Research Article

Global Asymptotic Stability of Stochastic Nonautonomous Lotka-Volterra Models with Infinite Delay

Fengying Wei and Yuhua Cai

College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116, China

Correspondence should be addressed to Fengying Wei; weifengying@fzu.edu.cn

Received 1 July 2013; Revised 4 November 2013; Accepted 4 November 2013

Academic Editor: Julio Rossi

Copyright © 2013 F. Wei and Y. Cai. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A kind of general stochastic nonautonomous Lotka-Volterra models with infinite delay is investigated in this paper. By constructing several suitable Lyapunov functions, the existence and uniqueness of global positive solution and global asymptotic stability are obtained. Further, the solution asymptotically follows a normal distribution by means of linearizing stochastic differential equation. Moment estimations in time average are derived to improve the approximation distribution. Finally, numerical simulations are given to illustrate our conclusions.

1. Introduction

The impact of random factors cannot be neglected in the real world. Different kinds of random perturbations of stochastic models have been investigated in many pieces of literature. Bahar and Mao [1] discussed a stochastic delay Lotka-Volterra model, and they showed that environmental noise would suppress a potential population explosion and also made the solutions to be stochastically ultimately bounded. Almost at the same time, Mao [2] revealed that different types of environmental noise had different effects on delay population models. Meanwhile, Jiang and Shi [3] considered a randomized nonautonomous Logistic equation and represented the unique continuous global positive solution and positive T-periodic solution.

Recently, stochastic models with delay are paid more attention by many researchers. Shen et al. [4] studied stochastic Lotka-Volterra competitive models with variable delay, and they obtained the unique global positive solution, stochastically ultimate boundedness, and moment average in time of the solutions. Liu and Wang [5] considered stochastic Lotka-Volterra models with infinite delay; they replaced the intrinsic growth rate by a random perturbation term which was dependent on the difference between the population size and the equilibrium state in their model, and then the sufficient criteria for global asymptotic stability of the solution were established. Huang et al. [6] extended the conclusion of Liu and Wang [5] to a general case. Based on a general phase space

$$C_r := \left\{ \varphi \in C((-\infty, 0]; R^n_+) : \right.$$

$$\left\| \varphi \right\|_{C_r} = \sup_{-\infty < s \leq 0} e^{rs} |\varphi(s)| < \infty \right\}, \quad r > 0,$$

(1)

Xu et al. [7] and Xu [8] investigated an autonomous stochastic Lotka-Volterra model with infinite delay

$$dx(t) = \text{diag} (x_1(t), \ldots, x_n(t)) \times \left[\left(b + Ax(t) + B \int_{-\infty}^{0} x(t + \theta) d\mu(\theta) \right)dt + \sigma x(t) dB(t) \right];$$

(1)

they established the asymptotic pathwise properties of the solution to model (1), where $x = (x_1, \ldots, x_n)^T$, $b = (b_1, \ldots, b_n)^T$, $A = (a_{ij})_{n \times n}$, $B = (b_{ij})_{n \times n}$, and $\sigma = (\sigma_{ij})_{n \times n}$; C_r was a Banach space (see [7, 9, 10]); μ was probability measure defined on $(-\infty, 0]$ such that

$$\mu_r := \int_{-\infty}^{0} e^{-r\theta} d\mu(\theta) < \infty, \quad r > 0.$$

(2)
In particular, when $\mu(\theta) = e^{k\theta}$ ($k > 2$) for $\theta \leq 0$, assumption (H2) was satisfied.

Motivated by the works mentioned previously, we always assume that the intensity of white noise is dependent on the difference between the population size and the equilibrium state and also is dependent on time t in this paper. Now, we consider a more general stochastic nonautonomous Lotka-Volterra model with infinite delay

$$
dx_i(t) = x_i(t) \left[h_i(t) + \sum_{j=1}^{n} a_{ij}(t)x_j(t) + \sum_{j=1}^{n} b_{ij}(t)x_j(t-\delta(t)) + \sum_{j=1}^{n} c_{ij}(t)x_j(t) d\mu(\theta) \right] dt + x_i(t) \sigma_i(t)(x_i(t) - x_i^*) \right] dB_i(t), \quad i = 1, 2, \ldots, n,
$$

where $h_i(t) > 0$, $a_{ij}(t)$ ($a_{ij}(t) < 0$ if $i = j$), $b_{ij}(t)$ and $c_{ij}(t)$ are parameter functions; noise intensities $\sigma_i(t) > 0$, $\beta_{ij}(t) \geq 0$, $\gamma_{ij}(t) \geq 0$ are continuous bounded function on $[0, +\infty)$; variable delay function $\delta : [0,\infty) \rightarrow [0, \tau]$ and $\delta'(t) \leq 0$; $x^* = (x_1^*, x_2^*, \ldots, x_n^*)^T$ denotes an equilibrium state with respect to the deterministic part of model (2) in R_{++}^n (we always assume that such x^* exists in this paper). For simplicity, model (2) can be rewritten in the following form:

$$
dx_i(t) = x_i(t) f_i dt + x_i(t) g_i dB_i(t), \quad i = 1, 2, \ldots, n.
$$

Next, we will investigate the global positive solution and its asymptotic properties of model (2). Further, the approximation distribution of solutions to model (2) is explored. Our results will extend some classical deterministic results into the stochastic cases.

2. Preliminary

Let $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \geq 0}, P)$, throughout this paper unless otherwise specified, be a complete probability space with a filtration $\{\mathcal{F}_t\}_{t \geq 0}$ satisfying the usual conditions, and $B_i(t)$ ($i = 1, 2, \ldots, n$) denote the independent 1-dimensional standard Brownian motion defined on the complete probability space. We denote the nonnegative cone and positive cone by R^n_+, R^n_{++}, respectively; that is, $R^n_+ = \{x \in R^n : x_i \geq 0, i = 1, 2, \ldots, n\}$, $R^n_{++} = \{x \in R^n : x_i > 0, i = 1, 2, \ldots, n\}$.

If $x \in R^n$, its norm is denoted by $|x| = \left(\sum_{i=1}^{n} x_i^2\right)^{1/2}$; if A is a vector or matrix, its transpose is denoted by A^T; if A is matrix, trace norm of matrix A is denoted by $|A| = \sqrt{\text{trace}(A^T A)}$; if A is negative matrix, we denote it by $A < 0$. Suppose that $y(t)$ is a continuous bounded function on $[0, +\infty)$; we define $y_u = \max_{t \in [0, +\infty)} y(t)$, $y_l = \min_{t \in [0, +\infty)} y(t)$, with usual assumption $\inf \emptyset = +\infty$, where \emptyset denotes the empty set.

3. The Existence and Uniqueness of Global Positive Solution

In this section, we show that model (2) has a unique global solution, and the solution will remain in R^n_{++} with probability 1.

Theorem 1. If (H1) and (H2) hold, then there is a unique solution $x(t)$ to model (2). Moreover, $x(t)$ remains in R^n_{++} with probability 1, where $t \in R$.

Proof. Clearly, the coefficients of model (2) satisfy local Lipschitz continuous but do not satisfy the linear growth condition. To show that the solution $x(t)$ is global, a.s., $\tau_e = +\infty$ is needed now, where τ_e is the explosion time.

Let $k_0 > 0$ be sufficiently large such that each component of initial data $\xi(0)$ is lying in the interval $(1/k_0, k_0)$. For each integer $k \geq k_0$, define the stopping time

$$
\tau_k = \inf \left\{ t \in [0, \tau_e) : x_i(t) \notin \left(\frac{1}{k}, k\right), \quad \text{for some} \quad i = 1, 2, \ldots, n \right\},
$$

Clearly, τ_k is increasing as $k \rightarrow +\infty$. Set $\tau_{\infty} = \lim_{k \rightarrow +\infty} \tau_k$; hence, $\tau_{\infty} \leq \tau_e$ a.s. If we can prove that $\tau_{\infty} = +\infty$ a.s. then $\tau_e = +\infty$ a.s. To prove this statement, let us define a C^2-function $V_i : R^n_{++} \rightarrow R_{++}$, by $V_i(x) = \sum^n_{j=1} x_j^p - p \log x_i$, where $p \in (0, 1)$. It is easy to see that $V_i(x) > 0$ for all $x \in R^n_{++}$. Applying the Itô formula to model (2), it leads to

$$
dV_i(x(t)) = LV_i(x(t))dt + \sum_{j=1}^{n} p \left(x_j^p(t) - 1 \right) g_j dB_j(t),
$$

where

$$
LV_i(x) = p \sum_{j=1}^{n} \left(x_j^p - 1 \right) f_j + \frac{1}{2} p \sum_{j=1}^{n} \left((p-1)x_j^p + 1 \right) g_j^2.
$$

From the elementary inequality $ab \leq (1/2)(a^2 + b^2)$ and Hölder’s inequality, we have

$$
\sum_{i=1}^{n} \left(x_i^p - 1 \right) f_i \leq \sum_{i=1}^{n} h_i \left(x_i^p + 1 \right) + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}| \left(x_i^p - 1 \right)^2
$$

$$
+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} |b_{ij}| |g_j| \left(x_i^p - 1 \right)^2.
$$

The result will be extended some classical deterministic results into the stochastic cases.
Abstract and Applied Analysis

By the fact that \(K = (\|\xi\|_{C_a} + \|x\|_{C_a})^2 < \infty, u^2/\rho_j - v^2/(\rho_j - 1) \leq (u + v)^2 \leq u^2/l_i + v^2/(1 - l_i), 0 < l_i < 1 < \rho_j, \) and \((\sum_{i=1}^n a_i b_i)^2 \leq \sum_{i=1}^n a_i^2 \sum_{i=1}^n b_i^2,\) it implies that

\[
g_i^2 \leq (x_i - x_i^*)^2 \left\{ \frac{1}{l_i} \sigma_{iu}^2 + \frac{1}{l_i} \frac{1}{(1-l_i)} \sum_{j=1}^n |\alpha_{ij}|^2 u_x^2 \right. \\
\left. + \frac{1}{l_i} \frac{1}{(1-l_i) (1-l_i)} \sum_{j=1}^n |\beta_{ij}|^2 u_x^2 \\
\times \sum_{j=1}^n x_j^2 (t - \delta (t)) \\
\left. + \frac{1}{l_i} \frac{1}{(1-l_i) (1-l_i)} \sum_{j=1}^n |\gamma_{ij}|^2 u_x^2 \right\} \\
\times \sum_{j=1}^n \int_{-\infty}^t x_j^2 (t + \theta) d\mu (\theta)\right\} \right\} \\
\leq (x_i - x_i^*)^2 \left\{ \frac{1}{l_i} \sigma_{iu}^2 + \frac{K}{l_i} \frac{1}{(1-l_i)} \sum_{j=1}^n |\alpha_{ij}|^2 u_x^2 \\
\left. + \frac{K}{l_i} \frac{1}{(1-l_i) (1-l_i)} \sum_{j=1}^n |\beta_{ij}|^2 u_x^2 \\
\times \sum_{j=1}^n \int_{-\infty}^t x_j^2 (t + \theta) d\mu (\theta)\right\} \right\} \\
\left. + \frac{K}{l_i} \frac{1}{(1-l_i) (1-l_i)} \sum_{j=1}^n |\gamma_{ij}|^2 u_x^2 \right\} \\
\left. \quad := K_1 (x_i - x_i^*)^2, \right\}
\]

(7)

Define \(V_1(x(t)) = V_1(x(t)) + \frac{p}{2} \sum_{j=1}^n \sum_{j=1}^n \int_{-\infty}^t x_j^2 (s) ds + \frac{p}{2} \sum_{j=1}^n \sum_{j=1}^n \int_{-\infty}^t \int_{-\infty}^t x_j^2 (s) ds d\mu (\theta); \) the proof is easily checked (details can be found at the appendix).

\[\square\]

4. Global Asymptotic Stability

Theorem 2. If \((H1)\) and \((H2)\) hold, there exist positive numbers \(\bar{d}_1, \bar{d}_2, \ldots, \bar{d}_n\) such that \(D\bar{A} + \bar{A}^\top D\) is negative definite, and then

\[
\lim_{t \to \infty} x_i(t) = x_i^* \quad a.s., \quad i = 1, 2, \ldots, n;
\]

(10)

that is, \(x^*\) is globally asymptotically stable a.s., where \(K = (\|\xi\|_{C_a} + \|x\|_{C_a})^2, \bar{D} = \text{diag}(\bar{d}_1, \bar{d}_2, \ldots, \bar{d}_n), \bar{A} = (\eta_{ij})_{n \times n}, \eta_{ij} = a_{ij} \) for \(i \neq j,\) and

\[
\eta_{iu} = (a_{ii})_{iu} + 0.5 x_i^* \left[\sigma_{iu}^2 + \frac{K}{j=1} \sum_{j=1}^n |\alpha_{ij}|^2 \right] \\
\left. + K \sum_{j=1}^n \beta_{ij}^2 u_x^2 + K \sum_{j=1}^n \gamma_{ij}^2 u_x^2 \right] \\
\]

\[\eta_{ij} = a_{ij} \] for \(i \neq j,\) and

\[
\eta_{ii} = (a_{ii})_{ii} + 0.5 x_i^* \left[\sigma_{iu}^2 + \frac{K}{j=1} \sum_{j=1}^n |\alpha_{ij}|^2 \right] \\
\left. + K \sum_{j=1}^n \beta_{ij}^2 u_x^2 + K \sum_{j=1}^n \gamma_{ij}^2 u_x^2 \right] \\
\]

\[\eta_{ij} = a_{ij} \] for \(i \neq j,\) and

\[
\eta_{ii} = (a_{ii})_{ii} + 0.5 x_i^* \left[\sigma_{iu}^2 + \frac{K}{j=1} \sum_{j=1}^n |\alpha_{ij}|^2 \right] \\
\left. + K \sum_{j=1}^n \beta_{ij}^2 u_x^2 + K \sum_{j=1}^n \gamma_{ij}^2 u_x^2 \right] \\
\]

\[\eta_{ij} = a_{ij} \] for \(i \neq j,\) and

\[
\eta_{ii} = (a_{ii})_{ii} + 0.5 x_i^* \left[\sigma_{iu}^2 + \frac{K}{j=1} \sum_{j=1}^n |\alpha_{ij}|^2 \right] \\
\left. + K \sum_{j=1}^n \beta_{ij}^2 u_x^2 + K \sum_{j=1}^n \gamma_{ij}^2 u_x^2 \right] \\
\]

\[\eta_{ij} = a_{ij} \] for \(i \neq j,\) and

\[
\eta_{ii} = (a_{ii})_{ii} + 0.5 x_i^* \left[\sigma_{iu}^2 + \frac{K}{j=1} \sum_{j=1}^n |\alpha_{ij}|^2 \right] \\
\left. + K \sum_{j=1}^n \beta_{ij}^2 u_x^2 + K \sum_{j=1}^n \gamma_{ij}^2 u_x^2 \right] \\
\]

\[\eta_{ij} = a_{ij} \] for \(i \neq j,\) and

\[
\eta_{ii} = (a_{ii})_{ii} + 0.5 x_i^* \left[\sigma_{iu}^2 + \frac{K}{j=1} \sum_{j=1}^n |\alpha_{ij}|^2 \right] \\
\left. + K \sum_{j=1}^n \beta_{ij}^2 u_x^2 + K \sum_{j=1}^n \gamma_{ij}^2 u_x^2 \right] \\
\]

\[\eta_{ij} = a_{ij} \] for \(i \neq j,\) and

\[
\eta_{ii} = (a_{ii})_{ii} + 0.5 x_i^* \left[\sigma_{iu}^2 + \frac{K}{j=1} \sum_{j=1}^n |\alpha_{ij}|^2 \right] \\
\left. + K \sum_{j=1}^n \beta_{ij}^2 u_x^2 + K \sum_{j=1}^n \gamma_{ij}^2 u_x^2 \right] \\
\]

\[\eta_{ij} = a_{ij} \] for \(i \neq j,\) and

\[
\eta_{ii} = (a_{ii})_{ii} + 0.5 x_i^* \left[\sigma_{iu}^2 + \frac{K}{j=1} \sum_{j=1}^n |\alpha_{ij}|^2 \right] \\
\left. + K \sum_{j=1}^n \beta_{ij}^2 u_x^2 + K \sum_{j=1}^n \gamma_{ij}^2 u_x^2 \right] \\
\]

\[\eta_{ij} = a_{ij} \] for \(i \neq j,\) and

\[
\eta_{ii} = (a_{ii})_{ii} + 0.5 x_i^* \left[\sigma_{iu}^2 + \frac{K}{j=1} \sum_{j=1}^n |\alpha_{ij}|^2 \right] \\
\left. + K \sum_{j=1}^n \beta_{ij}^2 u_x^2 + K \sum_{j=1}^n \gamma_{ij}^2 u_x^2 \right] \\
\]

\[\eta_{ij} = a_{ij} \] for \(i \neq j,\) and

\[
\eta_{ii} = (a_{ii})_{ii} + 0.5 x_i^* \left[\sigma_{iu}^2 + \frac{K}{j=1} \sum_{j=1}^n |\alpha_{ij}|^2 \right] \\
\left. + K \sum_{j=1}^n \beta_{ij}^2 u_x^2 + K \sum_{j=1}^n \gamma_{ij}^2 u_x^2 \right] \\
\]

\[\eta_{ij} = a_{ij} \] for \(i \neq j,\) and

\[
\eta_{ii} = (a_{ii})_{ii} + 0.5 x_i^* \left[\sigma_{iu}^2 + \frac{K}{j=1} \sum_{j=1}^n |\alpha_{ij}|^2 \right] \\
\left. + K \sum_{j=1}^n \beta_{ij}^2 u_x^2 + K \sum_{j=1}^n \gamma_{ij}^2 u_x^2 \right] \\
\]

\[\eta_{ij} = a_{ij} \] for \(i \neq j,\) and

\[
\eta_{ii} = (a_{ii})_{ii} + 0.5 x_i^* \left[\sigma_{iu}^2 + \frac{K}{j=1} \sum_{j=1}^n |\alpha_{ij}|^2 \right] \\
\left. + K \sum_{j=1}^n \beta_{ij}^2 u_x^2 + K \sum_{j=1}^n \gamma_{ij}^2 u_x^2 \right] \\
\]
Abstract and Applied Analysis

\[+ 0.5 \left[\sum_{i=1}^{n} b_{ji} u_i + \sum_{i=1}^{n} c_{ji} u_i \right] \\
+ \sum_{j=1}^{n} \frac{d_j}{d_i} \left[b_{ji} u_i + \sum_{j=1}^{n} d_j c_{ji} u_i \right] \right]. \]

(11)

\[\text{Proof.} \text{ Define a } C^{2}\text{-function } V_3 : R_{n}^{+} \rightarrow R_{++} \text{ by } V_3(x) = \sum_{i=1}^{n} \frac{d_i}{d_j} \int_{0}^{\infty} \int_{-\infty}^{\infty} x_{j}(s + \theta) d\mu(\theta), \]

\[\text{where } m_i < 0, u_i \neq 0. \text{ Then (14) implies that} \]

\[x_i(t) - x_i^* = (x_i(0) - x_i^*) e^{\mu_i t + u_i B_i(t)}, \quad i = 1, 2, \ldots, n. \]

(15)

From the definition of 1-dimensional Brownian motion, we can derive that \(x_i(t) \sim \mathcal{N}(x_i^* + (x_i(0) - x_i^*) e^{\mu_i t}, (x_i(0) - x_i^*)^2 e^{2\mu_i t}) \). According to the conditions of Theorem 2, when \(t \to +\infty \), one can find that \(u_i \to u_i' = \sigma_i x_i^* + \int_{0}^{T} \sum_{j=1}^{n} (a_{ij} x_j^* + \beta_{ij} x_{j0} + y_{ij} x_{j0}) d\mu(\theta) \neq 0 \) a.s.; thus, \(\lim_{t \to +\infty} x_i(t) \sim \mathcal{N}(x_i^* + \sigma_i) \); in other words, \(x_i(t) \) asymptotically follows 1-dimensional normal distribution. When \(t \to \infty \), the mean of solution \(x_i(t) \) to model (2) is \(x_i^* \); it is just consistent with the conclusion of Theorem 2. However, the deviation between solution \(x_i(t) \) and mean \(x_i^* \) may approach infinity; it is bad information for further analysis. Now, if the variance can be evaluated, the disadvantage will be improved.

6. Moment Estimation

First, let us prove one useful moment estimation.

\[\text{Theorem 4. If (H1) and (H2) hold, then there is a positive constant } G = G(p), \text{ such that } \lim_{t \to +\infty} E|x(t)|^p \leq G, \text{ where } p \in (0, 1). \]

\[\text{Proof.} \text{ Define a } C^{2}\text{-function } V_4 : R_{n}^{+} \rightarrow R_{++} \text{ by } V_4(x) = \sum_{i=1}^{n} x_i^p. \text{ For any given } \epsilon \in (0, 2r), \text{ applying the Ito formula to } e^{t/2} V_4(x(t)) \text{ and taking expectation, it yields that} \]

\[e^{\epsilon t} E V_4(x(t)) = EV_4(\xi(0)) + \epsilon E \int_{0}^{t} \left| LV_4(x(s)) + eV_4(x(s)) \right| ds, \]

(16)

where

\[LV_4(x) = p \sum_{i=1}^{n} x_i^p f_i - \frac{p}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_j^{2p} x_i + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \left| b_{ij} \right|^2 x_i^{2p}. \]

(17)

By fundamental inequality \(ab \leq (1/2)(a^2 + b^2) \),

\[\sum_{i=1}^{n} x_i^p f_i \leq \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_j^{2p} x_i + \frac{1}{2} \sum_{i=1}^{n} \left| b_{ij} \right|^2 x_i^{2p} + \frac{1}{2} \sum_{i=1}^{n} \left| b_{ij} \right|^2 x_i^{2p} + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \left| b_{ij} \right|^2 x_i^{2p}. \]

(18)
Consequently,

\[L V_4 (x(s)) \leq p \sum_{i=1}^{n} h_{iu} x_i^p \]

\[+ \frac{p}{2} \sum_{i,j=1}^{n} \left(|a_{ij}| u + |b_{ij}| |x_j| \right) x_i^2 \]

\[+ \frac{p}{2} \sum_{i,j=1}^{n} x_j^2 (s - \delta(s)) \]

\[+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \int_{-\infty}^{0} x_j^2 (s + \theta) d\mu(\theta) \]

\[- \frac{p(1-p)}{2} \sum_{i=1}^{n} K_2 x_i^p (x_i - x_*)^2 \]

\[:= H(x) - \varepsilon V_4(x) + \frac{np}{2} \left[|x - \delta(s)|^2 - \varepsilon^2 |x|^2 \right] \]

\[+ \frac{np}{2} \int_{-\infty}^{0} |x(s + \theta)|^2 d\mu(\theta) - \mu_* |x|^2 \right], \quad (19) \]

where

\[H(x) = \sum_{i=1}^{n} (p h_{iu} + \varepsilon) x_i^p \]

\[+ \frac{p}{2} \sum_{i,j=1}^{n} \left(|a_{ij}| u + |b_{ij}| |x_j| \right) x_i^2 \]

\[+ \frac{np}{2} (p \varepsilon^2 + \mu_*) |x|^2 \]

\[+ \frac{p}{2} \sum_{i,j=1}^{n} |a_{ij}| x_i x_j \]

\[- \frac{p(1-p)}{2} K_2 \sum_{i=1}^{n} x_i^p (x_i - x_*)^2 . \quad (20) \]

Noting that \(H(x) \) is bounded in \(R^n \); namely, \(K_3 := \sup_{x \in R^n} H(x) < \infty \). Substituting this into (16), it thus follows that

\[e^{t\varepsilon} E V_4 (x(t)) \leq E V_4 (\xi(0)) + \frac{1}{\varepsilon} K_3 (e^{t\varepsilon} - 1) + \frac{np}{2} \]

\[\times E \int_{0}^{t} e^{t\varepsilon} \left[|x(s - \delta(s))|^2 - \varepsilon^2 |x(s)|^2 \right] ds \]

\[+ \int_{-\infty}^{0} |x(s + \theta)|^2 d\mu(\theta) \]

\[- \mu_* |x|^2 \right] ds. \quad (21) \]

By (H1) and (H2), we have

\[E \int_{0}^{t} e^{t\varepsilon} \left[|x(s - \delta(s))|^2 - \varepsilon^2 |x(s)|^2 \right] ds \]

\[\leq E \int_{-\tau}^{t} e^{t\varepsilon} |x(s)|^2 ds - \int_{0}^{t} e^{t\varepsilon} |x(s)|^2 ds \]

\[\leq E \int_{-\tau}^{t} e^{t\varepsilon} |x(s)|^2 ds, \]

\[E \int_{0}^{t} e^{t\varepsilon} \left[\int_{-\infty}^{0} |x(s + \theta)|^2 d\mu(\theta) - \mu_* |x(s)|^2 \right] ds \]

\[= E \left[\int_{0}^{t} e^{t\varepsilon} \left[\int_{-\infty}^{-s} e^{t\varepsilon} |x(s + \theta)|^2 d\mu(\theta) - \mu_* |x(s)|^2 \right] ds \]

\[+ \int_{-\tau}^{t} e^{t\varepsilon} |x(s)^2| d\mu(\theta) + \mu_* \int_{0}^{t} e^{t\varepsilon} |x(s)|^2 ds \]

\[\leq E \left[\|\xi\|_{C_0}^2 \int_{0}^{t} e^{(t-s)e\varepsilon} ds \right] \]

\[+ \int_{-\tau}^{t} \int_{-\infty}^{0} e^{t\varepsilon} |x(s)|^2 d\mu(\theta) \]

\[\leq E \left[\|\xi\|_{C_0}^2 M_t + \int_{-\infty}^{0} e^{-e\varepsilon} d\mu(\theta) \right] \]

\[\times e^{t\varepsilon} |x(s)|^2 ds \]

\[- \mu_* \int_{0}^{t} e^{t\varepsilon} |x(s)|^2 ds \]

\[\leq E \|\xi\|_{C_0}^2 M_t . \quad (22) \]

Hence, we derive

\[e^{t\varepsilon} E V_4 (x(t)) \leq E V_4 (\xi(0)) + \frac{K_3 e^{t\varepsilon}}{\varepsilon} \]

\[+ \frac{np}{2} \left(E \int_{-\tau}^{t} e^{t\varepsilon} |x(s)|^2 ds + E \int_{-\infty}^{0} e^{t\varepsilon} |x(s)|^2 ds \right) . \quad (23) \]

This implies that \(\limsup_{t \to \infty} E V_4 (x(t)) \leq \varepsilon^{-1} K_3 \).
Again, by the fact that \(|x|^2 \leq n \max_{1 \leq i \leq n} x_i^2\), it then follows that \(|x|^p \leq n^{p/2} \max_{1 \leq i \leq n} x_i^2 \leq n^{p/2} V_4(x)\), and we have

\[
\limsup_{t \to \infty} E|x(t)|^p \leq G(p); \tag{24}
\]

the assertion follows by setting \(G(p) = n^{p/2} e^{-1} K_3\). The proof is complete. \(\square\)

Remark A. If \((H1)\) and \((H2)\) are valid, then \(\lim_{T \to \infty} P(|x(t)| \leq \chi) \geq 1 - \epsilon\); that is, solution \(x\) to model (2) is stochastically ultimately bounded.

If we take \(p = 1/2\), then the result is valid by using Theorem 4 and Chebyshev’s inequality. The proof is omitted herewith.

Theorem 5. If \((H1)\) and \((H2)\) hold, there exists a positive constant \(Q\), and then

\[
\limsup_{T \to \infty} \frac{1}{T} \int_0^T D(x_i(t)) \, dt \leq Q, \quad i = 1, 2, \ldots, n. \tag{25}
\]

Proof. Rewrite (20) as

\[
H(x) = H_1(x) - (np + 1)|x|^2
+ \frac{np}{2} (e^{rt} + \mu_r)|x|^2 + eV_4(x), \tag{26}
\]

with

\[
H_1(x) = \sum_{i=1}^n p_{ij} x_i^p + \frac{p}{2} \sum_{i=1}^n \left[|a_{ij}|_u + |b_{ij}|^2 + |c_{ij}|^2\right] x_i^2 \tag{27}
\]

Clearly, \(H_1(x)\) is bounded in \(R_{+}^n\); namely, \(K_4 := \sup_{x \in R_{+}^n} H_1(x) < \infty\). So

\[
H(x) \leq K_4 - (np + 1)|x|^2 + \frac{np}{2} (e^{rt} + \mu_r)|x|^2 + eV_4(x). \tag{28}
\]

By (19), we have

\[
dV_4(x(t)) \leq \left\{ K_4 - (np + 1)|x(t)|^2 + \frac{np}{2} \left[|x(t - \delta(t))|^2 + \int_0^t |x(t + \theta)|^2 \, d\mu(\theta) \right] \right\} \, dt
+ \int_0^t |x(t + \theta)|^2 \, d\mu(\theta) \, dt
+ p \sum_{i=1}^n x_i^2 \, g_i \, dB_i(t). \tag{29}
\]

Integrating both sides of (29) from 0 to \(T\) (\(T > 0\) is arbitrary) and then taking expectations, we obtain that

\[
E(V_4(x(T))) \leq V_4(\xi(0)) + K_4 T
- E \int_0^T |x(t)|^2 \, dt + \frac{np}{2} I_1 + \frac{np}{2} I_2. \tag{30}
\]

Similar to (22), by the definition of \(\delta(\cdot)\), we can derive

\[
I_1 = E \int_0^T \left(|x(t - \delta(t))|^2 - |x(t)|^2 \right) \, dt \leq \int_0^T \left(|x(t)|^2 \right) \, dt,
I_2 = E \int_0^T \left[\int_0^T |x(t + \theta)|^2 \, d\mu(\theta) - |x(t)|^2 \right] \, dt \leq \frac{1}{2r} \mu_\xi \|\xi\|_C^2. \tag{31}
\]

Substituting (31) into (30), then we have

\[
\limsup_{T \to \infty} \frac{1}{T} \int_0^T E|\xi(t)|^2 \, dt \leq K_4 := Q. \tag{32}
\]

By the fact that \(D(x_i) = E|x_i|^2 - (Ex_i)^2\) and \(\lim_{t \to \infty} E(x(t)) = x^*\), the conclusion is obviously valid. The proof is complete. \(\square\)

7. Example and Numerical Simulation

Now, we will simulate asymptotic behaviors of solutions to model (2). Let us consider the following 1-dimensional stochastic autonomous Logistic model:

\[
dx(t) = x(t) \left[h - ax(t) - bx(t - \tau) \right.
- c \int_0^t x(t + \theta) \, d\mu(\theta) \right]
+ x(t) \left(\sigma(x(t) - x^*) + ax(t)(x(t) - x^*) \right.
+ \beta x(t - \tau)(x(t) - x^*)
+ \gamma \int_{-\infty}^0 x(t + \theta) \, d\mu(\theta) \right]
\times (x(t) - x^*) \, dB(t), \tag{33}
\]

with initial data \(\xi(\theta) \in C_r\), where \(h, a, b, c, \tau, \sigma, \alpha, \beta, \) and \(\gamma\) are all positive numbers, and the equilibrium state is \(x^* = h/(a + b + c)\). By Theorem 2, if \(a > 0.5x^*(\sigma^2 + K\alpha^2 + K\beta^2 + Ky^2)\), then the equilibrium state \(x^*\) of model (33) is globally asymptotically stable a.s.. According to Milstein method mentioned in Higham [11], the initial data of model
Abstract and Applied Analysis

(33) is given by \(\xi(\theta) = 0.32 \epsilon^{0.5\theta} \) and \(\mu(\theta) = \epsilon^\theta, \theta \in (-\infty, 0] \); the difference equation is followed next

\[
x^{(k+1)} - x^{(k)} = x^{(k)} \left[h - ax^{(k)} - bx^{(k-\tau/\Delta t)} - 2c \sum_{i=1}^{k} x^{(i)} e^{i\Delta t} \Delta t \right] \Delta t
\]

\[
+ \sigma x^{(k)} (x^{(k)} - x^*) \sqrt{\Delta t} \xi^{(k)}
\]

\[
+ \frac{\sigma^2}{2} x^{(k)} (x^{(k)} - x^*) \left(\left(\xi^{(k)} \right)^2 - 1 \right) \Delta t
\]

\[
+ \alpha x^{(k)} x^{(k-\Delta t)} (x^{(k)} - x^*) \sqrt{\Delta t} \xi^{(k)}
\]

\[
+ \frac{\alpha^2}{2} x^{(k)} x^{(k)} (x^{(k)} - x^*) \left(\left(\xi^{(k)} \right)^2 - 1 \right) \Delta t
\]

\[
+ \beta x^{(k)} (x^{(k-\Delta t)} (x^{(k)} - x^*) \sqrt{\Delta t} \xi^{(k)}
\]

\[
+ \frac{\beta^2}{2} x^{(k)} x^{(k-\Delta t)} (x^{(k)} - x^*) \left(\left(\xi^{(k)} \right)^2 - 1 \right) \Delta t
\]

\[
+ \gamma \left(\frac{2c}{3} e^{-k\Delta t} + ce^{-k\Delta t} \sum_{i=1}^{k} x^{(i)} e^{i\Delta t} \Delta t \right) x^{(k)}
\]

\[
\times (x^{(k)} - x^*) \sqrt{\Delta t} \xi^{(k)}
\]

\[
+ \frac{\gamma^2}{2} \left(\frac{2c}{3} e^{-k\Delta t} + ce^{-k\Delta t} \sum_{i=1}^{k} x^{(i)} e^{i\Delta t} \Delta t \right) x^{(k)}
\]

\[
\times (x^{(k)} - x^*) \left(\left(\xi^{(k)} \right)^2 - 1 \right) \Delta t,
\]

(34)

where \(\xi^{(k)} (k = 1, 2, \ldots, n) \) is the Gaussian random variable which follows the standard normal distribution \(N(0,1) \). If we fix the parameters \(h = 0.5, a = 0.6, b = 0.1, c = 0.3, \tau = 1, \) and \(\Delta t = 0.01 \), then \(x^* = h/(a + b + c) = 0.5 \). When \(\sigma = \alpha = \beta = \gamma = 0 \), model (33) becomes a deterministic one; then the equilibrium state \(x^* \) is globally asymptotically stable a.s. by Theorem 2 (see Figure 1). When \(\sigma = 0.1 \) and \(\alpha = \beta = \gamma = 0 \), the intrinsic growth rate of model (33) is perturbed by white noise; if \(a > 0.5x^* \sigma^2 + b + c \), the equilibrium state \(x^* \) is globally asymptotically stable a.s. (see Figure 2). When \(\sigma = 0.1 \) and \(\alpha = \beta = \gamma = 0.01 \), that is, each parameter of model (33) is fluctuated by white noise, if \(a > 0.5x^* (\sigma^2 + Ka^2 + K\beta^2 + Ky^2) + b + c \) and \(K = (0.32e^{(r+0.5)\theta} + x^{(k)})^2 \leq \) \((0.32 + x^{(k)})^2 \) are satisfied, then the equilibrium stable \(x^* \) is globally asymptotically stable a.s. (see Figure 3).

Appendix

From the definition of \(V_2(t) \), we obtain

\[
dV_2(x(t)) \leq F(x(t)) dt + \sum_{i=1}^{n} \left(p \left(x_i^p(t) - 1 \right) g_i dB_i(t) \right), \quad (A.1)
\]

\[
F(x) = \sum_{i=1}^{n} \left\{ ph_{iu} \left(x_i^p + 1 \right) \right. \\
+ \frac{p}{2} \sum_{j=1}^{n} \left(|a_{ij}| u_i + |b_{ij}| u_i + |c_{ij}| u_i \right) \left(x_i^p - 1 \right)^2 \\
+ \frac{p}{2} \sum_{j=1}^{n} \left(a_{ij} u_i + b_{ij} u_i + c_{ij} u_i \right) x_j^2 + \frac{pK_1}{2} (x_i - x_i^*)^2 \\
- p \left(1 - p \right) K_2 \frac{1}{2} x_i^p (x_i - x_i^*)^2 \right\}, \quad (A.2)
\]
It is easy to check that $F(x) \leq K' < \infty$. Equation (A.1) becomes
\begin{equation}
\frac{dV_2}{dt}(x(t)) \leq K' \sum_{i=1}^{n} \rho \left(x_i^p(t) - 1 \right) g_i dB_i(t) . \tag{A.3}
\end{equation}

Integrating both sides of (A.3) from 0 to $\tau_k \wedge T$ ($T > 0$ is arbitrary) and then taking expectations, it yields that
\begin{equation}
EV_1(x(\tau_k \wedge T)) \leq EV_2(x(\tau_k \wedge T)) \leq V_2(\xi(0)) + K'T . \tag{A.4}
\end{equation}

Noting that for every $w \in \Omega_k = \{ \tau_k \leq T \}$, by the definition of stopping time τ_k, $x_i(\tau_k, w) = k$ or $1/k$ for some $i = 1, 2, \ldots, n$, $V_1(x(\tau_k \wedge T)) \geq \min\{k^p - p \log k, k^{-p} + p \log k\}$. It then follows that
\begin{equation}
P[\tau_k \leq T] (k^p - p \log k) \wedge (k^{-p} + p \log k) \\
\leq EV_1(x(\tau_k, w)) \\
\leq V_2(\xi(0)) + K'T . \tag{A.5}
\end{equation}

Thus, $\lim_{k \to \infty} P[\tau_k \leq T] = 0$. Since $T > 0$ is arbitrary, we must have $P[\tau_{\infty} < \infty] = 0$; then $P[\tau_{\infty} = \infty] = 1$ as required.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

This work is supported by the Natural Science Foundation of China (no. 11201075), the Natural Science Foundation of Fujian Province of China (no. 2010J01005), and the Technology Innovation Platform Project of Fujian Province (no. 2009J01007).

References

Submit your manuscripts at http://www.hindawi.com