number of all factors 
	
		
			
				𝑝
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 to 
	
		
			
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 is at most 
	
		
			

				2
			

			
				d
				e
				g
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
, by the definitions of “the pigeonhole principle” in [17], we have the following results.
Lemma 6.  Suppose that 
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				|
				|
				𝑄
				𝑐
				𝑣
			

			

				𝐹
			

			
				|
				|
				≥
				𝑘
				⋅
				2
			

			
				d
				e
				g
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				+
				2
				.
			

		
	

						Then there exists 
	
		
			
				𝑦
				(
			

			
				
			
			
				𝑥
				)
				∈
				𝑄
				𝑐
				𝑠
			

			

				𝐹
			

		
	
 and 
	
		
			
				𝑝
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 is a factor of 
	
		
			
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 such that 
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			
				|
				|
				
				𝑦
				
			

			
				
			
			
				𝑥
				
				
				𝑝
				
				+
				Φ
			

			
				
			
			
				𝑥
				
				
				
				∩
				𝑄
				𝑐
				𝑠
			

			

				𝐹
			

			
				|
				|
				≥
				𝑘
				.
			

		
	

Proof. Since 
	
		
			
				|
				Q
				c
				v
			

			

				𝐹
			

			
				|
				≥
				𝑘
				2
			

			
				d
				e
				g
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				+
				2
			

		
	
, by (18), there exists 
	
		
			

				𝑦
			

			

				1
			

			

				(
			

			
				
			
			
				𝑥
				)
			

		
	
, 
	
		
			

				𝑦
			

			

				2
			

			

				(
			

			
				
			
			
				𝑥
				)
				,
				…
				,
				𝑦
			

			
				{
				𝑘
				2
			

			
				d
				e
				g
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				+
				2
				}
			

			

				(
			

			
				
			
			
				𝑥
				)
				∈
				Q
				c
				s
			

			

				𝐹
			

		
	
 such that 
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			

				𝑦
			

			

				𝑗
			

			

				
			

			
				
			
			
				𝑥
				
				−
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				
				𝑝
				∈
				Φ
			

			

				𝑗
			

			

				
			

			
				
			
			
				𝑥
				
				
			

		
	

						for some factor 
	
		
			

				𝑝
			

			

				𝑗
			

			

				(
			

			
				
			
			
				𝑥
				)
			

		
	
 of 
	
		
			
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
, for 
	
		
			
				𝑗
				=
				2
				,
				3
				,
				…
				,
				𝑘
				2
			

			
				d
				e
				g
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				+
				2
			

		
	
. Moreover, we have that the number of all factors to 
	
		
			
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 is at most 
	
		
			

				2
			

			
				d
				e
				g
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
. By “the pigeonhole principle,” there exists a subset 
	
		
			
				{
				𝑦
			

			

				𝑗
			

			

				𝑖
			

			

				(
			

			
				
			
			
				𝑥
				)
				}
			

			
				𝑘
				𝑖
				=
				1
			

			
				⊆
				{
				𝑦
			

			

				𝑗
			

			

				(
			

			
				
			
			
				𝑥
				)
				}
			

			
				𝑘
				2
			

			
				d
				e
				g
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				+
				2
				𝑗
				=
				2
			

		
	
 such that 
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			

				𝑦
			

			

				𝑗
			

			

				𝑖
			

			

				
			

			
				
			
			
				𝑥
				
				−
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				
				𝑝
				
				∈
				Φ
			

			
				
			
			
				𝑥
				,
				
				
			

		
	

						for 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑘
			

		
	
 and some factor 
	
		
			
				𝑝
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 of 
	
		
			
				𝐹
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 (this 
	
		
			
				𝑝
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 is independent of the choice of 
	
		
			

				𝑖
			

		
	
). Thus
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			
				
				𝑦
			

			

				𝑗
			

			

				𝑖
			

			

				
			

			
				
			
			
				𝑥
				
				
			

			
				𝑘
				𝑖
				=
				1
			

			
				⊆
				
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				
				𝑝
				
				+
				Φ
			

			
				
			
			
				𝑥
				
				
				
				∩
				Q
				c
				s
			

			

				𝐹
			

			
				,
				|
				|
				
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				
				𝑝
				
				+
				Φ
			

			
				
			
			
				𝑥
				
				
				
				∩
				Q
				c
				s
			

			

				𝐹
			

			
				|
				|
				≥
				𝑘
				.
			

		
	

For convenience, we explain the relations of 
	
		
			
				Q
				c
				s
			

			

				𝐹
			

		
	
 and 
	
		
			
				Φ
				(
				𝑝
				(
			

			
				
			
			
				𝑥
				)
				)
			

		
	
 in the following lemma.
Lemma 7.  Let 
	
		
			
				𝑦
				(
			

			
				
			
			
				𝑥
				)
				∈
				𝑄
				𝑐
				𝑠
			

			

				𝐹
			

			
				(
				𝑎
				)
			

		
	
 for some 
	
		
			
				𝑎
				∈
				ℝ
			

		
	
. Then 
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				𝑄
				𝑐
				𝑠
			

			

				𝐹
			

			
				=
				𝑄
				𝑐
				𝑠
			

			

				𝐹
			

			
				
				⎛
				⎜
				⎜
				⎝
				
				(
				𝑎
				)
			

			
				𝑝
				(
			

			
				
			
			
				𝑥
				)
				∣
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				𝑦
				
				
				
			

			
				
			
			
				𝑥
				
				
				𝑝
				
				+
				Φ
			

			
				
			
			
				𝑥
				
				
				
				∩
				𝑄
				𝑐
				𝑠
			

			

				𝐹
			

			
				
				⎞
				⎟
				⎟
				⎠
			

		
	

						for some factor 
	
		
			
				𝑝
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 of 
	
		
			
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
.
Proof. For any 
	
		
			

				𝑦
			

			

				1
			

			

				(
			

			
				
			
			
				𝑥
				)
				∈
				Q
				c
				s
			

			

				𝐹
			

			
				⧵
				Q
				c
				s
			

			

				𝐹
			

			
				(
				𝑎
				)
			

		
	
, then 
	
		
			

				𝑦
			

			

				1
			

			

				(
			

			
				
			
			
				𝑥
				)
				∈
				Q
				c
				s
				(
				𝑏
				)
			

		
	
 for some 
	
		
			
				𝑏
				∈
				Q
				c
				v
			

			

				𝐹
			

		
	
. By Lemma 5, we have 
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			

				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				
				−
				𝑦
			

			
				
			
			
				𝑥
				
				
				𝑝
				
				∈
				Φ
			

			
				
			
			
				𝑥
				
				
			

		
	

						for some factor 
	
		
			
				𝑝
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 of 
	
		
			
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
. Then
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			

				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				∈
				
			

			
				𝑝
				
			

			
				
			
			
				𝑥
				
				
				∣
				𝑓
			

			
				
			
			
				𝑥
				
			

			
				
				𝑦
				
			

			
				
			
			
				𝑥
				
				
				𝑝
				
				+
				Φ
			

			
				
			
			
				𝑥
				
				
				
			

		
	

						and it follows that 
							
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			
				Q
				c
				s
			

			

				𝐹
			

			
				⊆
				Q
				c
				s
			

			

				𝐹
			

			
				
				⎛
				⎜
				⎜
				⎝
				
				(
				𝑎
				)
			

			
				𝑝
				
			

			
				
			
			
				𝑥
				
				
				∣
				𝑓
			

			
				
			
			
				𝑥
				
			

			
				
				𝑦
				
			

			
				
			
			
				𝑥
				
				
				𝑝
				
				+
				Φ
			

			
				
			
			
				𝑥
				⎞
				⎟
				⎟
				⎠
				.
				
				
				
			

		
	

						Moreover, by Lemma 4(i), 
	
		
			
				Q
				c
				s
			

			

				𝐹
			

			
				(
				𝑎
				)
				⊆
				Q
				c
				s
			

			

				𝐹
			

		
	
; then we obtain 
							
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			
				Q
				c
				s
			

			

				𝐹
			

			
				=
				Q
				c
				s
			

			

				𝐹
			

			
				
				⎛
				⎜
				⎜
				⎝
				
				(
				𝑎
				)
			

			
				𝑝
				(
			

			
				
			
			
				𝑥
				)
				∣
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				𝑦
				
				
				
			

			
				
			
			
				𝑥
				
				
				𝑝
				
				+
				Φ
			

			
				
			
			
				𝑥
				
				
				
				∩
				Q
				c
				s
			

			

				𝐹
			

			
				
				⎞
				⎟
				⎟
				⎠
				.
			

		
	

In order to let the number of all elements in the intersection of sets 
	
		
			

				𝑦
			

			

				1
			

			

				(
			

			
				
			
			
				𝑥
				)
				+
				Φ
				(
				𝑝
			

			

				1
			

			

				(
			

			
				
			
			
				𝑥
				)
				)
			

		
	
 and 
	
		
			

				𝑦
			

			

				2
			

			

				(
			

			
				
			
			
				𝑥
				)
				+
				Φ
				(
				𝑝
			

			

				2
			

			

				(
			

			
				
			
			
				𝑥
				)
				)
			

		
	
 be large enough, we find a lower bound for 
	
		
			
				|
				Q
				c
				v
			

			

				𝐹
			

			

				|
			

		
	
 in the following theorem.
Theorem 8.  Suppose that the cardinal number 
							
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			
				|
				|
				𝑄
				𝑐
				𝑣
			

			

				𝐹
			

			
				|
				|
				≥
				
				2
			

			
				d
				e
				g
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				2
				+
				𝑠
				+
				3
				
				
			

			
				d
				e
				g
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				
				+
				2
				.
			

		
	

						Then for any 
	
		
			

				𝑦
			

			

				1
			

			

				(
			

			
				
			
			
				𝑥
				)
				≠
				𝑦
			

			

				2
			

			

				(
			

			
				
			
			
				𝑥
				)
				∈
				𝑄
				𝑐
				𝑠
			

			

				𝐹
			

		
	
, there exist two factors 
	
		
			

				𝑝
			

			

				1
			

			

				(
			

			
				
			
			
				𝑥
				)
			

		
	
 and 
	
		
			

				𝑝
			

			

				2
			

			

				(
			

			
				
			
			
				𝑥
				)
			

		
	
 of 
	
		
			
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 such that
							
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			
				|
				|
				
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				
				𝑝
				+
				Φ
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				∩
				
				𝑦
				
				
				
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				
				𝑝
				+
				Φ
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				
				
				∩
				𝑄
				𝑐
				𝑠
			

			

				𝐹
			

			
				−
				
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				,
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				|
				|
				
				
				≥
				2
				.
			

		
	

Proof. Let 
	
		
			

				𝑦
			

			

				1
			

			

				(
			

			
				
			
			
				𝑥
				)
				∈
				Q
				c
				s
			

			

				𝐹
			

		
	
 and by assumption
							
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			
				|
				|
				Q
				c
				v
			

			

				𝐹
			

			
				|
				|
				≥
				
				2
			

			
				d
				e
				g
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				2
				+
				𝑠
				+
				3
				
				
			

			
				d
				e
				g
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				
				+
				2
				,
			

		
	

						and by Lemma 6, there exists a factor 
	
		
			

				𝑝
			

			

				1
			

			

				(
			

			
				
			
			
				𝑥
				)
			

		
	
 of 
	
		
			
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 such that 
							
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			
				|
				|
				
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				
				𝑝
				+
				Φ
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				
				
				∩
				Q
				c
				s
			

			

				𝐹
			

			
				|
				|
				≥
				2
			

			
				d
				e
				g
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				+
				𝑠
				+
				3
				.
			

		
	

						This implies that 
							
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			
				|
				|
				
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				
				𝑝
				+
				Φ
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				
				
				∩
				Q
				c
				s
			

			

				𝐹
			

			
				−
				
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				|
				|
				
				
				≥
				2
			

			
				d
				e
				g
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				+
				𝑠
				+
				2
				.
			

		
	

						Moreover, for any 
	
		
			

				𝑦
			

			

				2
			

			

				(
			

			
				
			
			
				𝑥
				)
				∈
				Q
				c
				s
			

			

				𝐹
			

		
	
, we have
							
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			
				
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				
				𝑝
				+
				Φ
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				
				
				∩
				Q
				c
				s
			

			

				𝐹
			

			
				−
				
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				⊆
				
				𝑦
				
				
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				
				𝑝
				+
				Φ
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				
				
				∩
				Q
				c
				s
			

			

				𝐹
			

			
				⊆
				Q
				c
				s
			

			

				𝐹
			

			
				(
				b
				y
				L
				e
				m
				m
				a
				7
				)
				=
				Q
				c
				s
			

			

				𝐹
			

			
				
				⎛
				⎜
				⎜
				⎝
				
				(
				𝑏
				)
			

			
				𝑝
				(
			

			
				
			
			
				𝑥
				)
				∣
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				
				𝑝
				
				+
				Φ
			

			
				
			
			
				𝑥
				
				
				
				∩
				Q
				c
				s
			

			

				𝐹
			

			
				⎞
				⎟
				⎟
				⎠
				,
			

		
	

						for some constant 
	
		
			
				𝑏
				∈
				ℝ
			

		
	
 and it follows that
							
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			

				2
			

			
				d
				e
				g
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				=
				|
				|
				
				𝑦
				+
				𝑠
				+
				2
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				
				𝑝
				+
				Φ
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				
				
				∩
				Q
				c
				s
			

			

				𝐹
			

			
				−
				
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				|
				|
				≤
				|
				|
				
				𝑦
				
				
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				
				𝑝
				+
				Φ
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				
				
				∩
				Q
				c
				s
			

			

				𝐹
			

			
				|
				|
				≤
				|
				|
				|
				|
				|
				|
				Q
				c
				s
			

			

				𝐹
			

			
				
				⎛
				⎜
				⎜
				⎝
				
				(
				𝑏
				)
			

			
				𝑝
				
			

			
				
			
			
				𝑥
				
				
				∣
				𝑓
			

			
				
			
			
				𝑥
				
			

			
				
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				
				𝑝
				
				+
				Φ
			

			
				
			
			
				𝑥
				
				
				
				∩
				Q
				c
				s
			

			

				𝐹
			

			
				⎞
				⎟
				⎟
				⎠
				|
				|
				|
				|
				|
				|
				≤
				|
				|
				Q
				c
				s
			

			

				𝐹
			

			
				|
				|
				+
				
				(
				𝑏
				)
			

			
				𝑝
				(
			

			
				
			
			
				𝑥
				)
				∣
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				|
				|
				
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				
				𝑝
				
				+
				Φ
			

			
				
			
			
				𝑥
				
				
				
				∩
				Q
				c
				s
			

			

				𝐹
			

			
				|
				|
				
				(
				b
				y
				L
				e
				m
				m
				a
				4
				(
				i
				i
				i
				)
				)
				≤
				𝑠
				+
			

			
				𝑝
				(
			

			
				
			
			
				𝑥
				)
				∣
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				|
				|
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				
				𝑝
				
				+
				Φ
			

			
				
			
			
				𝑥
				
				
				∩
				Q
				c
				s
			

			

				𝐹
			

			
				|
				|
				.
			

		
	

						Canceling both sides of the above inequality by “
	
		
			

				𝑠
			

		
	
”, it follows that 
							
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			

				2
			

			
				d
				e
				g
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				
				+
				2
				≤
			

			
				𝑝
				(
			

			
				
			
			
				𝑥
				)
				∣
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				|
				|
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				
				𝑝
				
				+
				Φ
			

			
				
			
			
				𝑥
				
				
				∩
				Q
				c
				s
			

			

				𝐹
			

			
				|
				|
				,
			

		
	

						this implies that 
							
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			

				2
			

			
				d
				e
				g
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				
				+
				1
				≤
			

			
				𝑝
				(
			

			
				
			
			
				𝑥
				)
				∣
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				|
				|
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				
				𝑝
				
				+
				Φ
			

			
				
			
			
				𝑥
				
				
				∩
				Q
				c
				s
			

			

				𝐹
			

			
				−
				
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				|
				|
				;
				
				
			

		
	

						By the pigeonhole’ principle and since the number of all factors 
	
		
			
				𝑝
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 to 
	
		
			
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 is at most 
	
		
			

				2
			

			
				d
				e
				g
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
, we have 
							
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			
				|
				|
				
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				
				𝑝
				+
				Φ
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				
				
				∩
				Q
				c
				s
			

			

				𝐹
			

			
				−
				
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				|
				|
				|
				|
				
				𝑦
				
				
				≥
				2
				,
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				
				𝑝
				+
				Φ
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				−
				
				𝑦
				
				
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				∩
				
				𝑦
				
				
				
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				
				𝑝
				+
				Φ
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				−
				
				𝑦
				
				
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				
				
				∩
				Q
				c
				s
			

			

				𝐹
			

			
				|
				|
				≥
				2
			

		
	

						for some factor 
	
		
			

				𝑝
			

			

				2
			

			

				(
			

			
				
			
			
				𝑥
				)
			

		
	
 of 
	
		
			
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
. Thus we obtain
							
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			
				|
				|
				
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				
				𝑝
				+
				Φ
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				∩
				
				𝑦
				
				
				
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				
				𝑝
				+
				Φ
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				
				
				∩
				Q
				c
				s
			

			

				𝐹
			

			
				−
				
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				,
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				|
				|
				
				
				≥
				2
				.
			

		
	

Up to now, we have not shown that the factor 
	
		
			
				𝑝
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 uniquely existed eventually. In the following theorem, we would show the uniqueness property for the factor 
	
		
			
				𝑝
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 of 
	
		
			
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 if the number of all quasi-coincidence values is large enough.
Theorem 9.  Assume that the cardinal number
							
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			
				|
				|
				𝑄
				𝑐
				𝑣
			

			

				𝐹
			

			
				|
				|
				≥
				
				2
			

			
				d
				e
				g
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				2
				+
				𝑠
				+
				3
				
				
			

			
				d
				e
				g
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				
				+
				2
				.
			

		
	

						Then for any 
	
		
			

				𝑦
			

			

				1
			

			

				(
			

			
				
			
			
				𝑥
				)
				,
				𝑦
			

			

				2
			

			

				(
			

			
				
			
			
				𝑥
				)
				∈
				𝑄
				𝑐
				𝑠
			

			

				𝐹
			

		
	
, one has
							
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			

				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				−
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				
				=
				𝜆
				𝑝
			

			
				
			
			
				𝑥
				
				,
			

		
	

						where 
	
		
			
				𝜆
				∈
				ℝ
			

		
	
 and 
	
		
			
				𝑝
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 is a factor of 
	
		
			
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 (this 
	
		
			
				𝑝
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 is independent of the choice of 
	
		
			

				𝑦
			

			

				1
			

			

				(
			

			
				
			
			
				𝑥
				)
			

		
	
 and 
	
		
			

				𝑦
			

			

				2
			

			

				(
			

			
				
			
			
				𝑥
				)
			

		
	
).
Proof. Let 
	
		
			

				𝑦
			

			

				1
			

			

				(
			

			
				
			
			
				𝑥
				)
				≠
				𝑦
			

			

				2
			

			

				(
			

			
				
			
			
				𝑥
				)
				∈
				Q
				c
				s
			

			

				𝐹
			

		
	
; by Theorem 8, we have
							
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			
				|
				|
				
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				
				𝑝
				+
				Φ
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				∩
				
				𝑦
				
				
				
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				
				𝑝
				+
				Φ
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				
				
				∩
				Q
				c
				s
			

			

				𝐹
			

			
				−
				
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				,
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				|
				|
				
				
				≥
				2
			

		
	

						for some factors 
	
		
			

				𝑝
			

			

				1
			

			

				(
			

			
				
			
			
				𝑥
				)
			

		
	
 and 
	
		
			

				𝑝
			

			

				2
			

			

				(
			

			
				
			
			
				𝑥
				)
			

		
	
 of 
	
		
			
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
. There exists 
	
		
			

				𝑔
			

			

				1
			

			

				(
			

			
				
			
			
				𝑥
				)
				≠
				𝑔
			

			

				2
			

			

				(
			

			
				
			
			
				𝑥
				)
				∈
				Q
				c
				s
			

			

				𝐹
			

		
	
, such that
							
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			

				𝑔
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				,
				𝑔
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				∈
				
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				
				𝑝
				+
				Φ
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				∩
				
				𝑦
				
				
				
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				
				𝑝
				+
				Φ
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				
				
				∩
				Q
				c
				s
			

			

				𝐹
			

			
				−
				
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				,
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				.
				
				
			

		
	

						This implies that
							
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			

				𝑔
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				∈
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				
				𝑝
				+
				Φ
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				,
				𝑔
				
				
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				∈
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				
				𝑝
				+
				Φ
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				,
				𝑔
				
				
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				∈
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				
				𝑝
				+
				Φ
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				,
				𝑔
				
				
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				∈
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				
				𝑝
				+
				Φ
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				.
				
				
			

		
	

						By Notation 2(ii), it yields that
							
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			

				𝑔
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				−
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				=
				𝜆
			

			

				1
			

			

				𝑝
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				,
				𝑔
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				−
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				=
				𝜆
			

			

				2
			

			

				𝑝
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				,
				𝑔
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				−
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				=
				𝜆
			

			

				3
			

			

				𝑝
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				,
				𝑔
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				−
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				=
				𝜆
			

			

				4
			

			

				𝑝
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
			

		
	

						for some constants 
	
		
			

				𝜆
			

			

				1
			

		
	
, 
	
		
			

				𝜆
			

			

				2
			

		
	
, 
	
		
			

				𝜆
			

			

				3
			

		
	
, and 
	
		
			

				𝜆
			

			

				4
			

			
				∈
				ℝ
			

		
	
 and consequently
							
	
 		
 			
				(
				4
				6
				)
			
 		
	

	
		
			

				𝑔
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				−
				𝑔
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				=
				
				𝑔
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				−
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				−
				
				𝑔
				
				
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				−
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				=
				
				𝜆
				
				
			

			

				2
			

			
				−
				𝜆
			

			

				1
			

			
				
				𝑝
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				,
				𝑔
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				−
				𝑔
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				=
				
				𝑔
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				−
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				−
				
				𝑔
				
				
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				−
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				=
				
				𝜆
				
				
			

			

				4
			

			
				−
				𝜆
			

			

				3
			

			
				
				𝑝
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				.
			

		
	

						This implies that
							
	
 		
 			
				(
				4
				7
				)
			
 		
	

	
		
			
				
				𝜆
			

			

				2
			

			
				−
				𝜆
			

			

				1
			

			
				
				𝑝
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				=
				
				𝜆
			

			

				4
			

			
				−
				𝜆
			

			

				3
			

			
				
				𝑝
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				,
			

		
	

						and 
	
		
			

				𝑝
			

			

				1
			

			

				(
			

			
				
			
			
				𝑥
				)
				=
				𝑝
			

			

				2
			

			

				(
			

			
				
			
			
				𝑥
				)
			

		
	
. Therefore,
							
	
 		
 			
				(
				4
				8
				)
			
 		
	

	
		
			

				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				−
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				=
				
				𝑔
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				−
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				−
				
				𝑔
				
				
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				−
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				=
				
				𝜆
				
				
			

			

				3
			

			
				−
				𝜆
			

			

				1
			

			
				
				𝑝
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				,
			

		
	

						and this means that the factor 
	
		
			
				𝑝
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 of 
	
		
			
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 is uniquely determined independent of the choice of 
	
		
			

				𝑦
			

			

				1
			

			

				(
			

			
				
			
			
				𝑥
				)
			

		
	
 and 
	
		
			

				𝑦
			

			

				2
			

			

				(
			

			
				
			
			
				𝑥
				)
			

		
	
.
Corollary 10.  Assume that the cardinal number
							
	
 		
 			
				(
				4
				9
				)
			
 		
	

	
		
			
				|
				|
				𝑄
				𝑐
				𝑠
			

			

				𝐹
			

			
				|
				|
				≥
				d
				e
				g
			

			

				𝑦
			

			
				𝐹
				
			

			
				
			
			
				
				2
				𝑥
				,
				𝑦
				
				
			

			
				d
				e
				g
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				2
				+
				𝑠
				+
				3
				
				
			

			
				d
				e
				g
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				
				
				.
				+
				2
			

		
	

						Then for any 
	
		
			
				𝑦
				(
			

			
				
			
			
				𝑥
				)
				∈
				𝑄
				𝑐
				𝑠
			

			

				𝐹
			

		
	
, there exists 
	
		
			
				ℎ
				(
			

			
				
			
			
				𝑥
				)
				,
				𝑝
				(
			

			
				
			
			
				𝑥
				)
				∈
				ℝ
				[
			

			
				
			
			
				𝑥
				]
			

		
	
 such that 
							
	
 		
 			
				(
				5
				0
				)
			
 		
	

	
		
			
				𝑦
				
			

			
				
			
			
				𝑥
				
				
				=
				ℎ
			

			
				
			
			
				𝑥
				
				
				+
				𝜆
				𝑝
			

			
				
			
			
				𝑥
				
			

		
	

						for some 
	
		
			
				𝜆
				∈
				ℝ
			

		
	
  (
	
		
			
				ℎ
				(
			

			
				
			
			
				𝑥
				)
				,
				𝑝
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 are independent of the choice of 
	
		
			
				𝑦
				(
			

			
				
			
			
				𝑥
				)
			

		
	
).
Proof. By Lemma 4(iv), we have
							
	
 		
 			
				(
				5
				1
				)
			
 		
	

	
		
			
				|
				|
				Q
				c
				s
			

			

				𝐹
			

			
				|
				|
				≤
				|
				|
				Q
				c
				v
			

			

				𝐹
			

			
				|
				|
				|
				|
				Q
				c
				s
			

			

				𝐹
			

			
				|
				|
				(
				𝑎
				)
				,
				f
				o
				r
				a
				n
				y
				𝑎
				∈
				Q
				c
				v
			

			

				𝐹
			

			
				(
				b
				y
				L
				e
				m
				m
				a
				4
				(
				i
				i
				i
				)
				)
				≤
				d
				e
				g
			

			

				𝑦
			

			
				𝐹
				
			

			
				
			
			
				
				|
				|
				𝑥
				,
				𝑦
				Q
				c
				v
			

			

				𝐹
			

			
				|
				|
				.
			

		
	

						By assumption, it follows that
							
	
 		
 			
				(
				5
				2
				)
			
 		
	

	
		
			
				d
				e
				g
			

			

				𝑦
			

			
				𝐹
				
			

			
				
			
			
				
				2
				𝑥
				,
				𝑦
				
				
			

			
				d
				e
				g
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				2
				+
				𝑠
				+
				3
				
				
			

			
				d
				e
				g
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				
				
				+
				2
				≤
				d
				e
				g
			

			

				𝑦
			

			
				𝐹
				
			

			
				
			
			
				
				|
				|
				𝑥
				,
				𝑦
				Q
				c
				v
			

			

				𝐹
			

			
				|
				|
				.
			

		
	

						Dividing both sides of the above equation by 
	
		
			
				d
				e
				g
			

			

				𝑦
			

			
				𝐹
				(
			

			
				
			
			
				𝑥
				,
				𝑦
				)
			

		
	
, we get 
							
	
 		
 			
				(
				5
				3
				)
			
 		
	

	
		
			
				|
				|
				Q
				c
				v
			

			

				𝐹
			

			
				|
				|
				≥
				2
				
				
			

			
				d
				e
				g
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				2
				+
				𝑠
				+
				3
				
				
			

			
				d
				e
				g
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				
				
				.
				+
				2
			

		
	

						If 
	
		
			
				ℎ
				(
			

			
				
			
			
				𝑥
				)
				∈
				Q
				c
				s
			

			

				𝐹
			

		
	
, for any 
	
		
			
				𝑦
				(
			

			
				
			
			
				𝑥
				)
				∈
				Q
				c
				s
			

			

				𝐹
			

		
	
, by Theorem 9, we have
							
	
 		
 			
				(
				5
				4
				)
			
 		
	

	
		
			
				𝑦
				
			

			
				
			
			
				𝑥
				
				
				=
				ℎ
			

			
				
			
			
				𝑥
				
				
				+
				𝑑
				𝑝
			

			
				
			
			
				𝑥
				
			

		
	

						for some factor 
	
		
			
				𝑝
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 of 
	
		
			
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
.
3. The Type of 
	
		
			
				𝐹
				(
			

			
				
			
			
				𝑥
				,
				𝑦
				)
			

		
	
 If the Number of All Quasi-Coincidence Solutions Is Infinitely Many
In this section, we consider (4) for polynomial function 
	
		
			
				𝐹
				(
			

			
				
			
			
				𝑥
				,
				𝑦
				)
			

		
	
 in (5); that is, let 
						
	
 		
 			
				(
				5
				5
				)
			
 		
	

	
		
			
				𝐹
				
			

			
				
			
			
				
				=
				𝑥
				,
				𝑦
			

			

				𝑠
			

			

				
			

			
				𝑖
				=
				0
			

			

				𝑎
			

			

				𝑖
			

			

				
			

			
				
			
			
				𝑥
				
				𝑦
			

			

				𝑖
			

			
				w
				i
				t
				h
				𝑠
				≥
				2
				.
			

		
	

	
		
			
				𝑓
				(
			

			
				
			
			
				𝑥
				)
				∈
				ℝ
				[
			

			
				
			
			
				𝑥
				]
			

		
	
 and we assume that 
	
		
			
				𝐹
				(
			

			
				
			
			
				𝑥
				,
				𝑦
				)
			

		
	
 has at least 
	
		
			
				𝑠
				+
				1
			

		
	
 distinct quasi-coincidence solutions satisfying some conditions, that is, 
	
		
			

				𝑦
			

			

				1
			

			

				(
			

			
				
			
			
				𝑥
				)
				,
				𝑦
			

			

				2
			

			

				(
			

			
				
			
			
				𝑥
				)
				,
				𝑦
			

			

				3
			

			

				(
			

			
				
			
			
				𝑥
				)
				,
				…
				,
				𝑦
			

			
				𝑠
				+
				1
			

			

				(
			

			
				
			
			
				𝑥
				)
				,
				…
			

		
	
 in the following theorem. According to the above assumptions, we could derive the following result.
Theorem 11.  Suppose that the cardinal number 
	
		
			
				|
				𝑄
				𝑐
				𝑠
			

			

				𝐹
			

			
				|
				≥
				𝑠
				+
				1
			

		
	
 and for each 
	
		
			
				𝑦
				(
			

			
				
			
			
				𝑥
				)
				∈
				𝑄
				𝑐
				𝑠
			

			

				𝐹
			

		
	
 can be represented as the form
							
	
 		
 			
				(
				5
				6
				)
			
 		
	

	
		
			
				𝑦
				
			

			
				
			
			
				𝑥
				
				=
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				+
				𝜆
			

			

				𝑖
			

			
				𝑝
				
			

			
				
			
			
				𝑥
				
				,
				𝜆
			

			

				𝑖
			

			
				∈
				ℝ
				,
			

		
	

						for some 
	
		
			

				𝑦
			

			

				1
			

			

				(
			

			
				
			
			
				𝑥
				)
				,
				𝑝
				(
			

			
				
			
			
				𝑥
				)
				∈
				ℝ
				[
			

			
				
			
			
				𝑥
				]
			

		
	
 and 
	
		
			

				𝜆
			

			

				𝑖
			

			
				∈
				ℝ
			

		
	
, for 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑠
				+
				1
				,
				…
			

		
	
. Then 
	
		
			

				𝑝
			

			

				𝑠
			

			

				(
			

			
				
			
			
				𝑥
				)
				∣
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 and the polynomial 
	
		
			
				𝐹
				(
			

			
				
			
			
				𝑥
				,
				𝑦
				)
			

		
	
 can be represented as
							
	
 		
 			
				(
				5
				7
				)
			
 		
	

	
		
			
				𝐹
				
			

			
				
			
			
				
				=
				𝑥
				,
				𝑦
			

			

				𝑠
			

			

				
			

			
				𝑖
				=
				0
			

			

				𝑐
			

			

				𝑖
			

			
				𝑓
				
			

			
				
			
			
				𝑥
				
			

			
				
			
			

				𝑝
			

			

				𝑖
			

			

				
			

			
				
			
			
				𝑥
				
				
				𝑦
				−
				𝑦
			

			

				1
			

			

				(
			

			
				
			
			
				
				𝑥
				)
			

			

				𝑖
			

		
	

						for constants 
	
		
			

				𝑐
			

			

				𝑖
			

			
				∈
				ℝ
			

		
	
, 
	
		
			
				𝑖
				=
				0
				,
				1
				,
				…
				,
				𝑠
			

		
	
.
Proof. Let 
	
		
			

				𝑦
			

			

				𝑖
			

			

				(
			

			
				
			
			
				𝑥
				)
			

		
	
 be distinct quasi-coincidence solutions of 
	
		
			
				𝐹
				(
			

			
				
			
			
				𝑥
				,
				𝑦
				)
			

		
	
 corresponding to quasi-coincidence values 
	
		
			

				𝑎
			

			

				𝑖
			

		
	
, 
	
		
			
				1
				≤
				𝑖
				≤
				𝑠
				+
				1
			

		
	
, such that
							
	
 		
 			
				(
				5
				8
				)
			
 		
	

	
		
			
				𝐹
				
			

			
				
			
			
				𝑥
				,
				𝑦
			

			

				𝑖
			

			

				
			

			
				
			
			
				𝑥
				
				
				=
				𝑎
			

			

				𝑖
			

			
				𝑓
				
			

			
				
			
			
				𝑥
				
				.
			

		
	

						Choose 
	
		
			
				𝑖
				=
				1
			

		
	
, 
	
		
			
				𝐹
				(
			

			
				
			
			
				𝑥
				,
				𝑦
			

			

				1
			

			

				(
			

			
				
			
			
				𝑥
				)
				)
				=
				𝑎
			

			

				1
			

			
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
. When 
	
		
			
				𝑦
				−
				𝑦
			

			

				1
			

			

				(
			

			
				
			
			
				𝑥
				)
			

		
	
 divides the function 
	
		
			
				𝐹
				(
			

			
				
			
			
				𝑥
				,
				𝑦
				)
			

		
	
, we get 
							
	
 		
 			
				(
				5
				9
				)
			
 		
	

	
		
			
				𝐹
				
			

			
				
			
			
				
				=
				
				𝑥
				,
				𝑦
				𝑦
				−
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				𝐹
				
				
			

			

				1
			

			

				
			

			
				
			
			
				
				𝑥
				,
				𝑦
				+
				𝑎
			

			

				1
			

			
				𝑓
				
			

			
				
			
			
				𝑥
				
				,
			

		
	

						where 
	
		
			

				𝐹
			

			

				1
			

			

				(
			

			
				
			
			
				𝑥
				,
				𝑦
				)
			

		
	
 is the quotient and 
	
		
			

				𝑎
			

			

				1
			

			
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 is the remainder. From the above identity, take 
	
		
			
				𝑦
				=
				𝑦
			

			

				2
			

			

				(
			

			
				
			
			
				𝑥
				)
			

		
	
, and it becomes
							
	
 		
 			
				(
				6
				0
				)
			
 		
	

	
		
			
				𝐹
				
			

			
				
			
			
				𝑥
				,
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				=
				
				𝑦
				
				
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				−
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				𝐹
				
				
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				,
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				
				+
				𝑎
			

			

				1
			

			
				𝑓
				
			

			
				
			
			
				𝑥
				
				=
				𝑎
			

			

				2
			

			
				𝑓
				
			

			
				
			
			
				𝑥
				
				.
			

		
	

						Then
							
	
 		
 			
				(
				6
				1
				)
			
 		
	

	
		
			
				
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				−
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				𝐹
				
				
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				,
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				=
				
				𝑎
				
				
			

			

				2
			

			
				−
				𝑎
			

			

				1
			

			
				
				𝑓
				
			

			
				
			
			
				𝑥
				
				.
			

		
	

						By (56), 
	
		
			

				𝑦
			

			

				2
			

			

				(
			

			
				
			
			
				𝑥
				)
				−
				𝑦
			

			

				1
			

			

				(
			

			
				
			
			
				𝑥
				)
				=
				𝜆
			

			

				2
			

			
				𝑝
				(
			

			
				
			
			
				𝑥
				)
			

		
	
, it yields that
							
	
 		
 			
				(
				6
				2
				)
			
 		
	

	
		
			

				𝐹
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				,
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				=
				
				
				𝑎
				
				
			

			

				2
			

			
				−
				𝑎
			

			

				1
			

			

				
			

			
				
			
			

				𝜆
			

			

				2
			

			
				
				𝑓
				
			

			
				
			
			
				𝑥
				
			

			
				
			
			
				𝑝
				
			

			
				
			
			
				𝑥
				
				=
				𝑑
			

			

				2
			

			
				𝑓
				
			

			
				
			
			
				𝑥
				
			

			
				
			
			
				𝑝
				
			

			
				
			
			
				𝑥
				
				
				∈
				ℝ
			

			
				
			
			
				𝑥
				
				f
				o
				r
				𝑑
			

			

				2
			

			
				=
				
				𝑎
			

			

				2
			

			
				−
				𝑎
			

			

				1
			

			

				
			

			
				
			
			

				𝜆
			

			

				2
			

			

				.
			

		
	

						Hence 
							
	
 		
 			
				(
				6
				3
				)
			
 		
	

	
		
			

				𝐹
			

			

				1
			

			

				
			

			
				
			
			
				
				=
				
				𝑥
				,
				𝑦
				𝑦
				−
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				𝐹
				
				
			

			

				2
			

			

				
			

			
				
			
			
				
				𝑥
				,
				𝑦
				+
				𝑑
			

			

				2
			

			
				𝑓
				
			

			
				
			
			
				𝑥
				
			

			
				
			
			
				𝑝
				
			

			
				
			
			
				𝑥
				
				.
			

		
	

						Continuing this process from 
	
		
			
				𝑖
				=
				2
			

		
	
 to 
	
		
			
				𝑠
				−
				1
			

		
	
, we obtain
							
	
 		
 			
				(
				6
				4
				)
			
 		
	

	
		
			

				𝐹
			

			

				𝑖
			

			

				
			

			
				
			
			
				
				=
				
				𝑥
				,
				𝑦
				𝑦
				−
				𝑦
			

			
				𝑖
				+
				1
			

			

				
			

			
				
			
			
				𝑥
				𝐹
				
				
			

			
				𝑖
				+
				1
			

			
				(
				𝑥
				,
				𝑦
				)
				+
				𝑑
			

			
				𝑖
				+
				1
			

			
				𝑓
				
			

			
				
			
			
				𝑥
				
			

			
				
			
			

				𝑝
			

			

				𝑖
			

			

				
			

			
				
			
			
				𝑥
				
				,
			

		
	

						for some 
	
		
			

				𝑑
			

			
				𝑖
				+
				1
			

			
				∈
				ℝ
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑠
				−
				1
			

		
	
. Finally, we could get 
							
	
 		
 			
				(
				6
				5
				)
			
 		
	

	
		
			

				𝐹
			

			
				𝑠
				−
				1
			

			

				
			

			
				
			
			
				
				=
				
				𝑥
				,
				𝑦
				𝑦
				−
				𝑦
			

			

				𝑠
			

			

				
			

			
				
			
			
				𝑥
				𝐹
				
				
			

			

				𝑠
			

			

				
			

			
				
			
			
				𝑥
				
				+
				𝑑
			

			

				𝑠
			

			
				𝑓
				
			

			
				
			
			
				𝑥
				
			

			
				
			
			

				𝑝
			

			
				𝑠
				−
				1
			

			

				
			

			
				
			
			
				𝑥
				
				.
			

		
	

	
		
			

				𝐹
			

			

				𝑠
			

			

				(
			

			
				
			
			
				𝑥
				)
			

		
	
 does not contain the variable 
	
		
			

				𝑦
			

		
	
 since 
	
		
			
				d
				e
				g
			

			

				𝑦
			

			
				𝐹
				=
				𝑠
			

		
	
. By the assumption (58), 
	
		
			
				𝐹
				(
			

			
				
			
			
				𝑥
				,
				𝑦
			

			
				𝑠
				+
				1
			

			

				(
			

			
				
			
			
				𝑥
				)
				)
				=
				𝑎
			

			
				𝑠
				+
				1
			

			
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
. It follows that 
							
	
 		
 			
				(
				6
				6
				)
			
 		
	

	
		
			

				𝐹
			

			

				𝑠
			

			

				
			

			
				
			
			
				𝑥
				
				𝑓
				
				=
				𝜆
			

			
				
			
			
				𝑥
				
			

			
				
			
			

				𝑝
			

			

				𝑠
			

			

				
			

			
				
			
			
				𝑥
				
				
				∈
				ℝ
			

			
				
			
			
				𝑥
				
				,
				f
				o
				r
				s
				o
				m
				e
				c
				o
				n
				s
				t
				a
				n
				t
				𝜆
				∈
				ℝ
				.
			

		
	

						Consequently,
							
	
 		
 			
				(
				6
				7
				)
			
 		
	

	
		
			
				𝐹
				
			

			
				
			
			
				
				=
				
				𝑥
				,
				𝑦
				𝑦
				−
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				𝐹
				
				
			

			

				1
			

			

				
			

			
				
			
			
				
				𝑥
				,
				𝑦
				+
				𝑎
			

			

				1
			

			
				𝑓
				
			

			
				
			
			
				𝑥
				
				=
				
				𝑦
				−
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				
				
				
				𝑦
				−
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				𝐹
				
				
			

			

				2
			

			

				
			

			
				
			
			
				
				𝑥
				,
				𝑦
				+
				𝑑
			

			

				2
			

			
				𝑓
				
			

			
				
			
			
				𝑥
				
			

			
				
			
			
				𝑝
				
			

			
				
			
			
				𝑥
				
				
				+
				𝑎
			

			

				1
			

			
				𝑓
				
			

			
				
			
			
				𝑥
				
				
				=
				⋯
				=
				𝑦
				−
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				×
				
				
				
				
				𝑦
				−
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				×
				
				⋯
				
				
				
				
				𝑦
				−
				𝑦
			

			

				𝑠
			

			

				
			

			
				
			
			
				𝑥
				𝐹
				
				
			

			

				𝑠
			

			

				
			

			
				
			
			
				𝑥
				
				+
				𝑑
			

			

				𝑠
			

			
				𝑓
				
			

			
				
			
			
				𝑥
				
			

			
				
			
			

				𝑝
			

			
				𝑠
				−
				1
			

			

				
			

			
				
			
			
				𝑥
				
				
				⋯
				
				+
				𝑑
			

			

				2
			

			
				𝑓
				
			

			
				
			
			
				𝑥
				
			

			
				
			
			
				𝑝
				
			

			
				
			
			
				𝑥
				
				
				+
				𝑎
			

			

				1
			

			
				𝑓
				
			

			
				
			
			
				𝑥
				
				=
				
				𝑦
				−
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				×
				
				
				
				
				𝑦
				−
				𝑦
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				×
				
				⋯
				
				
				
				
				𝑦
				−
				𝑦
			

			

				𝑠
			

			

				
			

			
				
			
			
				𝑥
				𝜆
				𝑓
				
				
				
			

			
				
			
			
				𝑥
				
			

			
				
			
			

				𝑝
			

			

				𝑠
			

			

				
			

			
				
			
			
				𝑥
				
				+
				𝑑
			

			

				𝑠
			

			
				𝑓
				
			

			
				
			
			
				𝑥
				
			

			
				
			
			

				𝑝
			

			
				𝑠
				−
				1
			

			

				
			

			
				
			
			
				𝑥
				
				
				⋯
				
				+
				𝑑
			

			

				2
			

			
				𝑓
				
			

			
				
			
			
				𝑥
				
			

			
				
			
			
				𝑝
				
			

			
				
			
			
				𝑥
				
				
				+
				𝑎
			

			

				1
			

			
				𝑓
				
			

			
				
			
			
				𝑥
				
				.
			

		
	

						By (56), we have 
	
		
			

				𝑦
			

			

				𝑖
			

			

				(
			

			
				
			
			
				𝑥
				)
				=
				𝑦
			

			

				1
			

			

				(
			

			
				
			
			
				𝑥
				)
				+
				𝜆
			

			

				𝑖
			

			
				𝑝
				(
			

			
				
			
			
				𝑥
				)
			

		
	
, 
	
		
			
				𝑖
				=
				2
				,
				3
				,
				…
				,
				𝑠
				+
				1
			

		
	
. Then 
	
		
			
				𝐹
				(
			

			
				
			
			
				𝑥
				,
				𝑦
				)
			

		
	
 can be expanded to a power series in the expression
							
	
 		
 			
				(
				6
				8
				)
			
 		
	

	
		
			
				𝐹
				
			

			
				
			
			
				
				=
				
				𝑥
				,
				𝑦
				𝑦
				−
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				×
				
				
				
				
				𝑦
				−
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				−
				𝜆
			

			

				2
			

			
				𝑝
				
			

			
				
			
			
				𝑥
				×
				
				⋯
				
				
				
				
				𝑦
				−
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				−
				𝜆
			

			

				𝑠
			

			
				𝑝
				
			

			
				
			
			
				𝑥
				𝜆
				𝑓
				
				
				
			

			
				
			
			
				𝑥
				
			

			
				
			
			

				𝑝
			

			

				𝑠
			

			

				
			

			
				
			
			
				𝑥
				
				+
				𝑑
			

			

				𝑠
			

			
				𝑓
				
			

			
				
			
			
				𝑥
				
			

			
				
			
			

				𝑝
			

			
				𝑠
				−
				1
			

			

				
			

			
				
			
			
				𝑥
				
				
				⋯
				
				+
				𝑑
			

			

				2
			

			
				𝑓
				
			

			
				
			
			
				𝑥
				
			

			
				
			
			
				𝑝
				
			

			
				
			
			
				𝑥
				
				
				+
				𝑎
			

			

				1
			

			
				𝑓
				
			

			
				
			
			
				𝑥
				
				=
			

			

				𝑠
			

			

				
			

			
				𝑖
				=
				0
			

			

				𝑐
			

			

				𝑖
			

			
				𝑓
				
			

			
				
			
			
				𝑥
				
			

			
				
			
			

				𝑝
			

			

				𝑖
			

			

				
			

			
				
			
			
				𝑥
				
				
				𝑦
				−
				𝑦
			

			

				1
			

			

				(
			

			
				
			
			
				
				𝑥
				)
			

			

				𝑖
			

			

				,
			

		
	

						for some real numbers 
	
		
			

				𝑐
			

			

				𝑗
			

		
	
, 
	
		
			
				𝑗
				=
				0
				,
				1
				,
				…
				,
				𝑠
			

		
	
. Moreover, the leading coefficient of 
	
		
			
				𝐹
				(
			

			
				
			
			
				𝑥
				,
				𝑦
				)
			

		
	
, 
	
		
			

				𝑐
			

			

				𝑠
			

			
				(
				𝑓
				(
			

			
				
			
			
				𝑥
				)
				/
				𝑝
			

			

				𝑠
			

			

				(
			

			
				
			
			
				𝑥
				)
				)
			

		
	
 is contained to 
	
		
			
				ℝ
				[
			

			
				
			
			
				𝑥
				]
			

		
	
, and it follows 
	
		
			

				𝑝
			

			

				𝑠
			

			

				(
			

			
				
			
			
				𝑥
				)
				∣
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
.
In the above theorem, if there exist at least 
	
		
			
				𝑠
				+
				1
			

		
	
 quasi-coincidence solutions with some relations, then 
	
		
			
				𝐹
				(
			

			
				
			
			
				𝑥
				,
				𝑦
				)
			

		
	
 has a fixed type. In the following theorem, if 
	
		
			
				𝐹
				(
			

			
				
			
			
				𝑥
				,
				𝑦
				)
			

		
	
 has a fixed type expressed as in Theorem 11, then the cardinal number 
	
		
			
				|
				Q
				c
				s
			

			

				𝐹
			

			
				|
				=
				∞
			

		
	
.
Theorem 12.  The following three conditions are equivalent: (i)
	
		
			
				𝐹
				(
			

			
				
			
			
				∑
				𝑥
				,
				𝑦
				)
				=
			

			
				𝑠
				𝑖
				=
				0
			

			

				𝑐
			

			

				𝑖
			

			
				(
				𝑓
				(
			

			
				
			
			
				𝑥
				)
				/
				𝑝
			

			

				𝑖
			

			

				(
			

			
				
			
			
				𝑥
				)
				)
				(
				𝑦
				−
				𝑦
			

			

				1
			

			

				(
			

			
				
			
			
				𝑥
				)
				)
			

			

				𝑖
			

		
	
 for some 
	
		
			

				𝑦
			

			

				1
			

			

				(
			

			
				
			
			
				𝑥
				)
				∈
				ℝ
				[
			

			
				
			
			
				𝑥
				]
			

		
	
, some factor 
	
		
			
				𝑝
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 of 
	
		
			
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 and 
	
		
			

				𝑐
			

			

				𝑖
			

			
				∈
				ℝ
			

		
	
, 
	
		
			
				𝑖
				=
				0
				,
				1
				,
				…
				,
				𝑠
			

		
	
;(ii)
	
		
			
				|
				𝑄
				𝑐
				𝑠
			

			

				𝐹
			

			
				|
				=
				∞
			

		
	
;(iii)
	
		
			
				|
				𝑄
				𝑐
				𝑣
			

			

				𝐹
			

			
				|
				≥
				(
				2
			

			
				d
				e
				g
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				+
				𝑠
				+
				3
				)
				⋅
				2
			

			
				d
				e
				g
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				+
				2
			

		
	
.  (In fact, if 
	
		
			
				|
				𝑄
				𝑐
				𝑠
			

			

				𝐹
			

			
				|
				=
				∞
			

		
	
, then 
	
		
			
				|
				𝑄
				𝑐
				𝑠
			

			

				𝐹
			

			
				|
				=
			

		
	
 the cardinal number of 
	
		
			

				ℝ
			

		
	
).
Proof. 
	
		
			
				(
				i
				)
				⇒
				(
				i
				i
				)
			

		
	
 Suppose that (i) holds. Let 
	
		
			
				𝑦
				=
				𝑦
			

			

				1
			

			

				(
			

			
				
			
			
				𝑥
				)
				+
				𝜆
				𝑝
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 for any constant 
	
		
			
				𝜆
				∈
				ℝ
			

		
	
; we have
							
	
 		
 			
				(
				6
				9
				)
			
 		
	

	
		
			
				𝐹
				
			

			
				
			
			
				𝑥
				,
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				
				+
				𝜆
				𝑝
			

			
				
			
			
				𝑥
				=
				
				
			

			

				𝑠
			

			

				
			

			
				𝑖
				=
				0
			

			

				𝑐
			

			

				𝑖
			

			
				𝑓
				
			

			
				
			
			
				𝑥
				
			

			
				
			
			

				𝑝
			

			

				𝑖
			

			

				
			

			
				
			
			
				𝑥
				
				
				
				𝜆
				𝑝
			

			
				
			
			
				𝑥
				
				
			

			

				𝑖
			

			
				=
				
			

			

				𝑠
			

			

				
			

			
				𝑖
				=
				0
			

			

				𝑐
			

			

				𝑖
			

			

				𝜆
			

			

				𝑖
			

			
				
				𝑓
				
			

			
				
			
			
				𝑥
				
				=
				𝑐
				𝑝
			

			

				𝑚
			

			

				
			

			
				
			
			
				𝑥
				
				f
				o
				r
				𝑐
				=
			

			

				𝑠
			

			

				
			

			
				𝑖
				=
				0
			

			

				𝑐
			

			

				𝑖
			

			

				𝜆
			

			

				𝑖
			

			
				∈
				ℝ
				.
			

		
	

						This means that 
	
		
			

				𝑦
			

			

				1
			

			

				(
			

			
				
			
			
				𝑥
				)
				+
				𝜆
				𝑝
				(
			

			
				
			
			
				𝑥
				)
				∈
				Q
				c
				s
			

			

				𝐹
			

		
	
  for all 
	
		
			
				𝜆
				∈
				ℝ
			

		
	
 and we obtain 
							
	
 		
 			
				(
				7
				0
				)
			
 		
	

	
		
			
				|
				|
				
				𝑦
				∞
				=
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				
				+
				𝜆
				𝑝
			

			
				
			
			
				𝑥
				
				
			

			
				𝜆
				∈
				ℝ
			

			
				|
				|
				≤
				|
				|
				Q
				c
				s
			

			

				𝐹
			

			
				|
				|
				.
			

		
	

						It follows that the cardinal number 
	
		
			
				|
				Q
				c
				s
			

			

				𝐹
			

			
				|
				=
				∞
			

		
	
.
	
		
			
				(
				i
				i
				)
				⇒
				(
				i
				i
				i
				)
			

		
	
 can be obtained obvious from Lemma 4(iv).
	
		
			
				(
				i
				i
				i
				)
				⇒
				(
				i
				)
			

		
	
 For any 
	
		
			
				𝑦
				(
			

			
				
			
			
				𝑥
				)
				,
				𝑦
			

			

				1
			

			

				(
			

			
				
			
			
				𝑥
				)
				∈
				Q
				c
				s
			

			

				𝐹
			

		
	
, by Theorem 9, we have
							
	
 		
 			
				(
				7
				1
				)
			
 		
	

	
		
			
				𝑦
				
			

			
				
			
			
				𝑥
				
				−
				𝑦
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				
				=
				𝑑
				𝑝
			

			
				
			
			
				𝑥
				
				,
			

		
	

						for some fixed factor 
	
		
			
				𝑝
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 of 
	
		
			
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 and by Theorem 11, we obtain 
							
	
 		
 			
				(
				7
				2
				)
			
 		
	

	
		
			
				𝐹
				
			

			
				
			
			
				
				=
				𝑥
				,
				𝑦
			

			

				𝑠
			

			

				
			

			
				𝑖
				=
				0
			

			

				𝑐
			

			

				𝑖
			

			
				𝑓
				
			

			
				
			
			
				𝑥
				
			

			
				
			
			

				𝑝
			

			

				𝑖
			

			

				
			

			
				
			
			
				𝑥
				
				
				𝑦
				−
				𝑦
			

			

				1
			

			

				(
			

			
				
			
			
				
				𝑥
				)
			

			

				𝑖
			

			

				,
			

		
	

						for some 
	
		
			

				𝑦
			

			

				1
			

			

				(
			

			
				
			
			
				𝑥
				)
			

		
	
 and 
	
		
			

				𝑐
			

			

				𝑖
			

			
				∈
				ℝ
			

		
	
, 
	
		
			
				𝑖
				=
				0
				,
				1
				,
				…
				,
				𝑠
			

		
	
.
Corollary 13.  If the number of all quasi-fixed solutions is finitely many, the number of all quasi-fixed values does not exceed an integer 
	
		
			

				ℓ
			

		
	
. Actually, 
							
	
 		
 			
				(
				7
				3
				)
			
 		
	

	
		
			
				
				2
				ℓ
				=
			

			
				d
				e
				g
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				
				+
				𝑠
				+
				3
				⋅
				2
			

			
				d
				e
				g
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				+
				1
				.
			

		
	

Proof. By the contrapositive of Theorem 12
	
		
			
				(
				i
				i
				)
				⇒
				(
				i
				i
				i
				)
			

		
	
, we have “if 
	
		
			
				|
				Q
				c
				s
			

			

				𝐹
			

			
				|
				<
				∞
			

		
	
, then 
	
		
			
				|
				Q
				c
				v
			

			

				𝐹
			

			
				|
				<
				(
				2
			

			
				d
				e
				g
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				+
				𝑠
				+
				3
				)
				⋅
				2
			

			
				d
				e
				g
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				+
				2
			

		
	
.” Hence the number of all quasi-fixed values is at most 
	
		
			

				ℓ
			

		
	
; that is, 
	
		
			
				ℓ
				≤
				(
				2
			

			
				d
				e
				g
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				+
				𝑠
				+
				3
				)
				⋅
				2
			

			
				d
				e
				g
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				+
				1
			

		
	
.
Corollary 14.  If the number of all quasi-fixed solutions is finitely many, the number of all quasi-fixed solutions does not exceed 
							
	
 		
 			
				(
				7
				4
				)
			
 		
	

	
		
			
				d
				e
				g
			

			

				𝑦
			

			
				𝐹
				
			

			
				
			
			
				
				2
				𝑥
				,
				𝑦
				
				
			

			
				d
				e
				g
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				
				+
				𝑠
				+
				3
				⋅
				2
			

			
				d
				e
				g
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				
				.
				+
				1
			

		
	

Proof. By Lemma 4(iv), we have for any 
	
		
			
				𝑎
				∈
				Q
				c
				v
			

			

				𝐹
			

		
	

	
 		
 			
				(
				7
				5
				)
			
 		
	

	
		
			
				|
				|
				Q
				c
				s
			

			

				𝐹
			

			
				|
				|
				≤
				|
				|
				Q
				c
				s
			

			

				𝐹
			

			
				|
				|
				|
				|
				(
				𝑎
				)
				Q
				c
				v
			

			

				𝐹
			

			
				|
				|
				(
				b
				y
				L
				e
				m
				m
				a
				4
				(
				i
				i
				i
				)
				a
				n
				d
				C
				o
				r
				o
				l
				l
				a
				r
				y
				1
				3
				)
				≤
				d
				e
				g
			

			

				𝑦
			

			
				𝐹
				
			

			
				
			
			
				
				2
				𝑥
				,
				𝑦
				
				
			

			
				d
				e
				g
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				
				+
				𝑠
				+
				3
				⋅
				2
			

			
				d
				e
				g
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

			
				
				.
				+
				1
			

		
	

4. Main Theorems and Some Corollaries
If the 
	
		
			
				𝐹
				(
			

			
				
			
			
				𝑥
				,
				𝑦
				)
			

		
	
 can be represented as the form (57), then any quasi-coincidence solution can be formed in this section.
Lemma 15.  Let 
	
		
			
				𝐹
				(
			

			
				
			
			
				𝑥
				,
				𝑦
				)
			

		
	
 be represented as in (57). Then 
	
		
			
				ℎ
				(
			

			
				
			
			
				𝑥
				)
				∈
				ℝ
				[
			

			
				
			
			
				𝑥
				]
			

		
	
 is a quasi-coincidence solution of 
	
		
			
				𝐹
				(
			

			
				
			
			
				𝑥
				,
				𝑦
				)
			

		
	
 if and only if 
							
	
 		
 			
				(
				7
				6
				)
			
 		
	

	
		
			
				ℎ
				
			

			
				
			
			
				𝑥
				
				
				=
				𝑦
			

			
				
			
			
				𝑥
				
				
				+
				𝑑
				𝑝
			

			
				
			
			
				𝑥
				
			

		
	

						for some 
	
		
			
				𝑑
				∈
				ℝ
			

		
	
 and some factor 
	
		
			
				𝑝
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 of 
	
		
			
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
.
Proof. Since 
							
	
 		
 			
				(
				7
				7
				)
			
 		
	

	
		
			
				𝐹
				
			

			
				
			
			
				
				=
				𝑥
				,
				𝑦
			

			

				𝑠
			

			

				
			

			
				𝑖
				=
				0
			

			

				𝑐
			

			

				𝑖
			

			
				𝑓
				
			

			
				
			
			
				𝑥
				
			

			
				
			
			

				𝑝
			

			

				𝑖
			

			

				
			

			
				
			
			
				𝑥
				
				
				
				𝑦
				−
				𝑦
			

			
				
			
			
				𝑥
				
				
			

			

				𝑖
			

			

				,
			

		
	

						we let 
	
		
			
				𝑦
				=
				𝑦
				(
			

			
				
			
			
				𝑥
				)
			

		
	
, and then 
							
	
 		
 			
				(
				7
				8
				)
			
 		
	

	
		
			
				𝐹
				
			

			
				
			
			
				
				𝑥
				,
				𝑦
			

			
				
			
			
				𝑥
				=
				
				
			

			

				𝑠
			

			

				
			

			
				𝑖
				=
				0
			

			

				𝑐
			

			

				𝑖
			

			
				𝑓
				
			

			
				
			
			
				𝑥
				
			

			
				
			
			

				𝑝
			

			

				𝑖
			

			

				
			

			
				
			
			
				𝑥
				
				
				𝑦
				(
			

			
				
			
			
				𝑥
				)
				−
				𝑦
				(
			

			
				
			
			
				
				𝑥
				)
			

			

				𝑖
			

			
				=
				𝑐
			

			

				0
			

			
				𝑓
				
			

			
				
			
			
				𝑥
				
				;
			

		
	

						this means 
	
		
			
				𝑦
				(
			

			
				
			
			
				𝑥
				)
				∈
				Q
				c
				s
			

			

				𝐹
			

		
	
.By Theorem 12, 
							
	
 		
 			
				(
				7
				9
				)
			
 		
	

	
		
			
				𝐹
				
			

			
				
			
			
				
				=
				𝑥
				,
				𝑦
			

			

				𝑠
			

			

				
			

			
				𝑖
				=
				0
			

			

				𝑐
			

			

				𝑖
			

			
				𝑓
				
			

			
				
			
			
				𝑥
				
			

			
				
			
			

				𝑝
			

			

				𝑖
			

			

				
			

			
				
			
			
				𝑥
				
				
				
				𝑦
				−
				𝑦
			

			
				
			
			
				𝑥
				
				
			

			

				𝑖
			

			
				|
				|
				,
				t
				h
				e
				n
				Q
				c
				s
			

			

				𝐹
			

			
				|
				|
				=
				∞
				.
			

		
	

						Assume that 
	
		
			
				ℎ
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 is a quasi-coincidence solution of 
	
		
			
				𝐹
				(
			

			
				
			
			
				𝑥
				,
				𝑦
				)
			

		
	
 and by Corollary 10, we obtain that for any quasi-coincidence solution 
	
		
			
				ℎ
				(
			

			
				
			
			
				𝑥
				)
			

		
	
, we have
							
	
 		
 			
				(
				8
				0
				)
			
 		
	

	
		
			
				ℎ
				
			

			
				
			
			
				𝑥
				
				
				=
				𝑦
			

			
				
			
			
				𝑥
				
				
				+
				𝑑
				𝑝
			

			
				
			
			
				𝑥
				
				,
				f
				o
				r
				s
				o
				m
				e
				𝑑
				∈
				ℝ
				.
			

		
	

						Conversely, suppose 
	
		
			
				ℎ
				(
			

			
				
			
			
				𝑥
				)
				=
				𝑦
				(
			

			
				
			
			
				𝑥
				)
				+
				𝑑
				𝑝
				(
			

			
				
			
			
				𝑥
				)
			

		
	
, for some factor 
	
		
			
				𝑝
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 of 
	
		
			
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 and 
	
		
			
				𝑑
				∈
				ℝ
			

		
	
. Substituting this 
	
		
			
				ℎ
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 as 
	
		
			

				𝑦
			

		
	
 in (57), we have
							
	
 		
 			
				(
				8
				1
				)
			
 		
	

	
		
			
				𝐹
				
			

			
				
			
			
				
				𝑥
				,
				ℎ
			

			
				
			
			
				𝑥
				
				
				
				=
				𝐹
			

			
				
			
			
				
				𝑥
				,
				𝑦
			

			
				
			
			
				𝑥
				
				
				+
				𝑑
				𝑝
			

			
				
			
			
				𝑥
				=
				
				
			

			

				𝑠
			

			

				
			

			
				𝑖
				=
				0
			

			

				𝑐
			

			

				𝑖
			

			
				𝑓
				
			

			
				
			
			
				𝑥
				
			

			
				
			
			

				𝑝
			

			

				𝑖
			

			

				
			

			
				
			
			
				𝑥
				
				
				
				𝑑
				𝑝
			

			
				
			
			
				𝑥
				
				
			

			

				𝑖
			

			
				=
				
			

			

				𝑠
			

			

				
			

			
				𝑖
				=
				0
			

			

				𝑐
			

			

				𝑖
			

			

				𝑑
			

			

				𝑖
			

			
				
				𝑓
				
			

			
				
			
			
				𝑥
				
				.
			

		
	

						Therefore 
	
		
			
				ℎ
				(
			

			
				
			
			
				𝑥
				)
				∈
				Q
				c
				s
			

			

				𝐹
			

		
	
.
Note that not any polynomial function 
	
		
			
				𝐹
				(
			

			
				
			
			
				𝑥
				,
				𝑦
				)
			

		
	
 can be written as (57). Actually, almost all 
	
		
			
				𝐹
				(
			

			
				
			
			
				𝑥
				,
				𝑦
				)
			

		
	
 are expressed as the form of the next theorem. In this situation, any solution can be written as the next form 
	
		
			
				(
				∗
				)
			

		
	
 in this theorem under some condition.
Theorem 16.  Let 
	
		
			
				𝐹
				(
			

			
				
			
			
				𝑥
				,
				𝑦
				)
			

		
	
 be a polynomial function with
							
	
 		
 			
				(
				8
				2
				)
			
 		
	

	
		
			
				𝐹
				
			

			
				
			
			
				
				𝑥
				,
				𝑦
				=
				𝑎
			

			

				𝑠
			

			

				
			

			
				
			
			
				𝑥
				
				𝑦
			

			

				𝑠
			

			
				+
				𝑎
			

			
				𝑠
				−
				1
			

			

				
			

			
				
			
			
				𝑥
				
				𝑦
			

			
				𝑠
				−
				1
			

			
				+
				⋯
				+
				𝑎
			

			

				0
			

			

				
			

			
				
			
			
				𝑥
				
				,
			

		
	

						and 
	
		
			
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 a polynomial. If the cardinal number 
	
		
			
				|
				Q
				c
				s
			

			

				𝐹
			

			

				|
			

		
	
 is infinitely many, then each quasi-coincidence solution of (4) must be of the form 
							
	
		
			
				−
				𝑎
			

			
				𝑠
				−
				1
			

			

				
			

			
				
			
			
				𝑥
				
			

			
				
			
			
				𝑠
				𝑎
			

			

				𝑠
			

			

				
			

			
				
			
			
				𝑥
				
				
				+
				𝜆
				𝑝
			

			
				
			
			
				𝑥
				
			

			
				(
				∗
				)
			

		
	

	
		
			
				−
				𝑎
			

			
				𝑠
				−
				1
			

			

				
			

			
				
			
			
				𝑥
				
			

			
				
			
			
				𝑠
				𝑎
			

			

				𝑠
			

			

				
			

			
				
			
			
				𝑥
				
				
				+
				𝜆
				𝑝
			

			
				
			
			
				𝑥
				
			

		
	

						for arbitrary 
	
		
			
				𝜆
				∈
				ℝ
			

		
	
, where 
	
		
			
				𝑝
				(
			

			
				
			
			
				𝑥
				)
				=
				(
				𝑓
				(
			

			
				
			
			
				𝑥
				)
				/
				𝑎
			

			

				𝑠
			

			

				(
			

			
				
			
			
				𝑥
				)
				)
			

			
				1
				/
				𝑠
			

		
	
 is a factor of 
	
		
			
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
.
Proof. Assume 
	
		
			
				|
				Q
				c
				s
			

			

				𝐹
			

			
				|
				=
				∞
			

		
	
. By Theorem 12, we have
							
	
 		
 			
				(
				8
				3
				)
			
 		
	

	
		
			
				𝐹
				
			

			
				
			
			
				
				𝑥
				,
				𝑦
				=
				𝑎
			

			

				𝑠
			

			

				
			

			
				
			
			
				𝑥
				
				𝑦
			

			

				𝑠
			

			
				+
				𝑎
			

			
				𝑠
				−
				1
			

			

				
			

			
				
			
			
				𝑥
				
				𝑦
			

			
				𝑠
				−
				1
			

			
				+
				⋯
				+
				𝑎
			

			

				0
			

			

				
			

			
				
			
			
				𝑥
				
				=
			

			

				𝑠
			

			

				
			

			
				𝑖
				=
				0
			

			

				𝑐
			

			

				𝑖
			

			
				𝑓
				
			

			
				
			
			
				𝑥
				
			

			
				
			
			

				𝑝
			

			

				𝑖
			

			

				
			

			
				
			
			
				𝑥
				
				
				𝑦
				−
				𝑦
				(
			

			
				
			
			
				
				𝑥
				)
			

			

				𝑖
			

			

				,
			

		
	

						for some 
	
		
			

				𝑐
			

			

				𝑖
			

			
				∈
				ℝ
			

		
	
, 
	
		
			
				𝑖
				=
				0
				,
				…
				,
				𝑠
			

		
	
, and 
	
		
			
				𝑦
				(
			

			
				
			
			
				𝑥
				)
				∈
				Q
				c
				s
			

			

				𝐹
			

		
	
. Comparing the coefficients of 
	
		
			

				𝑦
			

			

				𝑠
			

		
	
 and 
	
		
			

				𝑦
			

			
				𝑠
				−
				1
			

		
	
 in both sides of the above equation, we get 
							
	
 		
 			
				(
				8
				4
				)
			
 		
	

	
		
			

				𝑎
			

			

				𝑠
			

			

				
			

			
				
			
			
				𝑥
				
				=
				𝑐
			

			

				𝑠
			

			
				𝑓
				
			

			
				
			
			
				𝑥
				
			

			
				
			
			

				𝑝
			

			

				𝑠
			

			

				
			

			
				
			
			
				𝑥
				
				,
				𝑎
			

			
				𝑠
				−
				1
			

			

				
			

			
				
			
			
				𝑥
				
				=
				−
				𝑠
				𝑎
			

			

				𝑠
			

			

				
			

			
				
			
			
				𝑥
				
				𝑦
				
			

			
				
			
			
				𝑥
				
				+
				𝑐
			

			
				𝑠
				−
				1
			

			
				𝑓
				
			

			
				
			
			
				𝑥
				
			

			
				
			
			

				𝑝
			

			
				𝑠
				−
				1
			

			

				
			

			
				
			
			
				𝑥
				
				.
			

		
	

						Consequently, by (84), we get
							
	
 		
 			
				(
				8
				5
				)
			
 		
	

	
		
			

				𝑝
			

			

				𝑠
			

			

				
			

			
				
			
			
				𝑥
				
				=
				𝑐
			

			

				𝑠
			

			
				𝑓
				
			

			
				
			
			
				𝑥
				
			

			
				
			
			

				𝑎
			

			

				𝑠
			

			

				
			

			
				
			
			
				𝑥
				
				,
				𝑦
				
			

			
				
			
			
				𝑥
				
				=
				𝑐
			

			
				𝑠
				−
				1
			

			
				
			
			
				𝑠
				𝑐
			

			

				𝑠
			

			
				𝑝
				
			

			
				
			
			
				𝑥
				
				−
				𝑎
			

			
				𝑠
				−
				1
			

			

				
			

			
				
			
			
				𝑥
				
			

			
				
			
			
				𝑠
				𝑎
			

			

				𝑠
			

			

				
			

			
				
			
			
				𝑥
				
				
				∈
				ℝ
			

			
				
			
			
				𝑥
				
				.
			

		
	

						By Lemma 15, for any 
	
		
			
				𝑑
				∈
				ℝ
			

		
	
, we have that any quasi-coincidence solution is represented by
							
	
 		
 			
				(
				8
				6
				)
			
 		
	

	
		
			
				𝑦
				
			

			
				
			
			
				𝑥
				
				
				+
				𝑑
				𝑝
			

			
				
			
			
				𝑥
				
				=
				𝑐
			

			
				𝑠
				−
				1
			

			
				
			
			
				𝑠
				𝑐
			

			

				𝑠
			

			
				𝑝
				
			

			
				
			
			
				𝑥
				
				−
				𝑎
			

			
				𝑠
				−
				1
			

			

				
			

			
				
			
			
				𝑥
				
			

			
				
			
			
				𝑠
				𝑎
			

			

				𝑠
			

			

				
			

			
				
			
			
				𝑥
				
				
				+
				𝑑
				𝑝
			

			
				
			
			
				𝑥
				
				𝑎
				=
				−
			

			
				𝑠
				−
				1
			

			

				
			

			
				
			
			
				𝑥
				
			

			
				
			
			
				𝑠
				𝑎
			

			

				𝑠
			

			

				
			

			
				
			
			
				𝑥
				
				+
				
				𝑐
				𝑑
				−
			

			
				𝑠
				−
				1
			

			
				
			
			
				𝑠
				𝑐
			

			

				𝑠
			

			
				
				𝑝
				
			

			
				
			
			
				𝑥
				
				𝑎
				=
				−
			

			
				𝑠
				−
				1
			

			

				
			

			
				
			
			
				𝑥
				
			

			
				
			
			
				𝑠
				𝑎
			

			

				𝑠
			

			

				
			

			
				
			
			
				𝑥
				
				
				+
				𝜆
				𝑝
			

			
				
			
			
				𝑥
				
				,
			

		
	

						where 
	
		
			
				𝑝
				(
			

			
				
			
			
				𝑥
				)
				=
				(
				𝑐
			

			

				𝑠
			

			

				)
			

			
				1
				/
				𝑠
			

			
				(
				𝑓
				(
			

			
				
			
			
				𝑥
				)
				/
				𝑎
			

			

				𝑠
			

			

				(
			

			
				
			
			
				𝑥
				)
				)
			

			
				1
				/
				𝑠
			

		
	
 (note that since 
	
		
			

				𝑑
			

		
	
 is arbitrary, then 
	
		
			

				𝜆
			

		
	
 is arbitrary).This completes the proof.
Corollary 17.  Let 
	
		
			
				𝐹
				(
			

			
				
			
			
				𝑥
				,
				𝑦
				)
			

		
	
 be a polynomial function with
							
	
 		
 			
				(
				8
				7
				)
			
 		
	

	
		
			
				𝐹
				
			

			
				
			
			
				
				𝑥
				,
				𝑦
				=
				𝑎
			

			

				𝑠
			

			

				
			

			
				
			
			
				𝑥
				
				𝑦
			

			

				𝑠
			

			
				+
				𝑎
			

			
				𝑠
				−
				1
			

			

				
			

			
				
			
			
				𝑥
				
				𝑦
			

			
				𝑠
				−
				1
			

			
				+
				⋯
				+
				𝑎
			

			

				0
			

			

				
			

			
				
			
			
				𝑥
				
				.
			

		
	

						If the cardinal number 
	
		
			
				|
				𝑄
				𝑐
				𝑠
			

			

				𝐹
			

			

				|
			

		
	
 of equation
							
	
 		
 			
				(
				8
				8
				)
			
 		
	

	
		
			
				𝐹
				
			

			
				
			
			
				
				𝑥
				,
				𝑦
				=
				𝑎
			

		
	

						is infinitely many, then the leading coefficient 
	
		
			

				𝑎
			

			

				𝑠
			

			

				(
			

			
				
			
			
				𝑥
				)
			

		
	
 must be a real number and each quasi-coincidence point solution must be of the form 
							
	
		
			
				𝑎
				𝜆
				−
			

			
				𝑠
				−
				1
			

			

				
			

			
				
			
			
				𝑥
				
			

			
				
			
			
				𝑠
				𝑎
			

			

				𝑠
			

			

				
			

			
				
			
			
				𝑥
				
			

			
				(
				★
				)
			

		
	

	
		
			
				𝑎
				𝜆
				−
			

			
				𝑠
				−
				1
			

			

				
			

			
				
			
			
				𝑥
				
			

			
				
			
			
				𝑠
				𝑎
			

			

				𝑠
			

			

				
			

			
				
			
			
				𝑥
				
			

		
	

						for arbitrary 
	
		
			
				𝜆
				∈
				ℝ
			

		
	
.
Corollary 18.  Let 
	
		
			
				𝐹
				∶
				ℝ
				×
				ℝ
				→
				ℝ
			

		
	
 be a polynomial function with
							
	
 		
 			
				(
				8
				9
				)
			
 		
	

	
		
			
				𝐹
				(
				𝑥
				,
				𝑦
				)
				=
				𝑎
			

			

				𝑠
			

			
				(
				𝑥
				)
				𝑦
			

			

				𝑠
			

			
				+
				𝑎
			

			
				𝑠
				−
				1
			

			
				(
				𝑥
				)
				𝑦
			

			
				𝑠
				−
				1
			

			
				+
				⋯
				+
				𝑎
			

			

				0
			

			
				(
				𝑥
				)
				.
			

		
	

						If the cardinal number 
	
		
			
				|
				𝑄
				𝑐
				𝑠
			

			

				𝐹
			

			

				|
			

		
	
 of equation
							
	
 		
 			
				(
				9
				0
				)
			
 		
	

	
		
			
				𝐹
				(
				𝑥
				,
				𝑦
				)
				=
				𝑎
				𝑥
			

		
	

						is infinitely many, then the leading coefficient 
	
		
			

				𝑎
			

			

				𝑠
			

			
				(
				𝑥
				)
			

		
	
 must be a real number and each quasi-coincidence point solution must be of the form 
							
	
		
			

				𝜆
			

			

				1
			

			
				+
				𝜆
			

			

				2
			

			

				𝑎
			

			
				𝑠
				−
				1
			

			
				(
				𝑥
				)
			

			
				
			
			

				𝑥
			

			
				(
				★
				)
			

		
	

	
		
			

				𝜆
			

			

				1
			

			
				+
				𝜆
			

			

				2
			

			

				𝑎
			

			
				𝑠
				−
				1
			

			
				(
				𝑥
				)
			

			
				
			
			

				𝑥
			

		
	

						for arbitrary 
	
		
			

				𝜆
			

			

				1
			

		
	
 and some 
	
		
			

				𝜆
			

			

				2
			

			
				∈
				ℝ
			

		
	
.
Proof. Assume that there exist infinitely many solutions; by Theorem 16, any solution of (4) has the form
							
	
 		
 			
				(
				9
				1
				)
			
 		
	

	
		
			
				−
				𝑎
			

			
				𝑠
				−
				1
			

			
				(
				𝑥
				)
			

			
				
			
			
				𝑠
				𝑎
			

			

				𝑠
			

			
				(
				𝑥
				)
				+
				𝜆
				𝑝
				(
				𝑥
				)
			

		
	

						for arbitrary 
	
		
			
				𝜆
				∈
				ℝ
			

		
	
 and 
	
		
			
				𝑝
				(
				𝑥
				)
				=
				𝑐
				(
				𝑥
				/
				𝑎
			

			

				𝑠
			

			
				(
				𝑥
				)
				)
			

			
				1
				/
				𝑠
			

			
				∈
				ℝ
				[
				𝑥
				]
			

		
	
, and then 
	
		
			

				𝑎
			

			

				𝑠
			

			
				(
				𝑥
				)
			

		
	
 is a factor of 
	
		
			

				𝑥
			

		
	
. This means that 
	
		
			

				𝑎
			

			

				𝑠
			

			

				(
			

			
				
			
			
				𝑥
				)
				∈
				ℝ
			

		
	
 or 
	
		
			

				𝑎
			

			

				𝑠
			

			

				(
			

			
				
			
			
				𝑥
				)
				=
				𝑘
				𝑥
			

		
	
 for some constant 
	
		
			
				𝑘
				∈
				ℝ
			

		
	
, if 
	
		
			

				𝑎
			

			

				𝑠
			

			
				(
				𝑥
				)
				∈
				ℝ
			

		
	
; this implies 
	
		
			
				𝑝
				(
				𝑥
				)
				=
				𝑐
				(
				𝑥
				/
				𝑎
			

			

				𝑠
			

			
				(
				𝑥
				)
				)
			

			
				1
				/
				𝑠
			

			
				∉
				ℝ
				[
				𝑥
				]
			

		
	
, and this leads a contradiction. So we have 
	
		
			

				𝑎
			

			

				𝑠
			

			
				(
				𝑥
				)
				=
				𝑘
				𝑥
			

		
	
, for some 
	
		
			
				𝑘
				∈
				ℝ
			

		
	
; then 
	
		
			
				𝑝
				(
				𝑥
				)
				=
				𝑐
				/
				𝑘
			

			
				1
				/
				𝑠
			

			
				∈
				ℝ
			

		
	
 and any solution (91) is represented as
							
	
 		
 			
				(
				9
				2
				)
			
 		
	

	
		
			
				−
				𝑎
			

			
				𝑠
				−
				1
			

			
				(
				𝑥
				)
			

			
				
			
			
				𝑠
				𝑎
			

			

				𝑠
			

			
				(
				𝑥
				)
				+
				𝜆
				𝑝
				(
				𝑥
				)
				=
				𝜆
			

			

				1
			

			
				+
				𝜆
			

			

				2
			

			

				𝑎
			

			
				𝑠
				−
				1
			

			
				(
				𝑥
				)
			

			
				
			
			

				𝑥
			

		
	

						for arbitrary 
	
		
			

				𝜆
			

			

				1
			

			
				=
				𝜆
				𝑐
				/
				𝑘
			

			
				1
				/
				𝑠
			

		
	
 and some 
	
		
			

				𝜆
			

			

				2
			

			
				=
				−
				1
				/
				𝑠
				𝑘
				∈
				ℝ
			

		
	
.
Finally, we provide one example to explain Theorem 16.
Example 19. Let 
	
		
			
				
			
			
				𝑥
				=
				(
				𝑥
			

			

				1
			

			
				,
				𝑥
			

			

				2
			

			
				)
				∈
				ℝ
			

			

				2
			

		
	
, 
	
		
			
				𝑓
				(
			

			
				
			
			
				𝑥
				)
				=
				(
				𝑥
			

			

				1
			

			
				+
				𝑥
			

			

				2
			

			

				)
			

			

				2
			

		
	
, and
							
	
 		
 			
				(
				9
				3
				)
			
 		
	

	
		
			
				𝐹
				
			

			
				
			
			
				
				𝑥
				,
				𝑦
				=
				𝑎
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				𝑦
			

			

				2
			

			
				+
				𝑎
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				𝑦
				+
				𝑎
			

			

				0
			

			

				
			

			
				
			
			
				𝑥
				
				=
				𝑦
			

			

				2
			

			
				−
				
				2
				𝑥
			

			

				1
			

			

				𝑥
			

			

				2
			

			
				−
				𝑥
			

			

				1
			

			
				−
				𝑥
			

			

				2
			

			
				
				𝑦
				+
				
				𝑥
			

			
				2
				1
			

			

				𝑥
			

			
				2
				2
			

			
				−
				𝑥
			

			
				2
				1
			

			

				𝑥
			

			

				2
			

			
				−
				𝑥
			

			

				1
			

			

				𝑥
			

			
				2
				2
			

			
				+
				𝑥
			

			
				2
				1
			

			
				+
				2
				𝑥
			

			

				1
			

			

				𝑥
			

			

				2
			

			
				+
				𝑥
			

			
				2
				2
			

			
				
				.
			

		
	

						Can we solve all quasi-fixed solutions of 
	
		
			
				𝐹
				(
			

			
				
			
			
				𝑥
				,
				𝑦
				)
				=
				𝑎
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
? This polynomial function has exactly 5(≥
	
		
			
				𝑠
				+
				3
			

		
	
, since 
	
		
			
				𝑠
				=
				2
				)
			

		
	
 quasi-fixed solutions as follows:
							
	
 		
 			
				(
				9
				4
				)
			
 		
	

	
		
			
				𝐹
				
				𝑥
			

			

				1
			

			
				,
				𝑥
			

			

				2
			

			
				,
				𝑥
			

			

				1
			

			

				𝑥
			

			

				2
			

			
				−
				𝑥
			

			

				1
			

			
				−
				𝑥
			

			

				2
			

			
				
				
				𝑥
				=
				1
			

			

				1
			

			
				+
				𝑥
			

			

				2
			

			

				
			

			

				2
			

			
				,
				𝐹
				
				𝑥
			

			

				1
			

			
				,
				𝑥
			

			

				2
			

			
				,
				𝑥
			

			

				1
			

			

				𝑥
			

			

				2
			

			
				
				
				𝑥
				=
				1
			

			

				1
			

			
				+
				𝑥
			

			

				2
			

			

				
			

			

				2
			

			
				,
				𝐹
				
				𝑥
			

			

				1
			

			
				,
				𝑥
			

			

				2
			

			
				,
				𝑥
			

			

				1
			

			

				𝑥
			

			

				2
			

			
				+
				𝑥
			

			

				1
			

			
				+
				𝑥
			

			

				2
			

			
				
				
				𝑥
				=
				3
			

			

				1
			

			
				+
				𝑥
			

			

				2
			

			

				
			

			

				2
			

			
				,
				𝐹
				
				𝑥
			

			

				1
			

			
				,
				𝑥
			

			

				2
			

			
				,
				𝑥
			

			

				1
			

			

				𝑥
			

			

				2
			

			
				+
				2
				𝑥
			

			

				1
			

			
				+
				2
				𝑥
			

			

				2
			

			
				
				
				𝑥
				=
				3
			

			

				1
			

			
				+
				𝑥
			

			

				2
			

			

				
			

			

				2
			

			
				,
				𝐹
				
				𝑥
			

			

				1
			

			
				,
				𝑥
			

			

				2
			

			
				,
				𝑥
			

			

				1
			

			

				𝑥
			

			

				2
			

			
				+
				𝑥
			

			

				1
			

			
				
			
			
				2
				+
				𝑥
			

			

				2
			

			
				
			
			
				2
				
				=
				3
			

			
				
			
			
				4
				
				𝑥
			

			

				1
			

			
				+
				𝑥
			

			

				2
			

			

				
			

			

				2
			

			

				.
			

		
	

						In fact, by Theorem 16, we can find any quasi-coincidence solution written as
							
	
 		
 			
				(
				9
				5
				)
			
 		
	

	
		
			
				−
				𝑎
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
			

			
				
			
			
				𝑠
				𝑎
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				
				+
				𝜆
				𝑝
			

			
				
			
			
				𝑥
				
				=
				2
				𝑥
			

			

				1
			

			

				𝑥
			

			

				2
			

			
				−
				𝑥
			

			

				1
			

			
				−
				𝑥
			

			

				2
			

			
				
			
			
				2
				
				+
				𝜆
				𝑝
			

			
				
			
			
				𝑥
				
				=
				𝑥
			

			

				1
			

			

				𝑥
			

			

				2
			

			
				+
				
				1
				𝜆
				−
			

			
				
			
			
				2
				
				
				𝑥
			

			

				1
			

			
				−
				𝑥
			

			

				2
			

			
				
				=
				𝑥
			

			

				1
			

			

				𝑥
			

			

				2
			

			
				
				𝑥
				+
				𝜇
			

			

				1
			

			
				−
				𝑥
			

			

				2
			

			
				
				,
			

		
	

						where 
	
		
			
				𝜇
				=
				𝜆
				−
				1
				/
				2
				∈
				ℝ
			

		
	
 is arbitrary and 
	
		
			
				𝑝
				(
			

			
				
			
			
				𝑥
				)
				=
				(
				𝑓
				(
				𝑥
				)
				/
				𝑎
			

			

				𝑠
			

			
				(
				𝑥
				)
				)
			

			
				1
				/
				𝑠
			

			
				=
				𝑥
			

			

				1
			

			
				+
				𝑥
			

			

				2
			

		
	
. This shows the quasi-coincidence (point) solutions have cardinal 
	
		
			
				|
				Q
				s
			

			

				𝐹
			

			
				|
				=
				∞
			

		
	
.In practice, we have no idea to check the number of this equation is infinitely many or finitely many. But we provide an easy method to solve all solutions if the number of all solutions is infinitely many in this paper. Thus, we can solve those solutions directly and check whether those solutions are the solutions of 
	
		
			
				𝐹
				(
			

			
				
			
			
				𝑥
				,
				𝑦
				)
				=
				𝑎
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 and give an example in the following.
Example 20. Let 
	
		
			
				
			
			
				𝑥
				=
				(
				𝑥
			

			

				1
			

			
				,
				𝑥
			

			

				2
			

			
				)
				∈
				ℝ
			

			

				2
			

		
	
, 
	
		
			
				𝑓
				(
			

			
				
			
			
				𝑥
				)
				=
				𝑥
			

			
				2
				1
			

			
				(
				𝑥
			

			

				2
			

			
				+
				𝑥
			

			

				3
			

			

				)
			

			

				2
			

		
	
, and 
							
	
 		
 			
				(
				9
				6
				)
			
 		
	

	
		
			
				𝐹
				
			

			
				
			
			
				
				𝑥
				,
				𝑦
				=
				𝑎
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				𝑦
			

			

				2
			

			
				+
				𝑎
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
				𝑦
				+
				𝑎
			

			

				0
			

			

				
			

			
				
			
			
				𝑥
				
				=
				𝑦
			

			

				2
			

			
				−
				
				2
				𝑥
			

			

				1
			

			

				𝑥
			

			

				2
			

			
				−
				𝑥
			

			

				1
			

			
				
				𝑥
			

			

				2
			

			
				+
				𝑥
			

			

				3
			

			
				𝑦
				+
				
				𝑥
				
				
			

			
				2
				1
			

			

				𝑥
			

			
				2
				2
			

			
				+
				𝑥
			

			
				2
				1
			

			

				𝑥
			

			

				2
			

			

				𝑥
			

			

				3
			

			
				+
				𝑥
			

			
				2
				1
			

			

				𝑥
			

			
				2
				3
			

			
				
				.
			

		
	

						We will solve all quasi-fixed solutions of 
	
		
			
				𝐹
				(
			

			
				
			
			
				𝑥
				,
				𝑦
				)
				=
				𝑎
				𝑓
				(
			

			
				
			
			
				𝑥
				)
			

		
	
 if the number of all solutions is infinitely many.By Theorem 16, we can find that any quasi-coincidence solution can be written as
							
	
 		
 			
				(
				9
				7
				)
			
 		
	

	
		
			
				−
				𝑎
			

			

				1
			

			

				
			

			
				
			
			
				𝑥
				
			

			
				
			
			
				𝑠
				𝑎
			

			

				2
			

			

				
			

			
				
			
			
				𝑥
				
				
				+
				𝜆
				𝑝
			

			
				
			
			
				𝑥
				
				=
				2
				𝑥
			

			

				1
			

			

				𝑥
			

			

				2
			

			
				−
				𝑥
			

			

				1
			

			
				
				𝑥
			

			

				2
			

			
				+
				𝑥
			

			

				3
			

			

				
			

			
				
			
			
				2
				
				+
				𝜆
				𝑝
			

			
				
			
			
				𝑥
				
				=
				𝑥
			

			

				1
			

			

				𝑥
			

			

				2
			

			
				+
				𝜇
				𝑥
			

			

				1
			

			
				
				𝑥
			

			

				2
			

			
				+
				𝑥
			

			

				3
			

			
				
				,
			

		
	

						where 
	
		
			
				𝜇
				=
				𝜆
				−
				1
				/
				2
				∈
				ℝ
			

		
	
 is arbitrary and 
	
		
			
				𝑝
				(
			

			
				
			
			
				𝑥
				)
				=
				(
				𝑓
				(
				𝑥
				)
				/
				𝑎
			

			

				𝑠
			

			
				(
				𝑥
				)
				)
			

			
				1
				/
				𝑠
			

			
				=
				𝑥
			

			

				1
			

			
				(
				𝑥
			

			

				2
			

			
				+
				𝑥
			

			

				3
			

			

				)
			

		
	
. We let 
	
		
			
				𝑦
				(
			

			
				
			
			
				𝑥
				)
				=
				𝑥
			

			

				1
			

			

				𝑥
			

			

				2
			

			
				+
				𝜇
				𝑥
			

			

				1
			

			
				(
				𝑥
			

			

				2
			

			
				+
				𝑥
			

			

				3
			

			

				)
			

		
	
 and calculate 
	
		
			
				𝐹
				(
				𝑥
				,
				𝑦
				(
			

			
				
			
			
				𝑥
				)
				)
			

		
	
 and obtain 
							
	
 		
 			
				(
				9
				8
				)
			
 		
	

	
		
			
				𝐹
				
				
				𝑥
				,
				𝑦
			

			
				
			
			
				𝑥
				=
				
				𝜇
				
				
			

			

				2
			

			
				
				𝑥
				+
				𝜇
				+
				1
			

			
				2
				1
			

			
				
				𝑥
			

			

				2
			

			
				+
				𝑥
			

			

				3
			

			

				
			

			

				2
			

			

				.
			

		
	

						This means that the quasi-coincidence (point) solutions have cardinal 
	
		
			
				|
				Q
				s
			

			

				𝐹
			

			
				|
				=
				∞
			

		
	
.
We would like to provide one open problem as follows.
Further Development. Let 
	
		
			

				ℚ
			

		
	
 be a quotient field. Consider a quotient-valued polynomial function
						
	
 		
 			
				(
				9
				9
				)
			
 		
	

	
		
			
				𝐹
				∶
				ℚ
			

			

				𝑛
			

			
				×
				ℚ
				⟶
				ℚ
				.
			

		
	

					Can we find all quasi-coincidence solutions 
	
		
			
				𝑦
				=
				𝑦
				(
			

			
				
			
			
				𝑥
				)
				∈
				ℚ
				[
			

			
				
			
			
				𝑥
				]
			

		
	
 to satisfy 
						
	
 		
 			
				(
				1
				0
				0
				)
			
 		
	

	
		
			
				𝐹
				
			

			
				
			
			
				
				
				𝑥
				,
				𝑦
				=
				𝑎
				𝑓
			

			
				
			
			
				𝑥
				
			

		
	

					for some polynomials 
	
		
			
				𝑓
				(
			

			
				
			
			
				𝑥
				)
				∈
				ℚ
				[
			

			
				
			
			
				𝑥
				]
			

		
	
 by a co-NP hardness algorithm?
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