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Abstract. 
The purpose of this paper is to introduce and analyze the Mann-type extragradient iterative algorithms with regularization for finding a common element of the solution set 
	
		
			

				Ξ
			

		
	
 of a general system of variational inequalities, the solution set 
	
		
			

				Γ
			

		
	
 of a split feasibility problem, and the fixed point set 
	
		
			
				F
				i
				x
				(
				𝑆
				)
			

		
	
 of a strictly pseudocontractive mapping 
	
		
			

				𝑆
			

		
	
 in the setting of the Hilbert spaces. These iterative algorithms are based on the regularization method, the Mann-type iteration method, and the extragradient method due to Nadezhkina and Takahashi (2006). Furthermore, we prove that the sequences generated by the proposed algorithms converge weakly to an element of 
	
		
			
				F
				i
				x
				(
				𝑆
				)
				∩
				Ξ
				∩
				Γ
			

		
	

 under mild conditions.


1. Introduction
Let 
	
		
			

				ℋ
			

		
	
 be a real Hilbert space with inner product 
	
		
			
				⟨
				⋅
				,
				⋅
				⟩
			

		
	
 and norm 
	
		
			
				‖
				⋅
				‖
			

		
	
. Let 
	
		
			

				𝐶
			

		
	
 be a nonempty closed convex subset of 
	
		
			

				ℋ
			

		
	
. The projection (nearest point or metric projection) of 
	
		
			

				ℋ
			

		
	
 onto 
	
		
			

				𝐶
			

		
	
 is denoted by 
	
		
			

				𝑃
			

			

				𝐶
			

		
	
. Let 
	
		
			
				𝑆
				∶
				𝐶
				→
				𝐶
			

		
	
 be a mapping and 
	
		
			
				F
				i
				x
				(
				𝑆
				)
			

		
	
 be the set of fixed points of 
	
		
			

				𝑆
			

		
	
. For a given nonlinear operator 
	
		
			
				𝐴
				∶
				𝐶
				→
				ℋ
			

		
	
, we consider the following variational inequality problem (VIP) of finding 
	
		
			

				𝑥
			

			

				∗
			

			
				∈
				𝐶
			

		
	
 such that
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				⟨
				𝐴
				𝑥
			

			

				∗
			

			
				,
				𝑥
				−
				𝑥
			

			

				∗
			

			
				⟩
				≥
				0
				,
				∀
				𝑥
				∈
				𝐶
				.
			

		
	

					The solution set of VIP (1) is denoted by 
	
		
			
				V
				I
				(
				𝐶
				,
				𝐴
				)
			

		
	
. The theory of variational inequalities has been studied quite extensively and has emerged as an important tool in the study of a wide class of problems from mechanics, optimization, engineering, science, and social sciences. It is well known that the VIP is equivalent to a fixed point problem. This alternative formulation has been used to suggest and analyze projection iterative method for solving variational inequalities under the conditions that the involved operator must be strongly monotone and Lipschitz continuous. In the recent past, several people have studied and proposed several iterative methods to find a solution of variational inequalities which is also a fixed point of a nonexpansive mapping or strict pseudocontractive mapping; see, for example, [1–9] and the references therein.
For finding an element of 
	
		
			
				F
				i
				x
				(
				𝑆
				)
				∩
				V
				I
				(
				𝐶
				,
				𝐴
				)
			

		
	
 when 
	
		
			

				𝐶
			

		
	
 is closed and convex, 
	
		
			

				𝑆
			

		
	
 is nonexpansive, and 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝛼
			

		
	
-inverse strongly monotone, Takahashi and Toyoda [10] introduced the following Mann-type iterative algorithm: 
						
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			

				𝑥
			

			
				𝑛
				+
				1
			

			
				=
				𝛼
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				+
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				𝑆
				𝑃
			

			

				𝐶
			

			
				
				1
				−
				𝜆
			

			

				𝑛
			

			
				𝐴
				𝑥
			

			

				𝑛
			

			
				
				,
				∀
				𝑛
				≥
				0
				,
			

		
	

					where 
	
		
			

				𝑃
			

			

				𝐶
			

		
	
 is the metric projection of 
	
		
			

				ℋ
			

		
	
 onto 
	
		
			

				𝐶
			

		
	
, 
	
		
			

				𝑥
			

			

				0
			

			
				=
				𝑥
				∈
				𝐶
			

		
	
, 
	
		
			
				{
				𝛼
			

			

				𝑛
			

			

				}
			

		
	
 is a sequence in 
	
		
			
				(
				0
				,
				1
				)
			

		
	
, and 
	
		
			
				{
				𝜆
			

			

				𝑛
			

			

				}
			

		
	
 is a sequence in 
	
		
			
				(
				0
				,
				2
				𝛼
				)
			

		
	
. They showed that if 
	
		
			
				F
				i
				x
				(
				𝑆
				)
				∩
				V
				I
				(
				𝐶
				,
				𝐴
				)
				≠
				∅
			

		
	
, then the sequence 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 converges weakly to some 
	
		
			
				𝑧
				∈
				F
				i
				x
				(
				𝑆
				)
				∩
				V
				I
				(
				𝐶
				,
				𝐴
				)
			

		
	
. Nadezhkina and Takahashi [9] and Zeng and Yao [8] proposed extragradient methods motivated by Korpelevič [11] for finding a common element of the fixed point set of a nonexpansive mapping and the solution set of a variational inequality problem. Further, these iterative methods are extended in [12] to develop a new iterative method for finding elements in 
	
		
			
				F
				i
				x
				(
				𝑆
				)
				∩
				V
				I
				(
				𝐶
				,
				𝐴
				)
			

		
	
.
Let 
	
		
			

				𝐵
			

			

				1
			

			
				,
				𝐵
			

			

				2
			

			
				∶
				𝐶
				→
				ℋ
			

		
	
 be two mappings. Recently, Ceng et al. [4] introduced and considered the following problem of finding 
	
		
			
				(
				𝑥
			

			

				∗
			

			
				,
				𝑦
			

			

				∗
			

			
				)
				∈
				𝐶
				×
				𝐶
			

		
	
 such that
						
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				⟨
				𝜇
			

			

				1
			

			

				𝐵
			

			

				1
			

			

				𝑦
			

			

				∗
			

			
				+
				𝑥
			

			

				∗
			

			
				−
				𝑦
			

			

				∗
			

			
				,
				𝑥
				−
				𝑥
			

			

				∗
			

			
				⟩
				≥
				0
				,
				∀
				𝑥
				∈
				𝐶
				,
				⟨
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			

				𝑥
			

			

				∗
			

			
				+
				𝑦
			

			

				∗
			

			
				−
				𝑥
			

			

				∗
			

			
				,
				𝑥
				−
				𝑦
			

			

				∗
			

			
				⟩
				≥
				0
				,
				∀
				𝑥
				∈
				𝐶
				,
			

		
	

					which is called a general system of variational inequalities (GSVI), where 
	
		
			

				𝜇
			

			

				1
			

			
				>
				0
			

		
	
 and 
	
		
			

				𝜇
			

			

				2
			

			
				>
				0
			

		
	
 are two constants. The set of solutions of problem (3) is denoted by 
	
		
			
				G
				S
				V
				I
				(
				𝐶
				,
				𝐵
			

			

				1
			

			
				,
				𝐵
			

			

				2
			

			

				)
			

		
	
. In particular, if 
	
		
			

				𝐵
			

			

				1
			

			
				=
				𝐵
			

			

				2
			

		
	
, then problem (3) reduces to the new system of variational inequalities (NSVI), introduced and studied by Verma [13]. Further, if 
	
		
			

				𝑥
			

			

				∗
			

			
				=
				𝑦
			

			

				∗
			

		
	
, then the NSVI reduces to VIP (1).
Recently, Ceng et al. [4] transformed problem (3) into a fixed point problem in the following way.
Lemma 1 (see [4]).   For given 
	
		
			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				∈
				𝐶
			

		
	
, 
	
		
			

				(
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				)
			

		
	
 is a solution of problem (3) if and only if 
	
		
			
				
			
			

				𝑥
			

		
	
 is a fixed point of the mapping 
	
		
			
				𝐺
				∶
				𝐶
				→
				𝐶
			

		
	
 defined by
							
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			
				𝐺
				(
				𝑥
				)
				=
				𝑃
			

			

				𝐶
			

			
				
				𝑃
			

			

				𝐶
			

			
				
				𝑥
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				𝑥
				
				−
				𝜇
			

			

				1
			

			

				𝐵
			

			

				1
			

			

				𝑃
			

			

				𝐶
			

			
				
				𝑥
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				𝑥
				,
				
				
				∀
				𝑥
				∈
				𝐶
				,
			

		
	

						where 
	
		
			
				
			
			
				𝑦
				=
				𝑃
			

			

				𝐶
			

			

				(
			

			
				
			
			
				𝑥
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				
			
			
				𝑥
				)
			

		
	
.
In particular, if the mapping 
	
		
			

				𝐵
			

			

				𝑖
			

			
				∶
				𝐶
				→
				ℋ
			

		
	
 is 
	
		
			

				𝛽
			

			

				𝑖
			

		
	
-inverse strongly monotone for 
	
		
			
				𝑖
				=
				1
				,
				2
			

		
	
, then the mapping 
	
		
			

				𝐺
			

		
	
 is nonexpansive provided 
	
		
			

				𝜇
			

			

				𝑖
			

			
				∈
				(
				0
				,
				2
				𝛽
			

			

				𝑖
			

			

				)
			

		
	
 for 
	
		
			
				𝑖
				=
				1
				,
				2
			

		
	
.
Utilizing Lemma 1, they introduced and studied a relaxed extragradient method for solving GSVI (3).
Throughout this paper, unless otherwise specified, the set of fixed points of the mapping 
	
		
			

				𝐺
			

		
	
 is denoted by 
	
		
			

				Ξ
			

		
	
. Based on the relaxed extragradient method and viscosity approximation method, Yao et al. [7] proposed and analyzed an iterative algorithm for finding a common solution of GSVI (3) and fixed point problem of a strictly pseudocontractive mapping 
	
		
			
				𝑆
				∶
				𝐶
				→
				𝐶
			

		
	
, where 
	
		
			

				𝐶
			

		
	
 is a nonempty bounded closed convex subset of a real Hilbert space 
	
		
			

				ℋ
			

		
	
.
Subsequently, Ceng at al. [14] further presented and analyzed an iterative scheme for finding a common element of the solution set of VIP (1), the solution set of GSVI (3), and fixed point set of a strictly pseudocontractive mapping 
	
		
			
				𝑆
				∶
				𝐶
				→
				𝐶
			

		
	
.
Theorem 2 (see [14, Theorem 3.1]).  Let 
	
		
			

				𝐶
			

		
	
 be a nonempty closed convex subset of a real Hilbert space 
	
		
			

				ℋ
			

		
	
. Let 
	
		
			
				𝐴
				∶
				𝐶
				→
				ℋ
			

		
	
 be 
	
		
			

				𝛼
			

		
	
-inverse strongly monotone, and let 
	
		
			

				𝐵
			

			

				𝑖
			

			
				∶
				𝐶
				→
				ℋ
			

		
	
 be 
	
		
			

				𝛽
			

			

				𝑖
			

		
	
-inverse strongly monotone for 
	
		
			
				𝑖
				=
				1
				,
				2
			

		
	
. Let 
	
		
			
				𝑆
				∶
				𝐶
				→
				𝐶
			

		
	
 be a 
	
		
			

				𝑘
			

		
	
-strictly pseudocontractive mapping such that 
	
		
			
				F
				i
				x
				(
				𝑆
				)
				∩
				Ξ
				∩
				V
				I
				(
				𝐶
				,
				𝐴
				)
				≠
				∅
			

		
	
. Let 
	
		
			
				𝑄
				∶
				𝐶
				→
				𝐶
			

		
	
 be a 
	
		
			

				𝜌
			

		
	
-contraction with 
	
		
			
				𝜌
				∈
				[
				0
				,
				1
				/
				2
				)
			

		
	
. For given 
	
		
			

				𝑥
			

			

				0
			

			
				∈
				𝐶
			

		
	
 arbitrarily, let the sequences 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝑦
			

			

				𝑛
			

			

				}
			

		
	
, and 
	
		
			
				{
				𝑧
			

			

				𝑛
			

			

				}
			

		
	
 be generated iteratively by
							
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			

				𝑧
			

			

				𝑛
			

			
				=
				𝑃
			

			

				𝐶
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝜆
			

			

				𝑛
			

			
				𝐴
				𝑥
			

			

				𝑛
			

			
				
				,
				𝑦
			

			

				𝑛
			

			
				=
				𝛼
			

			

				𝑛
			

			
				𝑄
				𝑥
			

			

				𝑛
			

			
				+
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				𝑃
			

			

				𝐶
			

			
				
				𝑃
			

			

				𝐶
			

			
				
				𝑧
			

			

				𝑛
			

			
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				
				−
				𝜇
			

			

				1
			

			

				𝐵
			

			

				1
			

			

				𝑃
			

			

				𝐶
			

			
				
				𝑧
			

			

				𝑛
			

			
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				,
				𝑥
				
				
			

			
				𝑛
				+
				1
			

			
				=
				𝛽
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				+
				𝛾
			

			

				𝑛
			

			

				𝑦
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				𝑆
				𝑦
			

			

				𝑛
			

			
				,
				∀
				𝑛
				≥
				0
				,
			

		
	

						where 
	
		
			

				𝜇
			

			

				𝑖
			

			
				∈
				(
				0
				,
				2
				𝛽
			

			

				𝑖
			

			

				)
			

		
	
 for 
	
		
			
				𝑖
				=
				1
				,
				2
			

		
	
, 
	
		
			
				{
				𝜆
			

			

				𝑛
			

			
				}
				⊂
				(
				0
				,
				2
				𝛼
				]
			

		
	
 and 
	
		
			
				{
				𝛼
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝛽
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝛾
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝛿
			

			

				𝑛
			

			
				}
				⊂
				[
				0
				,
				1
				]
			

		
	
 such that (i)
	
		
			

				𝛽
			

			

				𝑛
			

			
				+
				𝛾
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				=
				1
			

		
	
 and 
	
		
			
				(
				𝛾
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				)
				𝑘
				≤
				𝛾
			

			

				𝑛
			

		
	
 for all 
	
		
			
				𝑛
				≥
				0
			

		
	
;(ii)
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝛼
			

			

				𝑛
			

			
				=
				0
			

		
	
 and 
	
		
			

				∑
			

			
				∞
				𝑛
				=
				0
			

			

				𝛼
			

			

				𝑛
			

			
				=
				∞
			

		
	
;(iii)
	
		
			
				0
				<
				l
				i
				m
				i
				n
				f
			

			
				𝑛
				→
				∞
			

			

				𝛽
			

			

				𝑛
			

			
				≤
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			

				𝛽
			

			

				𝑛
			

			
				<
				1
			

		
	
 and 
	
		
			
				l
				i
				m
				i
				n
				f
			

			
				𝑛
				→
				∞
			

			

				𝛿
			

			

				𝑛
			

			
				>
				0
			

		
	
;(iv)
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				(
				𝛾
			

			
				𝑛
				+
				1
			

			
				/
				(
				1
				−
				𝛽
			

			
				𝑛
				+
				1
			

			
				)
				−
				𝛾
			

			

				𝑛
			

			
				/
				(
				1
				−
				𝛽
			

			

				𝑛
			

			
				)
				)
				=
				0
			

		
	
;(v)
	
		
			
				0
				<
				l
				i
				m
				i
				n
				f
			

			
				𝑛
				→
				∞
			

			

				𝜆
			

			

				𝑛
			

			
				≤
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			

				𝜆
			

			

				𝑛
			

			
				<
				2
				𝛼
			

		
	
 and 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				|
				𝜆
			

			
				𝑛
				+
				1
			

			
				−
				𝜆
			

			

				𝑛
			

			
				|
				=
				0
			

		
	
.  Then the sequence 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 generated by (5) converges strongly to 
	
		
			
				
			
			
				𝑥
				=
				𝑃
			

			
				F
				i
				x
				(
				𝑆
				)
				∩
				Ξ
				∩
				V
				I
				(
				𝐶
				,
				𝐴
				)
			

			

				𝑄
			

			
				
			
			

				𝑥
			

		
	
 and 
	
		
			

				(
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				)
			

		
	
 is a solution of GSVI (3), where 
	
		
			
				
			
			
				𝑦
				=
				𝑃
			

			

				𝐶
			

			

				(
			

			
				
			
			
				𝑥
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				
			
			
				𝑥
				)
			

		
	
.
On the other hand, let 
	
		
			

				𝐶
			

		
	
 and 
	
		
			

				𝑄
			

		
	
 be nonempty closed convex subsets of real Hilbert spaces 
	
		
			

				ℋ
			

			

				1
			

		
	
 and 
	
		
			

				ℋ
			

			

				2
			

		
	
, respectively. The split feasibility problem (SFP) is to find a point 
	
		
			

				𝑥
			

			

				∗
			

		
	
 with the following property:
						
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			

				𝑥
			

			

				∗
			

			
				∈
				𝐶
				,
				𝐴
				𝑥
			

			

				∗
			

			
				∈
				𝑄
				,
			

		
	

					where 
	
		
			
				𝐴
				∈
				𝐵
				(
				ℋ
			

			

				1
			

			
				,
				ℋ
			

			

				2
			

			

				)
			

		
	
 and 
	
		
			
				𝐵
				(
				ℋ
			

			

				1
			

			
				,
				ℋ
			

			

				2
			

			

				)
			

		
	
 denotes the family of all bounded linear operators from 
	
		
			

				ℋ
			

			

				1
			

		
	
 to 
	
		
			

				ℋ
			

			

				2
			

		
	
.
In 1994, the SFP was first introduced by Censor and Elfving [15], in finite-dimensional Hilbert spaces, for modeling inverse problems which arise from phase retrievals and in medical image reconstruction. A number of image reconstruction problems can be formulated as the SFP; see, for example, [16] and the references therein. Recently, it is found that the SFP can also be applied to study intensity-modulated radiation therapy; see, for example, [17–19] and the references therein. In the recent past, a wide variety of iterative methods have been used in signal processing and image reconstruction and for solving the SFP; see, for example, [16–26] and the references therein. A special case of the SFP is the following convex constrained linear inverse problem [27] of finding an element 
	
		
			

				𝑥
			

		
	
 such that
						
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			
				𝑥
				∈
				𝐶
				,
				𝐴
				𝑥
				=
				𝑏
				.
			

		
	

					It has been extensively investigated in the literature using the projected Landweber iterative method [28]. Comparatively, the SFP has received much less attention so far, due to the complexity resulting from the set 
	
		
			

				𝑄
			

		
	
. Therefore, whether various versions of the projected Landweber iterative method [28] can be extended to solve the SFP remains an interesting open topic. For example, it is yet not clear whether the dual approach to (7) of [29] can be extended to the SFP. The original algorithm given in [15] involves the computation of the inverse 
	
		
			

				𝐴
			

			
				−
				1
			

		
	
 (assuming the existence of the inverse of 
	
		
			

				𝐴
			

		
	
), and thus has not become popular. A seemingly more popular algorithm that solves the SFP is the 
	
		
			
				𝐶
				𝑄
			

		
	
 algorithm of Byrne [16, 21] which is found to be a gradient-projection method (GPM) in convex minimization. It is also a special case of the proximal forward-backward splitting method [30]. The 
	
		
			
				𝐶
				𝑄
			

		
	
 algorithm only involves the computation of the projections 
	
		
			

				𝑃
			

			

				𝐶
			

		
	
 and 
	
		
			

				𝑃
			

			

				𝑄
			

		
	
 onto the sets 
	
		
			

				𝐶
			

		
	
 and 
	
		
			

				𝑄
			

		
	
, respectively, and is therefore implementable in the case where 
	
		
			

				𝑃
			

			

				𝐶
			

		
	
 and 
	
		
			

				𝑃
			

			

				𝑄
			

		
	
 have closed-form expressions; for example, 
	
		
			

				𝐶
			

		
	
 and 
	
		
			

				𝑄
			

		
	
 are closed balls or half-spaces. However, it remains a challenge how to implement the 
	
		
			
				𝐶
				𝑄
			

		
	
 algorithm in the case where the projections 
	
		
			

				𝑃
			

			

				𝐶
			

		
	
 and/or 
	
		
			

				𝑃
			

			

				𝑄
			

		
	
 fail to have closed-form expressions, though theoretically we can prove the (weak) convergence of the algorithm.
Very recently, Xu [20] gave a continuation of the study on the 
	
		
			
				𝐶
				𝑄
			

		
	
 algorithm and its convergence. He applied Mann's algorithm to the SFP and purposed an averaged 
	
		
			
				𝐶
				𝑄
			

		
	
 algorithm which was proved to be weakly convergent to a solution of the SFP. He also established the strong convergence result, which shows that the minimum-norm solution can be obtained.
Furthermore, Korpelevič [11] introduced the so-called extragradient method for finding a solution of a saddle point problem. He proved that the sequences generated by the proposed iterative algorithm converge to a solution of the saddle point problem.
Throughout this paper, assume that the SFP is consistent; that is, the solution set 
	
		
			

				Γ
			

		
	
 of the SFP is nonempty. Let 
	
		
			
				𝑓
				∶
				ℋ
			

			

				1
			

			
				→
				𝐑
			

		
	
 be a continuous differentiable function. The minimization problem
						
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				m
				i
				n
			

			
				𝑥
				∈
				𝐶
			

			
				1
				𝑓
				(
				𝑥
				)
				∶
				=
			

			
				
			
			
				2
				‖
				‖
				𝐴
				𝑥
				−
				𝑃
			

			

				𝑄
			

			
				‖
				‖
				𝐴
				𝑥
			

			

				2
			

		
	

					is ill posed. Therefore, Xu [20] considered the following Tikhonov regularization problem:
						
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				m
				i
				n
			

			
				𝑥
				∈
				𝐶
			

			

				𝑓
			

			

				𝛼
			

			
				1
				(
				𝑥
				)
				∶
				=
			

			
				
			
			
				2
				‖
				‖
				𝐴
				𝑥
				−
				𝑃
			

			

				𝑄
			

			
				‖
				‖
				𝐴
				𝑥
			

			

				2
			

			
				+
				1
			

			
				
			
			
				2
				𝛼
				‖
				𝑥
				‖
			

			

				2
			

			

				,
			

		
	

					where 
	
		
			
				𝛼
				>
				0
			

		
	
 is the regularization parameter. The regularized minimization (9) has a unique solution which is denoted by 
	
		
			

				𝑥
			

			

				𝛼
			

		
	
. The following results are easy to prove.
Proposition 3 (see [31, Proposition 3.1]).  Given 
	
		
			

				𝑥
			

			

				∗
			

			
				∈
				ℋ
			

			

				1
			

		
	
, the following statements are equivalent: (i)
	
		
			

				𝑥
			

			

				∗
			

		
	
solves the SFP;(ii)
	
		
			

				𝑥
			

			

				∗
			

		
	
solves the fixed point equation 
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			

				𝑃
			

			

				𝐶
			

			
				(
				𝐼
				−
				𝜆
				∇
				𝑓
				)
				𝑥
			

			

				∗
			

			
				=
				𝑥
			

			

				∗
			

			

				,
			

		
	
where 
	
		
			
				𝜆
				>
				0
			

		
	
, 
	
		
			
				∇
				𝑓
				=
				𝐴
			

			

				∗
			

			
				(
				𝐼
				−
				𝑃
			

			

				𝑄
			

			
				)
				𝐴
			

		
	
 and 
	
		
			

				𝐴
			

			

				∗
			

		
	
 is the adjoint of 
	
		
			

				𝐴
			

		
	
;(iii)
	
		
			

				𝑥
			

			

				∗
			

		
	
solves the variational inequality problem (VIP) of finding 
	
		
			

				𝑥
			

			

				∗
			

			
				∈
				𝐶
			

		
	
 such that 
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			
				
				
				𝑥
				∇
				𝑓
			

			

				∗
			

			
				
				,
				𝑥
				−
				𝑥
			

			

				∗
			

			
				
				≥
				0
				,
				∀
				𝑥
				∈
				𝐶
				.
			

		
	

It is clear from Proposition 3 that
						
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			
				
				𝑃
				Γ
				=
				F
				i
				x
			

			

				𝐶
			

			
				
				(
				𝐼
				−
				𝜆
				∇
				𝑓
				)
				=
				V
				I
				(
				𝐶
				,
				∇
				𝑓
				)
			

		
	

					for all 
	
		
			
				𝜆
				>
				0
			

		
	
, where 
	
		
			
				F
				i
				x
				(
				𝑃
			

			

				𝐶
			

			
				(
				𝐼
				−
				𝜆
				∇
				𝑓
				)
				)
			

		
	
 and 
	
		
			
				V
				I
				(
				𝐶
				,
				∇
				𝑓
				)
			

		
	
 denote the set of fixed points of 
	
		
			

				𝑃
			

			

				𝐶
			

			
				(
				𝐼
				−
				𝜆
				∇
				𝑓
				)
			

		
	
 and the solution set of VIP (11), respectively.
Proposition 4 (see [31]).   The following statements hold: (i)the gradient 
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			
				∇
				𝑓
			

			

				𝛼
			

			
				=
				∇
				𝑓
				+
				𝛼
				𝐼
				=
				𝐴
			

			

				∗
			

			
				
				𝐼
				−
				𝑃
			

			

				𝑄
			

			
				
				𝐴
				+
				𝛼
				𝐼
			

		
	
is 
	
		
			
				(
				𝛼
				+
				‖
				𝐴
				‖
			

			

				2
			

			

				)
			

		
	
-Lipschitz continuous and 
	
		
			

				𝛼
			

		
	
-strongly monotone;(ii)the mapping 
	
		
			

				𝑃
			

			

				𝐶
			

			
				(
				𝐼
				−
				𝜆
				∇
				𝑓
			

			

				𝛼
			

			

				)
			

		
	
 is a contraction with coefficient 
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			

				
			

			
				
			
			
				
				
				‖
				1
				−
				𝜆
				2
				𝛼
				−
				𝜆
				𝐴
				‖
			

			

				2
			

			
				
				+
				𝛼
			

			

				2
			

			
				≤
				√
				
				
			

			
				
			
			
				1
				1
				−
				𝛼
				𝜆
				≤
				1
				−
			

			
				
			
			
				2
				
				,
				𝛼
				𝜆
			

		
	
where 
	
		
			
				0
				<
				𝜆
				≤
				𝛼
				/
				(
				‖
				𝐴
				‖
			

			

				2
			

			
				+
				𝛼
				)
			

			

				2
			

		
	
;(iii)if the SFP is consistent, then the strong 
	
		
			
				l
				i
				m
			

			
				𝛼
				→
				0
			

			

				𝑥
			

			

				𝛼
			

		
	
 exists and is the minimum-norm solution of the SFP.
Very recently, by combining the regularization method and extragradient method due to Nadezhkina and Takahashi [32], Ceng et al. [31] proposed an extragradient algorithm with regularization and proved that the sequences generated by the proposed algorithm converge weakly to an element of 
	
		
			
				F
				i
				x
				(
				𝑆
				)
				∩
				Γ
			

		
	
, where 
	
		
			
				𝑆
				∶
				𝐶
				→
				𝐶
			

		
	
 is a nonexpansive mapping.
Theorem 5 (see [31, Theorem 3.1]).   Let 
	
		
			
				𝑆
				∶
				𝐶
				→
				𝐶
			

		
	
 be a nonexpansive mapping such that 
	
		
			
				F
				i
				x
				(
				𝑆
				)
				∩
				Γ
				≠
				∅
			

		
	
. Let 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 and 
	
		
			
				{
				𝑦
			

			

				𝑛
			

			

				}
			

		
	
 be the sequences in 
	
		
			

				𝐶
			

		
	
 generated by the following extragradient algorithm:
							
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			

				𝑥
			

			

				0
			

			
				𝑦
				=
				𝑥
				∈
				𝐶
				𝑐
				ℎ
				𝑜
				𝑠
				𝑒
				𝑛
				𝑎
				𝑟
				𝑏
				𝑖
				𝑡
				𝑟
				𝑎
				𝑟
				𝑖
				𝑙
				𝑦
				,
			

			

				𝑛
			

			
				=
				𝑃
			

			

				𝐶
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				,
				𝑥
				
				
			

			
				𝑛
				+
				1
			

			
				=
				𝛽
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				+
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				𝑆
				𝑃
			

			

				𝐶
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑦
			

			

				𝑛
			

			
				
				
				,
				∀
				𝑛
				≥
				0
				,
			

		
	

						where 
	
		
			

				∑
			

			
				∞
				𝑛
				=
				0
			

			

				𝛼
			

			

				𝑛
			

			
				<
				∞
			

		
	
, 
	
		
			
				{
				𝜆
			

			

				𝑛
			

			
				}
				⊂
				[
				𝑎
				,
				𝑏
				]
			

		
	
 for some 
	
		
			
				𝑎
				,
				𝑏
				∈
				(
				0
				,
				1
				/
				‖
				𝐴
				‖
			

			

				2
			

			

				)
			

		
	
 and 
	
		
			
				{
				𝛽
			

			

				𝑛
			

			
				}
				⊂
				[
				𝑐
				,
				𝑑
				]
			

		
	
 for some 
	
		
			
				𝑐
				,
				𝑑
				∈
				(
				0
				,
				1
				)
			

		
	
. Then, both sequences 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 and 
	
		
			
				{
				𝑦
			

			

				𝑛
			

			

				}
			

		
	
 converge weakly to an element 
	
		
			
				̂
				𝑥
				∈
				F
				i
				x
				(
				𝑆
				)
				∩
				Γ
			

		
	
. 
Motivated and inspired by the research going on this area, we propose and analyze the following Mann-type extragradient iterative algorithms with regularization for finding a common element of the solution set of the GSVI (3), the solution set of the SFP (6), and the fixed point set of a strictly pseudocontractive mapping 
	
		
			
				𝑆
				∶
				𝐶
				→
				𝐶
			

		
	
.
Algorithm 6. Let 
	
		
			

				𝜇
			

			

				𝑖
			

			
				∈
				(
				0
				,
				2
				𝛽
			

			

				𝑖
			

			

				)
			

		
	
 for 
	
		
			
				𝑖
				=
				1
				,
				2
			

		
	
, 
	
		
			
				{
				𝛼
			

			

				𝑛
			

			
				}
				⊂
				(
				0
				,
				∞
				)
			

		
	
, 
	
		
			
				{
				𝜆
			

			

				𝑛
			

			
				}
				⊂
				(
				0
				,
				1
				/
				‖
				𝐴
				‖
			

			

				2
			

			

				)
			

		
	
 and 
	
		
			
				{
				𝜎
			

			

				𝑛
			

			
				}
				,
				{
				𝜏
			

			

				𝑛
			

			
				}
				,
				{
				𝛽
			

			

				𝑛
			

			
				}
				,
				{
				𝛾
			

			

				𝑛
			

			
				}
				,
				{
				𝛿
			

			

				𝑛
			

			
				}
				⊂
				[
				0
				,
				1
				]
			

		
	
 such that 
	
		
			

				𝜎
			

			

				𝑛
			

			
				+
				𝜏
			

			

				𝑛
			

			
				≤
				1
			

		
	
 and 
	
		
			

				𝛽
			

			

				𝑛
			

			
				+
				𝛾
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				=
				1
			

		
	
 for all 
	
		
			
				𝑛
				≥
				0
			

		
	
. For given 
	
		
			

				𝑥
			

			

				0
			

			
				∈
				𝐶
			

		
	
 arbitrarily, let 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝑦
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝑧
			

			

				𝑛
			

			

				}
			

		
	
 be the sequences generated by the Mann-type extragradient iterative scheme with regularization 
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			

				𝑧
			

			

				𝑛
			

			
				=
				𝑃
			

			

				𝐶
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				,
				𝑦
				
				
			

			

				𝑛
			

			
				=
				𝜎
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				+
				𝜏
			

			

				𝑛
			

			

				𝑃
			

			

				𝐶
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑧
			

			

				𝑛
			

			
				+
				
				
				
				1
				−
				𝜎
			

			

				𝑛
			

			
				−
				𝜏
			

			

				𝑛
			

			
				
				𝑃
			

			

				𝐶
			

			
				
				𝑃
			

			

				𝐶
			

			
				
				𝑧
			

			

				𝑛
			

			
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				
				−
				𝜇
			

			

				1
			

			

				𝐵
			

			

				1
			

			

				𝑃
			

			

				𝐶
			

			
				
				𝑧
			

			

				𝑛
			

			
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				,
				𝑥
				
				
			

			
				𝑛
				+
				1
			

			
				=
				𝛽
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				+
				𝛾
			

			

				𝑛
			

			

				𝑦
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				𝑆
				𝑦
			

			

				𝑛
			

			
				,
				∀
				𝑛
				≥
				0
				.
			

		
	
Under appropriate assumptions, it is proven that all the sequences 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝑦
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝑧
			

			

				𝑛
			

			

				}
			

		
	
 converge weakly to an element 
	
		
			
				
			
			
				𝑥
				∈
				F
				i
				x
				(
				𝑆
				)
				∩
				Ξ
				∩
				Γ
			

		
	
. Furthermore, 
	
		
			

				(
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				)
			

		
	
 is a solution of the GSVI (3), where 
	
		
			
				
			
			
				𝑦
				=
				𝑃
			

			

				𝐶
			

			

				(
			

			
				
			
			
				𝑥
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				
			
			
				𝑥
				)
			

		
	
. 
Algorithm 7. Let 
	
		
			

				𝜇
			

			

				𝑖
			

			
				∈
				(
				0
				,
				2
				𝛽
			

			

				𝑖
			

			

				)
			

		
	
 for 
	
		
			
				𝑖
				=
				1
				,
				2
			

		
	
, 
	
		
			
				{
				𝛼
			

			

				𝑛
			

			
				}
				⊂
				(
				0
				,
				∞
				)
			

		
	
, 
	
		
			
				{
				𝜆
			

			

				𝑛
			

			
				}
				⊂
				(
				0
				,
				1
				/
				‖
				𝐴
				‖
			

			

				2
			

			

				)
			

		
	
 and 
	
		
			
				{
				𝜎
			

			

				𝑛
			

			
				}
				,
				{
				𝛽
			

			

				𝑛
			

			
				}
				,
				{
				𝛾
			

			

				𝑛
			

			
				}
				,
				{
				𝛿
			

			

				𝑛
			

			
				}
				⊂
				[
				0
				,
				1
				]
			

		
	
 such that 
	
		
			

				𝛽
			

			

				𝑛
			

			
				+
				𝛾
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				=
				1
			

		
	
 for all 
	
		
			
				𝑛
				≥
				0
			

		
	
. For given 
	
		
			

				𝑥
			

			

				0
			

			
				∈
				𝐶
			

		
	
 arbitrarily, let 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			
				}
				,
				{
				𝑢
			

			

				𝑛
			

			
				}
				,
				{
				̃
				𝑢
			

			

				𝑛
			

			

				}
			

		
	
 be the sequences generated by the Mann-type extragradient iterative scheme with regularization
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			

				𝑢
			

			

				𝑛
			

			
				=
				𝑃
			

			

				𝐶
			

			
				
				𝑃
			

			

				𝐶
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			

				𝑥
			

			

				𝑛
			

			
				
				−
				𝜇
			

			

				1
			

			

				𝐵
			

			

				1
			

			

				𝑃
			

			

				𝐶
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			

				𝑥
			

			

				𝑛
			

			
				,
				
				
				̃
				𝑢
			

			

				𝑛
			

			
				=
				𝑃
			

			

				𝐶
			

			
				
				𝑢
			

			

				𝑛
			

			
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑢
			

			

				𝑛
			

			
				,
				𝑦
				
				
			

			

				𝑛
			

			
				=
				𝜎
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				+
				
				1
				−
				𝜎
			

			

				𝑛
			

			
				
				𝑃
			

			

				𝐶
			

			
				
				𝑢
			

			

				𝑛
			

			
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				̃
				𝑢
			

			

				𝑛
			

			
				,
				𝑥
				
				
			

			
				𝑛
				+
				1
			

			
				=
				𝛽
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				+
				𝛾
			

			

				𝑛
			

			

				𝑦
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				𝑆
				𝑦
			

			

				𝑛
			

			
				,
				∀
				𝑛
				≥
				0
				.
			

		
	
Also, under mild conditions, it is shown that all the sequences 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝑢
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				̃
				𝑢
			

			

				𝑛
			

			

				}
			

		
	
 converge weakly to an element 
	
		
			
				
			
			
				𝑥
				∈
				F
				i
				x
				(
				𝑆
				)
				∩
				Ξ
				∩
				Γ
			

		
	
. Furthermore, 
	
		
			

				(
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				)
			

		
	
 is a solution of the GSVI (3), where 
	
		
			
				
			
			
				𝑦
				=
				𝑃
			

			

				𝐶
			

			

				(
			

			
				
			
			
				𝑥
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				
			
			
				𝑥
				)
			

		
	
.Observe that both [20, Theorem 5.7] and [31, Theorem 3.1] are weak convergence results for solving the SFP and so are our results as well. But our problem of finding an element of 
	
		
			
				F
				i
				x
				(
				𝑆
				)
				∩
				Ξ
				∩
				Γ
			

		
	
 is more general than the corresponding ones in [20, Theorem 5.7] and [31, Theorem 3.1], respectively. Hence, there is no doubt that our weak convergence results are very interesting and quite valuable. Because the Mann-type extragradient iterative schemes (16) and (17) with regularization involve two inverse strongly monotone mappings 
	
		
			

				𝐵
			

			

				1
			

		
	
 and 
	
		
			

				𝐵
			

			

				2
			

		
	
, a 
	
		
			

				𝑘
			

		
	
-strictly pseudocontractive self-mapping 
	
		
			

				𝑆
			

		
	
 and several parameter sequences, they are more flexible and more subtle than the corresponding ones in [20, Theorem 5.7] and [31, Theorem 3.1], respectively. Furthermore, the hybrid extragradient iterative scheme (5) is extended to develop the Mann-type extragradient iterative schemes (16) and (17) with regularization. In our results, the Mann-type extragradient iterative schemes (16) and (17) with regularization lack the requirement of boundedness for the domain in which various mappings are defined; see, for example, Yao et al. [7, Theorem 3.2]. Therefore, our results represent the modification, supplementation, extension, and improvement of [20, Theorem 5.7], [31, Theorem 3.1], [14, Theorem 3.1], and [7, Theorem 3.2].
2. Preliminaries
Let 
	
		
			

				ℋ
			

		
	
 be a real Hilbert space, whose inner product and norm are denoted by 
	
		
			
				⟨
				⋅
				,
				⋅
				⟩
			

		
	
 and 
	
		
			
				‖
				⋅
				‖
			

		
	
, respectively. Let 
	
		
			

				𝐾
			

		
	
 be a nonempty, closed, and convex subset of 
	
		
			

				ℋ
			

		
	
. Now we present some known definitions and results which will be used in the sequel.
The metric (or nearest point) projection from 
	
		
			

				ℋ
			

		
	
 onto 
	
		
			

				𝐾
			

		
	
 is the mapping 
	
		
			

				𝑃
			

			

				𝐾
			

			
				∶
				ℋ
				→
				𝐾
			

		
	
 which assigns to each point 
	
		
			
				𝑥
				∈
				ℋ
			

		
	
 the unique point 
	
		
			

				𝑃
			

			

				𝐾
			

			
				𝑥
				∈
				𝐾
			

		
	
 satisfying the property
						
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
				−
				𝑃
			

			

				𝐾
			

			
				𝑥
				‖
				‖
				=
				i
				n
				f
			

			
				𝑦
				∈
				𝐾
			

			
				(
				‖
				𝑥
				−
				𝑦
				‖
				=
				∶
				𝑑
				𝑥
				,
				𝐾
				)
				.
			

		
	

Some important properties of projections are gathered in the following proposition.
Proposition 8.  For given 
	
		
			
				𝑥
				∈
				ℋ
			

		
	
 and 
	
		
			
				𝑧
				∈
				𝐾
			

		
	
: (i)
	
		
			
				𝑧
				=
				𝑃
			

			

				𝐾
			

			
				𝑥
				⇔
				⟨
				𝑥
				−
				𝑧
				,
				𝑦
				−
				𝑧
				⟩
				≤
				0
			

		
	
, for all 
	
		
			
				𝑦
				∈
				𝐾
			

		
	
;(ii)
	
		
			
				𝑧
				=
				𝑃
			

			

				𝐾
			

			
				𝑥
				⇔
				‖
				𝑥
				−
				𝑧
				‖
			

			

				2
			

			
				≤
				‖
				𝑥
				−
				𝑦
				‖
			

			

				2
			

			
				−
				‖
				𝑦
				−
				𝑧
				‖
			

			

				2
			

		
	
, for  all 
	
		
			
				𝑦
				∈
				𝐾
			

		
	
;(iii)
	
		
			
				⟨
				𝑃
			

			

				𝐾
			

			
				𝑥
				−
				𝑃
			

			

				𝐾
			

			
				𝑦
				,
				𝑥
				−
				𝑦
				⟩
				≥
				‖
				𝑃
			

			

				𝐾
			

			
				𝑥
				−
				𝑃
			

			

				𝐾
			

			
				𝑦
				‖
			

			

				2
			

		
	
, for all 
	
		
			
				𝑦
				∈
				ℋ
			

		
	
, which hence implies that 
	
		
			

				𝑃
			

			

				𝐾
			

		
	
 is nonexpansive and monotone.
Definition 9. A mapping 
	
		
			
				𝑇
				∶
				ℋ
				→
				ℋ
			

		
	
 is said to be (a)nonexpansive if
										
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				‖
				𝑇
				𝑥
				−
				𝑇
				𝑦
				‖
				≤
				‖
				𝑥
				−
				𝑦
				‖
				,
				∀
				𝑥
				,
				𝑦
				∈
				ℋ
				;
			

		
	
(b)firmly nonexpansive if 
	
		
			
				2
				𝑇
				−
				𝐼
			

		
	
 is nonexpansive, or equivalently,
										
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			
				⟨
				𝑥
				−
				𝑦
				,
				𝑇
				𝑥
				−
				𝑇
				𝑦
				⟩
				≥
				‖
				𝑇
				𝑥
				−
				𝑇
				𝑦
				‖
			

			

				2
			

			
				,
				∀
				𝑥
				,
				𝑦
				∈
				ℋ
				;
			

		
	

									alternatively, 
	
		
			

				𝑇
			

		
	
 is firmly nonexpansive if and only if 
	
		
			

				𝑇
			

		
	
 can be expressed as
										
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			
				1
				𝑇
				=
			

			
				
			
			
				2
				(
				𝐼
				+
				𝑆
				)
				,
			

		
	

									where 
	
		
			
				𝑆
				∶
				ℋ
				→
				ℋ
			

		
	
 is nonexpansive; projections are firmly nonexpansive. 
Definition 10. Let 
	
		
			

				𝑇
			

		
	
 be a nonlinear operator with domain 
	
		
			
				𝐷
				(
				𝑇
				)
				⊆
				ℋ
			

		
	
 and range 
	
		
			
				𝑅
				(
				𝑇
				)
				⊆
				ℋ
			

		
	
. (a)
	
		
			

				𝑇
			

		
	
 is said to be monotone if
										
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				⟨
				𝑥
				−
				𝑦
				,
				𝑇
				𝑥
				−
				𝑇
				𝑦
				⟩
				≥
				0
				,
				∀
				𝑥
				,
				𝑦
				∈
				𝐷
				(
				𝑇
				)
				.
			

		
	
(b)Given a number 
	
		
			
				𝛽
				>
				0
			

		
	
, 
	
		
			

				𝑇
			

		
	
 is said to be 
	
		
			

				𝛽
			

		
	
-strongly monotone if 
										
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			
				⟨
				𝑥
				−
				𝑦
				,
				𝑇
				𝑥
				−
				𝑇
				𝑦
				⟩
				≥
				𝛽
				‖
				𝑥
				−
				𝑦
				‖
			

			

				2
			

			
				,
				∀
				𝑥
				,
				𝑦
				∈
				𝐷
				(
				𝑇
				)
				.
			

		
	
(c)Given a number 
	
		
			
				𝜈
				>
				0
			

		
	
, 
	
		
			

				𝑇
			

		
	
 is said to be 
	
		
			

				𝜈
			

		
	
-inverse strongly monotone (
	
		
			

				𝜈
			

		
	
-ism) if
										
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				⟨
				𝑥
				−
				𝑦
				,
				𝑇
				𝑥
				−
				𝑇
				𝑦
				⟩
				≥
				𝜈
				‖
				𝑇
				𝑥
				−
				𝑇
				𝑦
				‖
			

			

				2
			

			
				,
				∀
				𝑥
				,
				𝑦
				∈
				𝐷
				(
				𝑇
				)
				.
			

		
	
It can be easily seen that if 
	
		
			

				𝑆
			

		
	
 is nonexpansive, then 
	
		
			
				𝐼
				−
				𝑆
			

		
	
 is monotone. It is also easy to see that a projection 
	
		
			

				𝑃
			

			

				𝐾
			

		
	
 is 1-ism.Inverse strongly monotone (also referred to as cocoercive) operators have been applied widely in solving practical problems in various fields, for instance, in traffic assignment problems; see, for example, [33, 34].
Definition 11. A mapping 
	
		
			
				𝑇
				∶
				ℋ
				→
				ℋ
			

		
	
 is said to be an averaged mapping if it can be written as the average of the identity 
	
		
			

				𝐼
			

		
	
 and a nonexpansive mapping, that is,
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			
				𝑇
				≡
				(
				1
				−
				𝛼
				)
				𝐼
				+
				𝛼
				𝑆
				,
			

		
	

						where 
	
		
			
				𝛼
				∈
				(
				0
				,
				1
				)
			

		
	
 and 
	
		
			
				𝑆
				∶
				ℋ
				→
				ℋ
			

		
	
 is nonexpansive. More precisely, when the last equality holds, we say that 
	
		
			

				𝑇
			

		
	
 is 
	
		
			

				𝛼
			

		
	
-averaged. Thus, firmly nonexpansive mappings (in particular, projections) are 
	
		
			
				1
				/
				2
			

		
	
-averaged maps.
Proposition 12 (see [21]).  Let 
	
		
			
				𝑇
				∶
				ℋ
				→
				ℋ
			

		
	
 be a given mapping. (i)
	
		
			

				𝑇
			

		
	
is nonexpansive if and only if the complement 
	
		
			
				𝐼
				−
				𝑇
			

		
	
 is 
	
		
			
				1
				/
				2
			

		
	
-ism.(ii)If 
	
		
			

				𝑇
			

		
	
 is 
	
		
			

				𝜈
			

		
	
-ism, then for 
	
		
			
				𝛾
				>
				0
			

		
	
, 
	
		
			
				𝛾
				𝑇
			

		
	
 is 
	
		
			
				𝜈
				/
				𝛾
			

		
	
-ism.(iii)
	
		
			

				𝑇
			

		
	
 is averaged if and only if the complement 
	
		
			
				𝐼
				−
				𝑇
			

		
	
 is 
	
		
			

				𝜈
			

		
	
-ism for some 
	
		
			
				𝜈
				>
				1
				/
				2
			

		
	
. Indeed, for 
	
		
			
				𝛼
				∈
				(
				0
				,
				1
				)
			

		
	
, 
	
		
			

				𝑇
			

		
	
 is 
	
		
			

				𝛼
			

		
	
-averaged if and only if 
	
		
			
				𝐼
				−
				𝑇
			

		
	
 is 
	
		
			
				1
				/
				2
				𝛼
			

		
	
-ism.
Proposition 13 (see [21, 35]).  Let 
	
		
			
				𝑆
				,
				𝑇
				,
				𝑉
				∶
				ℋ
				→
				ℋ
			

		
	
 be given operators.  (i)If 
	
		
			
				𝑇
				=
				(
				1
				−
				𝛼
				)
				𝑆
				+
				𝛼
				𝑉
			

		
	
 for some 
	
		
			
				𝛼
				∈
				(
				0
				,
				1
				)
			

		
	
 and if 
	
		
			

				𝑆
			

		
	
 is averaged and 
	
		
			

				𝑉
			

		
	
 is nonexpansive, then 
	
		
			

				𝑇
			

		
	
 is averaged.(ii)
	
		
			

				𝑇
			

		
	
 is firmly nonexpansive if and only if the complement 
	
		
			
				𝐼
				−
				𝑇
			

		
	
 is firmly nonexpansive.(iii)If 
	
		
			
				𝑇
				=
				(
				1
				−
				𝛼
				)
				𝑆
				+
				𝛼
				𝑉
			

		
	
 for some 
	
		
			
				𝛼
				∈
				(
				0
				,
				1
				)
			

		
	
 and if 
	
		
			

				𝑆
			

		
	
 is firmly nonexpansive and 
	
		
			

				𝑉
			

		
	
 is nonexpansive, then 
	
		
			

				𝑇
			

		
	
 is averaged.(iv)The composite of finitely many averaged mappings is averaged. That is, if each of the mappings 
	
		
			
				{
				𝑇
			

			

				𝑖
			

			

				}
			

			
				𝑁
				𝑖
				=
				1
			

		
	
 is averaged, then so is the composite 
	
		
			

				𝑇
			

			

				1
			

			
				∘
				𝑇
			

			

				2
			

			
				∘
				⋅
				⋅
				⋅
				∘
				𝑇
			

			

				𝑁
			

		
	
. In particular, if 
	
		
			

				𝑇
			

			

				1
			

		
	
 is 
	
		
			

				𝛼
			

			

				1
			

		
	
-averaged and 
	
		
			

				𝑇
			

			

				2
			

		
	
 is 
	
		
			

				𝛼
			

			

				2
			

		
	
-averaged, where 
	
		
			

				𝛼
			

			

				1
			

			
				,
				𝛼
			

			

				2
			

			
				∈
				(
				0
				,
				1
				)
			

		
	
, then the composite 
	
		
			

				𝑇
			

			

				1
			

			
				∘
				𝑇
			

			

				2
			

		
	
 is 
	
		
			

				𝛼
			

		
	
-averaged, where 
	
		
			
				𝛼
				=
				𝛼
			

			

				1
			

			
				+
				𝛼
			

			

				2
			

			
				−
				𝛼
			

			

				1
			

			

				𝛼
			

			

				2
			

		
	
.(v)If the mappings  
	
		
			
				{
				𝑇
			

			

				𝑖
			

			

				}
			

			
				𝑁
				𝑖
				=
				1
			

		
	
 are averaged and have a common fixed point, then 
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			

				𝑁
			

			

				
			

			
				𝑖
				=
				1
			

			
				
				𝑇
				F
				i
				x
			

			

				𝑖
			

			
				
				
				𝑇
				=
				F
				i
				x
			

			

				1
			

			
				⋅
				⋅
				⋅
				𝑇
			

			

				𝑁
			

			
				
				.
			

		
	

									The notation 
	
		
			
				F
				i
				x
				(
				𝑇
				)
			

		
	
 denotes the set of all fixed points of the mapping 
	
		
			

				𝑇
			

		
	
, that is, 
	
		
			
				F
				i
				x
				(
				𝑇
				)
				=
				{
				𝑥
				∈
				ℋ
				∶
				𝑇
				𝑥
				=
				𝑥
				}
			

		
	
. 
It is clear that in a real Hilbert space 
	
		
			

				ℋ
			

		
	
, 
	
		
			
				𝑆
				∶
				𝐶
				→
				𝐶
			

		
	
 is 
	
		
			

				𝑘
			

		
	
-strictly pseudocontractive if and only if there holds the following inequality: 
						
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			
				⟨
				𝑆
				𝑥
				−
				𝑆
				𝑦
				,
				𝑥
				−
				𝑦
				⟩
				≤
				‖
				𝑥
				−
				𝑦
				‖
			

			

				2
			

			
				−
				1
				−
				𝑘
			

			
				
			
			
				2
				‖
				(
				𝐼
				−
				𝑆
				)
				𝑥
				−
				(
				𝐼
				−
				𝑆
				)
				𝑦
				‖
			

			

				2
			

			
				,
				∀
				𝑥
				,
				𝑦
				∈
				𝐶
				.
			

		
	

 This immediately implies that if 
	
		
			

				𝑆
			

		
	
 is a 
	
		
			

				𝑘
			

		
	
-strictly pseudocontractive mapping, then 
	
		
			
				𝐼
				−
				𝑆
			

		
	
 is 
	
		
			
				(
				1
				−
				𝑘
				)
				/
				2
			

		
	
-inverse strongly monotone; for further detail, we refer to [9] and the references therein. It is well known that the class of strict pseudocontractions strictly includes the class of nonexpansive mappings.
The following elementary result in the real Hilbert spaces is quite well known.
Lemma 14 (see [36]).   Let 
	
		
			

				ℋ
			

		
	
 be a real Hilbert space. Then, for all 
	
		
			
				𝑥
				,
				𝑦
				∈
				ℋ
			

		
	
 and 
	
		
			
				𝜆
				∈
				[
				0
				,
				1
				]
			

		
	
,
							
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			
				‖
				𝜆
				𝑥
				+
				(
				1
				−
				𝜆
				)
				𝑦
				‖
			

			

				2
			

			
				=
				𝜆
				‖
				𝑥
				‖
			

			

				2
			

			
				+
				(
				1
				−
				𝜆
				)
				‖
				𝑦
				‖
			

			

				2
			

			
				−
				𝜆
				(
				1
				−
				𝜆
				)
				‖
				𝑥
				−
				𝑦
				‖
			

			

				2
			

			

				.
			

		
	

Lemma 15 (see [37, Proposition 2.1]).  Let 
	
		
			

				𝐶
			

		
	
 be a nonempty closed convex subset of a real Hilbert space 
	
		
			

				ℋ
			

		
	
 and 
	
		
			
				𝑆
				∶
				𝐶
				→
				𝐶
			

		
	
 be a mapping. (i)If 
	
		
			

				𝑆
			

		
	
 is a 
	
		
			

				𝑘
			

		
	
-strict pseudocontractive mapping, then 
	
		
			

				𝑆
			

		
	
 satisfies the Lipschitz condition
										
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			
				‖
				𝑆
				𝑥
				−
				𝑆
				𝑦
				‖
				≤
				1
				+
				𝑘
			

			
				
			
			
				1
				−
				𝑘
				‖
				𝑥
				−
				𝑦
				‖
				,
				∀
				𝑥
				,
				𝑦
				∈
				𝐶
				.
			

		
	
(ii)If 
	
		
			

				𝑆
			

		
	
 is a 
	
		
			

				𝑘
			

		
	
-strict pseudocontractive mapping, then the mapping 
	
		
			
				𝐼
				−
				𝑆
			

		
	
 is semiclosed at 
	
		
			

				0
			

		
	
, that is, if 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 is a sequence in 
	
		
			

				𝐶
			

		
	
 such that 
	
		
			

				𝑥
			

			

				𝑛
			

			
				→
				̃
				𝑥
			

		
	
 weakly and 
	
		
			
				(
				𝐼
				−
				𝑆
				)
				𝑥
			

			

				𝑛
			

			
				→
				0
			

		
	
 strongly, then 
	
		
			
				(
				𝐼
				−
				𝑆
				)
				̃
				𝑥
				=
				0
			

		
	
.(iii)If 
	
		
			

				𝑆
			

		
	
 is 
	
		
			

				𝑘
			

		
	
-(quasi-)strict pseudocontraction, then the fixed point set 
	
		
			
				F
				i
				x
				(
				𝑆
				)
			

		
	
 of 
	
		
			

				𝑆
			

		
	
 is closed and convex so that the projection 
	
		
			

				𝑃
			

			
				F
				i
				x
				(
				𝑆
				)
			

		
	
 is well defined. 
The following lemma plays a key role in proving weak convergence of the sequences generated by our algorithms.
Lemma 16 (see [38, p. 80]).  Let 
	
		
			
				{
				𝑎
			

			

				𝑛
			

			

				}
			

			
				∞
				𝑛
				=
				0
			

		
	
, 
	
		
			
				{
				𝑏
			

			

				𝑛
			

			

				}
			

			
				∞
				𝑛
				=
				0
			

		
	
, and 
	
		
			
				{
				𝛿
			

			

				𝑛
			

			

				}
			

			
				∞
				𝑛
				=
				0
			

		
	
 be sequences of nonnegative real numbers satisfying the inequality 
							
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			

				𝑎
			

			
				𝑛
				+
				1
			

			
				≤
				
				1
				+
				𝛿
			

			

				𝑛
			

			
				
				𝑎
			

			

				𝑛
			

			
				+
				𝑏
			

			

				𝑛
			

			
				,
				∀
				𝑛
				≥
				0
				.
			

		
	

						If 
	
		
			

				∑
			

			
				∞
				𝑛
				=
				0
			

			

				𝛿
			

			

				𝑛
			

			
				<
				∞
			

		
	
 and 
	
		
			

				∑
			

			
				∞
				𝑛
				=
				0
			

			

				𝑏
			

			

				𝑛
			

			
				<
				∞
			

		
	
, then 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝑎
			

			

				𝑛
			

		
	
 exists. If, in addition, 
	
		
			
				{
				𝑎
			

			

				𝑛
			

			

				}
			

			
				∞
				𝑛
				=
				0
			

		
	
 has a subsequence which converges to zero, then 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝑎
			

			

				𝑛
			

			
				=
				0
			

		
	
.
Corollary 17 (see [39, p. 303]).  Let 
	
		
			
				{
				𝑎
			

			

				𝑛
			

			

				}
			

			
				∞
				𝑛
				=
				0
			

		
	
 and 
	
		
			
				{
				𝑏
			

			

				𝑛
			

			

				}
			

			
				∞
				𝑛
				=
				0
			

		
	
 be two sequences of nonnegative real numbers satisfying the inequality
							
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			

				𝑎
			

			
				𝑛
				+
				1
			

			
				≤
				𝑎
			

			

				𝑛
			

			
				+
				𝑏
			

			

				𝑛
			

			
				,
				∀
				𝑛
				≥
				0
				.
			

		
	

						If 
	
		
			

				∑
			

			
				∞
				𝑛
				=
				0
			

			

				𝑏
			

			

				𝑛
			

		
	
 converges, then 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝑎
			

			

				𝑛
			

		
	
 exists.
Lemma 18 (see [7]).  Let 
	
		
			

				𝐶
			

		
	
 be a nonempty closed convex subset of a real Hilbert space 
	
		
			

				ℋ
			

		
	
. Let 
	
		
			
				𝑆
				∶
				𝐶
				→
				𝐶
			

		
	
 be a 
	
		
			

				𝑘
			

		
	
-strictly pseudocontractive mapping. Let 
	
		
			

				𝛾
			

		
	
 and 
	
		
			

				𝛿
			

		
	
 be two nonnegative real numbers such that 
	
		
			
				(
				𝛾
				+
				𝛿
				)
				𝑘
				≤
				𝛾
			

		
	
. Then
							
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			
				‖
				𝛾
				(
				𝑥
				−
				𝑦
				)
				+
				𝛿
				(
				𝑆
				𝑥
				−
				𝑆
				𝑦
				)
				‖
				≤
				(
				𝛾
				+
				𝛿
				)
				‖
				𝑥
				−
				𝑦
				‖
				,
				∀
				𝑥
				,
				𝑦
				∈
				𝐶
				.
			

		
	

 The following lemma is an immediate consequence of an inner product.
Lemma 19.  In a real Hilbert space 
	
		
			

				ℋ
			

		
	
, there holds the inequality 
							
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			
				‖
				𝑥
				+
				𝑦
				‖
			

			

				2
			

			
				≤
				‖
				𝑥
				‖
			

			

				2
			

			
				+
				2
				⟨
				𝑦
				,
				𝑥
				+
				𝑦
				⟩
				,
				∀
				𝑥
				,
				𝑦
				∈
				ℋ
				.
			

		
	

Let 
	
		
			

				𝐾
			

		
	
 be a nonempty closed convex subset of a real Hilbert space 
	
		
			

				ℋ
			

		
	
 and let 
	
		
			
				𝐹
				∶
				𝐾
				→
				ℋ
			

		
	
 be a monotone mapping. The variational inequality problem (VIP) is to find 
	
		
			
				𝑥
				∈
				𝐾
			

		
	
 such that
						
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			
				⟨
				𝐹
				𝑥
				,
				𝑦
				−
				𝑥
				⟩
				≥
				0
				,
				∀
				𝑦
				∈
				𝐾
				.
			

		
	

The solution set of the VIP is denoted by 
	
		
			
				V
				I
				(
				𝐾
				,
				𝐹
				)
			

		
	
. It is well known that
						
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			
				𝑥
				∈
				V
				I
				(
				𝐾
				,
				𝐹
				)
				⟺
				𝑥
				=
				𝑃
			

			

				𝐾
			

			
				(
				𝑥
				−
				𝜆
				𝐹
				𝑥
				)
				,
				∀
				𝜆
				>
				0
				.
			

		
	

A set-valued mapping 
	
		
			
				𝑇
				∶
				ℋ
				→
				2
			

			

				ℋ
			

		
	
 is called monotone if for all 
	
		
			
				𝑥
				,
				𝑦
				∈
				ℋ
			

		
	
, 
	
		
			
				𝑓
				∈
				𝑇
				𝑥
			

		
	
 and 
	
		
			
				𝑔
				∈
				𝑇
				𝑦
			

		
	
 imply that 
	
		
			
				⟨
				𝑥
				−
				𝑦
				,
				𝑓
				−
				𝑔
				⟩
				≥
				0
			

		
	
. A monotone set-valued mapping 
	
		
			
				𝑇
				∶
				ℋ
				→
				2
			

			

				ℋ
			

		
	
 is called maximal if its graph 
	
		
			
				G
				p
				h
				(
				𝑇
				)
			

		
	
 is not properly contained in the graph of any other monotone set-valued mapping. It is known that a monotone set-valued mapping 
	
		
			
				𝑇
				∶
				ℋ
				→
				2
			

			

				ℋ
			

		
	
 is maximal if and only if for 
	
		
			
				(
				𝑥
				,
				𝑓
				)
				∈
				ℋ
				×
				ℋ
				,
				⟨
				𝑥
				−
				𝑦
				,
				𝑓
				−
				𝑔
				⟩
				≥
				0
			

		
	
 for every 
	
		
			
				(
				𝑦
				,
				𝑔
				)
				∈
				G
				p
				h
				(
				𝑇
				)
			

		
	
 implies that 
	
		
			
				𝑓
				∈
				𝑇
				𝑥
			

		
	
. Let 
	
		
			
				𝐹
				∶
				𝐾
				→
				ℋ
			

		
	
 be a monotone and Lipschitz continuous mapping and let 
	
		
			

				𝑁
			

			

				𝐾
			

			

				𝑣
			

		
	
 be the normal cone to 
	
		
			

				𝐾
			

		
	
 at 
	
		
			
				𝑣
				∈
				𝐾
			

		
	
, that is,
						
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			

				𝑁
			

			

				𝐾
			

			
				𝑣
				=
				{
				𝑤
				∈
				ℋ
				∶
				⟨
				𝑣
				−
				𝑢
				,
				𝑤
				⟩
				≥
				0
				,
				∀
				𝑢
				∈
				𝐾
				}
				.
			

		
	

					Define
						
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			
				
				𝑇
				𝑣
				=
				𝐹
				𝑣
				+
				𝑁
			

			

				𝐾
			

			
				𝑣
				,
				i
				f
				𝑣
				∈
				𝐾
				,
				∅
				,
				i
				f
				𝑣
				∉
				𝐾
				.
			

		
	

It is known that in this case the mapping 
	
		
			

				𝑇
			

		
	
 is maximal monotone, and 
	
		
			
				0
				∈
				𝑇
				𝑣
			

		
	
 if and only if 
	
		
			
				𝑣
				∈
				V
				I
				(
				𝐾
				,
				𝐹
				)
			

		
	
; for further details, we refer to [40] and the references therein.
3. Main Results
In this section, we first prove the weak convergence of the sequences generated by the Mann-type extragradient iterative algorithm (16) with regularization.
Theorem 20.  Let 
	
		
			

				𝐶
			

		
	
 be a nonempty closed convex subset of a real Hilbert space 
	
		
			

				ℋ
			

			

				1
			

		
	
. Let 
	
		
			
				𝐴
				∈
				𝐵
				(
				ℋ
			

			

				1
			

			
				,
				ℋ
			

			

				2
			

			

				)
			

		
	
 and 
	
		
			

				𝐵
			

			

				𝑖
			

			
				∶
				𝐶
				→
				ℋ
			

			

				1
			

		
	
 be 
	
		
			

				𝛽
			

			

				𝑖
			

		
	
-inverse strongly monotone for 
	
		
			
				𝑖
				=
				1
				,
				2
			

		
	
. Let 
	
		
			
				𝑆
				∶
				𝐶
				→
				𝐶
			

		
	
 be a 
	
		
			

				𝑘
			

		
	
-strictly pseudocontractive mapping such that 
	
		
			
				F
				i
				x
				(
				𝑆
				)
				∩
				Ξ
				∩
				Γ
				≠
				∅
			

		
	
. For given 
	
		
			

				𝑥
			

			

				0
			

			
				∈
				𝐶
			

		
	
 arbitrarily, let 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			
				}
				,
				{
				𝑦
			

			

				𝑛
			

			
				}
				,
				{
				𝑧
			

			

				𝑛
			

			

				}
			

		
	
 be the sequences generated by the Mann-type extragradient iterative algorithm (16) with regularization, where 
	
		
			

				𝜇
			

			

				𝑖
			

			
				∈
				(
				0
				,
				2
				𝛽
			

			

				𝑖
			

			

				)
			

		
	
 for 
	
		
			
				𝑖
				=
				1
				,
				2
			

		
	
, 
	
		
			
				{
				𝛼
			

			

				𝑛
			

			
				}
				⊂
				(
				0
				,
				∞
				)
			

		
	
, 
	
		
			
				{
				𝜆
			

			

				𝑛
			

			
				}
				⊂
				(
				0
				,
				1
				/
				‖
				𝐴
				‖
			

			

				2
			

			

				)
			

		
	
 and 
	
		
			
				{
				𝜎
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝜏
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝛽
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝛾
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝛿
			

			

				𝑛
			

			
				}
				⊂
				[
				0
				,
				1
				]
			

		
	
 such that (i)
	
		
			

				∑
			

			
				∞
				𝑛
				=
				0
			

			

				𝛼
			

			

				𝑛
			

			
				<
				∞
			

		
	
;(ii)
	
		
			

				𝛽
			

			

				𝑛
			

			
				+
				𝛾
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				=
				1
			

		
	
 and 
	
		
			
				(
				𝛾
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				)
				𝑘
				≤
				𝛾
			

			

				𝑛
			

		
	
 for all 
	
		
			
				𝑛
				≥
				0
			

		
	
;(iii)
	
		
			

				𝜎
			

			

				𝑛
			

			
				+
				𝜏
			

			

				𝑛
			

			
				≤
				1
			

		
	
 for all 
	
		
			
				𝑛
				≥
				0
			

		
	
;(iv)
	
		
			
				0
				<
				l
				i
				m
				i
				n
				f
			

			
				𝑛
				→
				∞
			

			

				𝜏
			

			

				𝑛
			

			
				≤
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			
				(
				𝜎
			

			

				𝑛
			

			
				+
				𝜏
			

			

				𝑛
			

			
				)
				<
				1
			

		
	
;(v)
	
		
			
				0
				<
				l
				i
				m
				i
				n
				f
			

			
				𝑛
				→
				∞
			

			

				𝛽
			

			

				𝑛
			

			
				≤
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			

				𝛽
			

			

				𝑛
			

			
				<
				1
			

		
	
 and 
	
		
			
				l
				i
				m
				i
				n
				f
			

			
				𝑛
				→
				∞
			

			

				𝛿
			

			

				𝑛
			

			
				>
				0
			

		
	
;(vi)
	
		
			
				0
				<
				l
				i
				m
				i
				n
				f
			

			
				𝑛
				→
				∞
			

			

				𝜆
			

			

				𝑛
			

			
				≤
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			

				𝜆
			

			

				𝑛
			

			
				<
				1
				/
				‖
				𝐴
				‖
			

			

				2
			

		
	
.Then all the sequences 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝑦
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝑧
			

			

				𝑛
			

			

				}
			

		
	
 converge weakly to an element 
	
		
			
				
			
			
				𝑥
				∈
				F
				i
				x
				(
				𝑆
				)
				∩
				Ξ
				∩
				Γ
			

		
	
. Furthermore, 
	
		
			

				(
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				)
			

		
	
 is a solution of GSVI (3), where 
	
		
			
				
			
			
				𝑦
				=
				𝑃
			

			

				𝐶
			

			

				(
			

			
				
			
			
				𝑥
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				
			
			
				𝑥
				)
			

		
	
.
Proof.  First, taking into account 
	
		
			
				0
				<
				l
				i
				m
				i
				n
				f
			

			
				𝑛
				→
				∞
			

			

				𝜆
			

			

				𝑛
			

			
				≤
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			

				𝜆
			

			

				𝑛
			

			
				<
				1
				/
				‖
				𝐴
				‖
			

			

				2
			

		
	
, without loss of generality we may assume that 
	
		
			
				{
				𝜆
			

			

				𝑛
			

			
				}
				⊂
				[
				𝑎
				,
				𝑏
				]
			

		
	
 for some 
	
		
			
				𝑎
				,
				𝑏
				∈
				(
				0
				,
				1
				/
				‖
				𝐴
				‖
			

			

				2
			

			

				)
			

		
	
.Now, let us show that 
	
		
			

				𝑃
			

			

				𝐶
			

			
				(
				𝐼
				−
				𝜆
				∇
				𝑓
			

			

				𝛼
			

			

				)
			

		
	
 is 
	
		
			

				𝜁
			

		
	
-averaged for each 
	
		
			
				𝜆
				∈
				(
				0
				,
				2
				/
				(
				𝛼
				+
				‖
				𝐴
				‖
			

			

				2
			

			
				)
				)
			

		
	
, where
							
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			
				
				𝜁
				=
				2
				+
				𝜆
				𝛼
				+
				‖
				𝐴
				‖
			

			

				2
			

			

				
			

			
				
			
			
				4
				∈
				(
				0
				,
				1
				)
				.
			

		
	
Indeed, it is easy to see that 
	
		
			
				∇
				𝑓
				=
				𝐴
			

			

				∗
			

			
				(
				𝐼
				−
				𝑃
			

			

				𝑄
			

			
				)
				𝐴
			

		
	
 is 
	
		
			
				1
				/
				‖
				𝐴
				‖
			

			

				2
			

		
	
-ism, that is, 
							
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			
				1
				⟨
				∇
				𝑓
				(
				𝑥
				)
				−
				∇
				𝑓
				(
				𝑦
				)
				,
				𝑥
				−
				𝑦
				⟩
				≥
			

			
				
			
			
				‖
				𝐴
				‖
			

			

				2
			

			
				‖
				∇
				𝑓
				(
				𝑥
				)
				−
				∇
				𝑓
				(
				𝑦
				)
				‖
			

			

				2
			

			

				.
			

		
	

						Observe that
							
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			
				
				𝛼
				+
				‖
				𝐴
				‖
			

			

				2
			

			
				
				⟨
				∇
				𝑓
			

			

				𝛼
			

			
				(
				𝑥
				)
				−
				∇
				𝑓
			

			

				𝛼
			

			
				=
				
				(
				𝑦
				)
				,
				𝑥
				−
				𝑦
				⟩
				𝛼
				+
				‖
				𝐴
				‖
			

			

				2
			

			
				
				
				𝛼
				‖
				𝑥
				−
				𝑦
				‖
			

			

				2
			

			
				
				+
				⟨
				∇
				𝑓
				(
				𝑥
				)
				−
				∇
				𝑓
				(
				𝑦
				)
				,
				𝑥
				−
				𝑦
				⟩
				=
				𝛼
			

			

				2
			

			
				‖
				𝑥
				−
				𝑦
				‖
			

			

				2
			

			
				+
				𝛼
				⟨
				∇
				𝑓
				(
				𝑥
				)
				−
				∇
				𝑓
				(
				𝑦
				)
				,
				𝑥
				−
				𝑦
				⟩
				+
				𝛼
				‖
				𝐴
				‖
			

			

				2
			

			
				‖
				𝑥
				−
				𝑦
				‖
			

			

				2
			

			
				+
				‖
				𝐴
				‖
			

			

				2
			

			
				⟨
				∇
				𝑓
				(
				𝑥
				)
				−
				∇
				𝑓
				(
				𝑦
				)
				,
				𝑥
				−
				𝑦
				⟩
				≥
				𝛼
			

			

				2
			

			
				‖
				𝑥
				−
				𝑦
				‖
			

			

				2
			

			
				+
				2
				𝛼
				⟨
				∇
				𝑓
				(
				𝑥
				)
				−
				∇
				𝑓
				(
				𝑦
				)
				,
				𝑥
				−
				𝑦
				⟩
				+
				‖
				∇
				𝑓
				(
				𝑥
				)
				−
				∇
				𝑓
				(
				𝑦
				)
				‖
			

			

				2
			

			
				=
				‖
				𝛼
				(
				𝑥
				−
				𝑦
				)
				+
				∇
				𝑓
				(
				𝑥
				)
				−
				∇
				𝑓
				(
				𝑦
				)
				‖
			

			

				2
			

			
				=
				‖
				‖
				∇
				𝑓
			

			

				𝛼
			

			
				(
				𝑥
				)
				−
				∇
				𝑓
			

			

				𝛼
			

			
				‖
				‖
				(
				𝑦
				)
			

			

				2
			

			

				.
			

		
	
Hence, it follows that 
	
		
			
				∇
				𝑓
			

			

				𝛼
			

			
				=
				𝛼
				𝐼
				+
				𝐴
			

			

				∗
			

			
				(
				𝐼
				−
				𝑃
			

			

				𝑄
			

			
				)
				𝐴
			

		
	
 is 
	
		
			
				1
				/
				(
				𝛼
				+
				‖
				𝐴
				‖
			

			

				2
			

			

				)
			

		
	
-ism. Thus, 
	
		
			
				𝜆
				∇
				𝑓
			

			

				𝛼
			

		
	
 is 
	
		
			
				1
				/
				𝜆
				(
				𝛼
				+
				‖
				𝐴
				‖
			

			

				2
			

			

				)
			

		
	
-ism according to Proposition 12(ii). By Proposition 12(iii), the complement 
	
		
			
				𝐼
				−
				𝜆
				∇
				𝑓
			

			

				𝛼
			

		
	
 is 
	
		
			
				𝜆
				(
				𝛼
				+
				‖
				𝐴
				‖
			

			

				2
			

			
				)
				/
				2
			

		
	
-averaged. Therefore, noting that 
	
		
			

				𝑃
			

			

				𝐶
			

		
	
 is 
	
		
			
				1
				/
				2
			

		
	
-averaged and utilizing Proposition 13(iv), we know that for each 
	
		
			
				𝜆
				∈
				(
				0
				,
				2
				/
				(
				𝛼
				+
				‖
				𝐴
				‖
			

			

				2
			

			
				)
				)
			

		
	
, 
	
		
			

				𝑃
			

			

				𝐶
			

			
				(
				𝐼
				−
				𝜆
				∇
				𝑓
			

			

				𝛼
			

			

				)
			

		
	
 is 
	
		
			

				𝜁
			

		
	
-averaged with 
							
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			
				1
				𝜁
				=
			

			
				
			
			
				2
				+
				𝜆
				
				𝛼
				+
				‖
				𝐴
				‖
			

			

				2
			

			

				
			

			
				
			
			
				2
				−
				1
			

			
				
			
			
				2
				⋅
				𝜆
				
				𝛼
				+
				‖
				𝐴
				‖
			

			

				2
			

			

				
			

			
				
			
			
				2
				=
				
				2
				+
				𝜆
				𝛼
				+
				‖
				𝐴
				‖
			

			

				2
			

			

				
			

			
				
			
			
				4
				∈
				(
				0
				,
				1
				)
				.
			

		
	

						This shows that 
	
		
			

				𝑃
			

			

				𝐶
			

			
				(
				𝐼
				−
				𝜆
				∇
				𝑓
			

			

				𝛼
			

			

				)
			

		
	
 is nonexpansive. Furthermore, for 
	
		
			
				{
				𝜆
			

			

				𝑛
			

			
				}
				⊂
				[
				𝑎
				,
				𝑏
				]
			

		
	
 with 
	
		
			
				𝑎
				,
				𝑏
				∈
				(
				0
				,
				1
				/
				‖
				𝐴
				‖
			

			

				2
			

			

				)
			

		
	
, we have 
							
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			
				𝑎
				≤
				i
				n
				f
			

			
				𝑛
				≥
				0
			

			

				𝜆
			

			

				𝑛
			

			
				≤
				s
				u
				p
			

			
				𝑛
				≥
				0
			

			

				𝜆
			

			

				𝑛
			

			
				1
				≤
				𝑏
				<
			

			
				
			
			
				‖
				𝐴
				‖
			

			

				2
			

			
				=
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				1
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				+
				‖
				𝐴
				‖
			

			

				2
			

			

				.
			

		
	

						Without loss of generality, we may assume that 
							
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			
				𝑎
				≤
				i
				n
				f
			

			
				𝑛
				≥
				0
			

			

				𝜆
			

			

				𝑛
			

			
				≤
				s
				u
				p
			

			
				𝑛
				≥
				0
			

			

				𝜆
			

			

				𝑛
			

			
				1
				≤
				𝑏
				<
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				+
				‖
				𝐴
				‖
			

			

				2
			

			
				,
				∀
				𝑛
				≥
				0
				.
			

		
	

						Consequently, it follows that for each integer 
	
		
			
				𝑛
				≥
				0
			

		
	
, 
	
		
			

				𝑃
			

			

				𝐶
			

			
				(
				𝐼
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			

				)
			

		
	
 is 
	
		
			

				𝜁
			

			

				𝑛
			

		
	
-averaged with
							
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			

				𝜁
			

			

				𝑛
			

			
				=
				1
			

			
				
			
			
				2
				+
				𝜆
			

			

				𝑛
			

			
				
				𝛼
			

			

				𝑛
			

			
				+
				‖
				𝐴
				‖
			

			

				2
			

			

				
			

			
				
			
			
				2
				−
				1
			

			
				
			
			
				2
				⋅
				𝜆
			

			

				𝑛
			

			
				
				𝛼
			

			

				𝑛
			

			
				+
				‖
				𝐴
				‖
			

			

				2
			

			

				
			

			
				
			
			
				2
				=
				2
				+
				𝜆
			

			

				𝑛
			

			
				
				𝛼
			

			

				𝑛
			

			
				+
				‖
				𝐴
				‖
			

			

				2
			

			

				
			

			
				
			
			
				4
				∈
				(
				0
				,
				1
				)
				.
			

		
	
This immediately implies that 
	
		
			

				𝑃
			

			

				𝐶
			

			
				(
				𝐼
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			

				)
			

		
	
 is nonexpansive for all 
	
		
			
				𝑛
				≥
				0
			

		
	
.Next we divide the remainder of the proof into several steps.Step  1. 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 is bounded.Indeed, take 
	
		
			
				𝑝
				∈
				F
				i
				x
				(
				𝑆
				)
				∩
				Ξ
				∩
				Γ
			

		
	
 arbitrarily. Then 
	
		
			
				𝑆
				𝑝
				=
				𝑝
			

		
	
, 
	
		
			

				𝑃
			

			

				𝐶
			

			
				(
				𝐼
				−
				𝜆
				∇
				𝑓
				)
				𝑝
				=
				𝑝
			

		
	
 for 
	
		
			
				𝜆
				∈
				(
				0
				,
				2
				/
				‖
				𝐴
				‖
			

			

				2
			

			

				)
			

		
	
, and 
							
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			
				𝑝
				=
				𝑃
			

			

				𝐶
			

			
				
				𝑃
			

			

				𝐶
			

			
				
				𝑝
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				𝑝
				
				−
				𝜇
			

			

				1
			

			

				𝐵
			

			

				1
			

			

				𝑃
			

			

				𝐶
			

			
				
				𝑝
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				𝑝
				.
				
				
			

		
	

						From (16), it follows that
							
	
 		
 			
				(
				4
				6
				)
			
 		
	

	
		
			
				‖
				‖
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				=
				‖
				‖
				𝑃
				−
				𝑝
			

			

				𝐶
			

			
				
				𝐼
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝑃
			

			

				𝐶
			

			
				
				𝐼
				−
				𝜆
			

			

				𝑛
			

			
				
				𝑝
				‖
				‖
				≤
				‖
				‖
				𝑃
				∇
				𝑓
			

			

				𝐶
			

			
				
				𝐼
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝑃
			

			

				𝐶
			

			
				
				𝐼
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑝
				‖
				‖
				+
				‖
				‖
				𝑃
			

			

				𝐶
			

			
				
				𝐼
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑝
				−
				𝑃
			

			

				𝐶
			

			
				
				𝐼
				−
				𝜆
			

			

				𝑛
			

			
				
				𝑝
				‖
				‖
				≤
				‖
				‖
				𝑥
				∇
				𝑓
			

			

				𝑛
			

			
				‖
				‖
				+
				‖
				‖
				
				−
				𝑝
				𝐼
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				
				𝑝
				−
				𝐼
				−
				𝜆
			

			

				𝑛
			

			
				
				𝑝
				‖
				‖
				≤
				‖
				‖
				𝑥
				∇
				𝑓
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				+
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				‖
				𝑝
				‖
				.
			

		
	

						Utilizing Lemma 19, we also have
							
	
 		
 			
				(
				4
				7
				)
			
 		
	

	
		
			
				‖
				‖
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				=
				‖
				‖
				𝑃
			

			

				𝐶
			

			
				
				𝐼
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝑃
			

			

				𝐶
			

			
				
				𝐼
				−
				𝜆
			

			

				𝑛
			

			
				
				𝑝
				‖
				‖
				∇
				𝑓
			

			

				2
			

			
				=
				‖
				‖
				𝑃
			

			

				𝐶
			

			
				
				𝐼
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝑃
			

			

				𝐶
			

			
				
				𝐼
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑝
				+
				𝑃
			

			

				𝐶
			

			
				
				𝐼
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑝
				−
				𝑃
			

			

				𝐶
			

			
				
				𝐼
				−
				𝜆
			

			

				𝑛
			

			
				
				𝑝
				‖
				‖
				∇
				𝑓
			

			

				2
			

			
				≤
				‖
				‖
				𝑃
			

			

				𝐶
			

			
				
				𝐼
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝑃
			

			

				𝐶
			

			
				
				𝐼
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑝
				‖
				‖
			

			

				2
			

			
				
				𝑃
				+
				2
			

			

				𝐶
			

			
				
				𝐼
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑝
				−
				𝑃
			

			

				𝐶
			

			
				
				𝐼
				−
				𝜆
			

			

				𝑛
			

			
				
				∇
				𝑓
				𝑝
				,
				𝑧
			

			

				𝑛
			

			
				
				≤
				‖
				‖
				𝑥
				−
				𝑝
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				‖
				‖
				𝑃
				+
				2
			

			

				𝐶
			

			
				
				𝐼
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑝
				−
				𝑃
			

			

				𝐶
			

			
				
				𝐼
				−
				𝜆
			

			

				𝑛
			

			
				
				𝑝
				‖
				‖
				×
				‖
				‖
				𝑧
				∇
				𝑓
			

			

				𝑛
			

			
				‖
				‖
				≤
				‖
				‖
				𝑥
				−
				𝑝
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				‖
				‖
				
				+
				2
				𝐼
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				
				𝑝
				−
				𝐼
				−
				𝜆
			

			

				𝑛
			

			
				
				𝑝
				‖
				‖
				‖
				‖
				𝑧
				∇
				𝑓
			

			

				𝑛
			

			
				‖
				‖
				=
				‖
				‖
				𝑥
				−
				𝑝
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				2
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑧
				‖
				𝑝
				‖
			

			

				𝑛
			

			
				‖
				‖
				.
				−
				𝑝
			

		
	

						For simplicity, we write 
	
		
			
				𝑞
				=
				𝑃
			

			

				𝐶
			

			
				(
				𝑝
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				𝑝
				)
			

		
	
, 
	
		
			
				̃
				𝑧
			

			

				𝑛
			

			
				=
				𝑃
			

			

				𝐶
			

			
				(
				𝑧
			

			

				𝑛
			

			
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			

				)
			

		
	
,
							
	
 		
 			
				(
				4
				8
				)
			
 		
	

	
		
			

				𝑢
			

			

				𝑛
			

			
				=
				𝑃
			

			

				𝐶
			

			
				
				𝑃
			

			

				𝐶
			

			
				
				𝑧
			

			

				𝑛
			

			
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				
				−
				𝜇
			

			

				1
			

			

				𝐵
			

			

				1
			

			

				𝑃
			

			

				𝐶
			

			
				
				𝑧
			

			

				𝑛
			

			
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				,
				
				
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				=
				𝑃
			

			

				𝐶
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑧
			

			

				𝑛
			

			
				
				
			

		
	

						for each 
	
		
			
				𝑛
				≥
				0
			

		
	
. Then 
	
		
			

				𝑦
			

			

				𝑛
			

			
				=
				𝜎
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				+
				𝜏
			

			

				𝑛
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				+
				(
				1
				−
				𝜎
			

			

				𝑛
			

			
				−
				𝜏
			

			

				𝑛
			

			
				)
				𝑢
			

			

				𝑛
			

		
	
 for each 
	
		
			
				𝑛
				≥
				0
			

		
	
. Since 
	
		
			

				𝐵
			

			

				𝑖
			

			
				∶
				𝐶
				→
				ℋ
			

			

				1
			

		
	
 is 
	
		
			

				𝛽
			

			

				𝑖
			

		
	
-inverse strongly monotone and 
	
		
			
				0
				<
				𝜇
			

			

				𝑖
			

			
				<
				2
				𝛽
			

			

				𝑖
			

		
	
 for 
	
		
			
				𝑖
				=
				1
				,
				2
			

		
	
, we know that for all 
	
		
			
				𝑛
				≥
				0
			

		
	
,
							
	
 		
 			
				(
				4
				9
				)
			
 		
	

	
		
			
				‖
				‖
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				=
				‖
				‖
				𝑃
			

			

				𝐶
			

			
				
				𝑃
			

			

				𝐶
			

			
				
				𝑧
			

			

				𝑛
			

			
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				
				−
				𝜇
			

			

				1
			

			

				𝐵
			

			

				1
			

			

				𝑃
			

			

				𝐶
			

			
				
				𝑧
			

			

				𝑛
			

			
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				‖
				‖
				
				
				−
				𝑝
			

			

				2
			

			
				=
				‖
				‖
				𝑃
			

			

				𝐶
			

			
				
				𝑃
			

			

				𝐶
			

			
				
				𝑧
			

			

				𝑛
			

			
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				
				−
				𝜇
			

			

				1
			

			

				𝐵
			

			

				1
			

			

				𝑃
			

			

				𝐶
			

			
				
				𝑧
			

			

				𝑛
			

			
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				
				
				−
				𝑃
			

			

				𝐶
			

			
				
				𝑃
			

			

				𝐶
			

			
				
				𝑝
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				𝑝
				
				−
				𝜇
			

			

				1
			

			

				𝐵
			

			

				1
			

			

				𝑃
			

			

				𝐶
			

			
				
				𝑝
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				𝑝
				‖
				‖
				
				
			

			

				2
			

			
				≤
				‖
				‖
				
				𝑃
			

			

				𝐶
			

			
				
				𝑧
			

			

				𝑛
			

			
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				
				−
				𝜇
			

			

				1
			

			

				𝐵
			

			

				1
			

			

				𝑃
			

			

				𝐶
			

			
				
				𝑧
			

			

				𝑛
			

			
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				−
				
				𝑃
				
				
			

			

				𝐶
			

			
				
				𝑝
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				𝑝
				
				−
				𝜇
			

			

				1
			

			

				𝐵
			

			

				1
			

			

				𝑃
			

			

				𝐶
			

			
				
				𝑝
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				𝑝
				‖
				‖
				
				
			

			

				2
			

			
				=
				‖
				‖
				
				𝑃
			

			

				𝐶
			

			
				
				𝑧
			

			

				𝑛
			

			
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				
				−
				𝑃
			

			

				𝐶
			

			
				
				𝑝
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				𝑝
				
				
				−
				𝜇
			

			

				1
			

			
				
				𝐵
			

			

				1
			

			

				𝑃
			

			

				𝐶
			

			
				
				𝑧
			

			

				𝑛
			

			
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				
				−
				𝐵
			

			

				1
			

			

				𝑃
			

			

				𝐶
			

			
				
				𝑝
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				𝑝
				‖
				‖
				
				
			

			

				2
			

			
				≤
				‖
				‖
				𝑃
			

			

				𝐶
			

			
				
				𝑧
			

			

				𝑛
			

			
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				
				−
				𝑃
			

			

				𝐶
			

			
				
				𝑝
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				𝑝
				
				‖
				‖
			

			

				2
			

			
				−
				𝜇
			

			

				1
			

			
				
				2
				𝛽
			

			

				1
			

			
				−
				𝜇
			

			

				1
			

			
				
				‖
				‖
				𝐵
			

			

				1
			

			

				𝑃
			

			

				𝐶
			

			
				
				𝑧
			

			

				𝑛
			

			
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				
				−
				𝐵
			

			

				1
			

			

				𝑃
			

			

				𝐶
			

			
				
				𝑝
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				𝑝
				
				‖
				‖
			

			

				2
			

			
				≤
				‖
				‖
				
				𝑧
			

			

				𝑛
			

			
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				
				−
				
				𝑝
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				𝑝
				
				‖
				‖
			

			

				2
			

			
				−
				𝜇
			

			

				1
			

			
				
				2
				𝛽
			

			

				1
			

			
				−
				𝜇
			

			

				1
			

			
				
				‖
				‖
				𝐵
			

			

				1
			

			
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				1
			

			
				𝑞
				‖
				‖
			

			

				2
			

			
				=
				‖
				‖
				
				𝑧
			

			

				𝑛
			

			
				
				−
				𝑝
				−
				𝜇
			

			

				2
			

			
				
				𝐵
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				2
			

			
				𝑝
				
				‖
				‖
			

			

				2
			

			
				−
				𝜇
			

			

				1
			

			
				
				2
				𝛽
			

			

				1
			

			
				−
				𝜇
			

			

				1
			

			
				
				‖
				‖
				𝐵
			

			

				1
			

			
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				1
			

			
				𝑞
				‖
				‖
			

			

				2
			

			
				≤
				‖
				‖
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				−
				𝜇
			

			

				2
			

			
				
				2
				𝛽
			

			

				2
			

			
				−
				𝜇
			

			

				2
			

			
				
				‖
				‖
				𝐵
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				2
			

			
				𝑝
				‖
				‖
			

			

				2
			

			
				−
				𝜇
			

			

				1
			

			
				
				2
				𝛽
			

			

				1
			

			
				−
				𝜇
			

			

				1
			

			
				
				‖
				‖
				𝐵
			

			

				1
			

			
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				1
			

			
				𝑞
				‖
				‖
			

			

				2
			

			
				≤
				‖
				‖
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			

				.
			

		
	

						Furthermore, by Proposition 8(ii), we have
							
	
 		
 			
				(
				5
				0
				)
			
 		
	

	
		
			
				‖
				‖
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				≤
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑧
			

			

				𝑛
			

			
				
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				−
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑧
			

			

				𝑛
			

			
				
				−
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			
				=
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				−
				‖
				‖
				𝑥
			

			

				𝑛
			

			

				−
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			
				+
				2
				𝜆
			

			

				𝑛
			

			
				
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑧
			

			

				𝑛
			

			
				
				,
				𝑝
				−
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				
				=
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				−
				‖
				‖
				𝑥
			

			

				𝑛
			

			

				−
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			
				+
				2
				𝜆
			

			

				𝑛
			

			
				
				
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑧
			

			

				𝑛
			

			
				
				−
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				(
				𝑝
				)
				,
				𝑝
				−
				𝑧
			

			

				𝑛
			

			
				
				+
				
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				(
				𝑝
				)
				,
				𝑝
				−
				𝑧
			

			

				𝑛
			

			
				
				+
				
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑧
			

			

				𝑛
			

			
				
				,
				𝑧
			

			

				𝑛
			

			

				−
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				≤
				‖
				‖
				𝑥
				
				
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				−
				‖
				‖
				𝑥
			

			

				𝑛
			

			

				−
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			
				+
				2
				𝜆
			

			

				𝑛
			

			
				
				
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				(
				𝑝
				)
				,
				𝑝
				−
				𝑧
			

			

				𝑛
			

			
				
				+
				
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑧
			

			

				𝑛
			

			
				
				,
				𝑧
			

			

				𝑛
			

			

				−
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				=
				‖
				‖
				𝑥
				
				
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				−
				‖
				‖
				𝑥
			

			

				𝑛
			

			

				−
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			
				+
				2
				𝜆
			

			

				𝑛
			

			
				𝛼
				
				
				
			

			

				𝑛
			

			
				
				𝐼
				+
				∇
				𝑓
				𝑝
				,
				𝑝
				−
				𝑧
			

			

				𝑛
			

			
				
				+
				
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑧
			

			

				𝑛
			

			
				
				,
				𝑧
			

			

				𝑛
			

			

				−
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				≤
				‖
				‖
				𝑥
				
				
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				−
				‖
				‖
				𝑥
			

			

				𝑛
			

			

				−
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			
				+
				2
				𝜆
			

			

				𝑛
			

			
				
				𝛼
			

			

				𝑛
			

			
				⟨
				𝑝
				,
				𝑝
				−
				𝑧
			

			

				𝑛
			

			
				
				⟩
				+
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑧
			

			

				𝑛
			

			
				
				,
				𝑧
			

			

				𝑛
			

			

				−
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				=
				‖
				‖
				𝑥
				
				
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				−
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑧
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			
				
				𝑥
				−
				2
			

			

				𝑛
			

			
				−
				𝑧
			

			

				𝑛
			

			
				,
				𝑧
			

			

				𝑛
			

			

				−
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				
				−
				‖
				‖
				𝑧
			

			

				𝑛
			

			

				−
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			
				+
				2
				𝜆
			

			

				𝑛
			

			
				
				𝛼
			

			

				𝑛
			

			
				⟨
				𝑝
				,
				𝑝
				−
				𝑧
			

			

				𝑛
			

			
				
				⟩
				+
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑧
			

			

				𝑛
			

			
				
				,
				𝑧
			

			

				𝑛
			

			

				−
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				=
				‖
				‖
				𝑥
				
				
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				−
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑧
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			
				−
				‖
				‖
				𝑧
			

			

				𝑛
			

			

				−
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			
				
				𝑥
				+
				2
			

			

				𝑛
			

			
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑧
			

			

				𝑛
			

			
				
				−
				𝑧
			

			

				𝑛
			

			

				,
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				−
				𝑧
			

			

				𝑛
			

			
				
				+
				2
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				⟨
				𝑝
				,
				𝑝
				−
				𝑧
			

			

				𝑛
			

			
				⟩
				.
			

		
	

						Further, by Proposition 8(i), we have
							
	
 		
 			
				(
				5
				1
				)
			
 		
	

	
		
			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑧
			

			

				𝑛
			

			
				
				−
				𝑧
			

			

				𝑛
			

			

				,
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				−
				𝑧
			

			

				𝑛
			

			
				
				=
				
				𝑥
			

			

				𝑛
			

			
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				
				−
				𝑧
			

			

				𝑛
			

			

				,
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				−
				𝑧
			

			

				𝑛
			

			
				
				+
				
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑧
			

			

				𝑛
			

			
				
				,
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				−
				𝑧
			

			

				𝑛
			

			
				
				≤
				
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑧
			

			

				𝑛
			

			
				
				,
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				−
				𝑧
			

			

				𝑛
			

			
				
				≤
				𝜆
			

			

				𝑛
			

			
				‖
				‖
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				
				−
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑧
			

			

				𝑛
			

			
				
				‖
				‖
				‖
				‖
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				−
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				≤
				𝜆
			

			

				𝑛
			

			
				
				𝛼
			

			

				𝑛
			

			
				+
				‖
				𝐴
				‖
			

			

				2
			

			
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				−
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				.
			

		
	

						So, from (46), we obtain
							
	
 		
 			
				(
				5
				2
				)
			
 		
	

	
		
			
				‖
				‖
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				≤
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				−
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑧
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			
				−
				‖
				‖
				𝑧
			

			

				𝑛
			

			

				−
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			
				
				𝑥
				+
				2
			

			

				𝑛
			

			
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑧
			

			

				𝑛
			

			
				
				−
				𝑧
			

			

				𝑛
			

			

				,
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				−
				𝑧
			

			

				𝑛
			

			
				
				+
				2
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				⟨
				𝑝
				,
				𝑝
				−
				𝑧
			

			

				𝑛
			

			
				⟩
				≤
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				−
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑧
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			
				−
				‖
				‖
				𝑧
			

			

				𝑛
			

			

				−
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			
				+
				2
				𝜆
			

			

				𝑛
			

			
				
				𝛼
			

			

				𝑛
			

			
				+
				‖
				𝐴
				‖
			

			

				2
			

			
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				−
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				+
				2
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				‖
				‖
				‖
				𝑧
				𝑝
				‖
			

			

				𝑛
			

			
				‖
				‖
				≤
				‖
				‖
				𝑥
				−
				𝑝
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				−
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑧
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			
				−
				‖
				‖
				𝑧
			

			

				𝑛
			

			

				−
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			
				+
				𝜆
			

			
				2
				𝑛
			

			
				
				𝛼
			

			

				𝑛
			

			
				+
				‖
				𝐴
				‖
			

			

				2
			

			

				
			

			

				2
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑧
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			
				+
				‖
				‖
				𝑧
			

			

				𝑛
			

			

				−
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			
				+
				2
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑧
				‖
				𝑝
				‖
			

			

				𝑛
			

			
				‖
				‖
				=
				‖
				‖
				𝑥
				−
				𝑝
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				2
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑧
				‖
				𝑝
				‖
			

			

				𝑛
			

			
				‖
				‖
				+
				
				𝜆
				−
				𝑝
			

			
				2
				𝑛
			

			
				
				𝛼
			

			

				𝑛
			

			
				+
				‖
				𝐴
				‖
			

			

				2
			

			

				
			

			

				2
			

			
				
				‖
				‖
				𝑥
				−
				1
			

			

				𝑛
			

			
				−
				𝑧
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			
				≤
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				2
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				‖
				‖
				‖
				𝑧
				𝑝
				‖
			

			

				𝑛
			

			
				‖
				‖
				≤
				‖
				‖
				𝑥
				−
				𝑝
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				2
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				
				‖
				‖
				𝑥
				‖
				𝑝
				‖
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				+
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				
				≤
				‖
				‖
				𝑥
				‖
				𝑝
				‖
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				4
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				‖
				‖
				‖
				𝑥
				𝑝
				‖
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				+
				4
				𝜆
			

			
				2
				𝑛
			

			

				𝛼
			

			
				2
				𝑛
			

			
				‖
				𝑝
				‖
			

			

				2
			

			
				=
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				+
				2
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				
				‖
				𝑝
				‖
			

			

				2
			

			

				.
			

		
	

						Hence, it follows from (46), (49), and (52) that
							
	
 		
 			
				(
				5
				3
				)
			
 		
	

	
		
			
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				=
				‖
				‖
				𝜎
				−
				𝑝
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				
				−
				𝑝
				+
				𝜏
			

			

				𝑛
			

			

				
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				
				+
				
				−
				𝑝
				1
				−
				𝜎
			

			

				𝑛
			

			
				−
				𝜏
			

			

				𝑛
			

			
				𝑢
				
				
			

			

				𝑛
			

			
				
				‖
				‖
				−
				𝑝
				≤
				𝜎
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				+
				𝜏
			

			

				𝑛
			

			
				‖
				‖
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				‖
				‖
				+
				
				−
				𝑝
				1
				−
				𝜎
			

			

				𝑛
			

			
				−
				𝜏
			

			

				𝑛
			

			
				
				‖
				‖
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				≤
				𝜎
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				+
				𝜏
			

			

				𝑛
			

			
				‖
				‖
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				‖
				‖
				+
				
				−
				𝑝
				1
				−
				𝜎
			

			

				𝑛
			

			
				−
				𝜏
			

			

				𝑛
			

			
				
				‖
				‖
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				≤
				𝜎
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				+
				𝜏
			

			

				𝑛
			

			
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				+
				2
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				
				+
				
				‖
				𝑝
				‖
				1
				−
				𝜎
			

			

				𝑛
			

			
				−
				𝜏
			

			

				𝑛
			

			
				‖
				‖
				𝑥
				
				
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				+
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				
				=
				‖
				‖
				𝑥
				‖
				𝑝
				‖
			

			

				𝑛
			

			
				‖
				‖
				+
				
				−
				𝑝
				2
				𝜏
			

			

				𝑛
			

			
				+
				
				1
				−
				𝜎
			

			

				𝑛
			

			
				−
				𝜏
			

			

				𝑛
			

			
				𝜆
				
				
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				≤
				‖
				‖
				𝑥
				‖
				𝑝
				‖
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				+
				2
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				‖
				𝑝
				‖
				.
			

		
	

						Since 
	
		
			
				(
				𝛾
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				)
				𝑘
				≤
				𝛾
			

			

				𝑛
			

		
	
 for all 
	
		
			
				𝑛
				≥
				0
			

		
	
, utilizing Lemma 18, we obtain from (53)
							
	
 		
 			
				(
				5
				4
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				‖
				‖
				=
				‖
				‖
				𝛽
				−
				𝑝
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				
				−
				𝑝
				+
				𝛾
			

			

				𝑛
			

			
				
				𝑦
			

			

				𝑛
			

			
				
				−
				𝑝
				+
				𝛿
			

			

				𝑛
			

			
				
				𝑆
				𝑦
			

			

				𝑛
			

			
				
				‖
				‖
				−
				𝑝
				≤
				𝛽
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				‖
				‖
				𝛾
				−
				𝑝
			

			

				𝑛
			

			
				
				𝑦
			

			

				𝑛
			

			
				
				−
				𝑝
				+
				𝛿
			

			

				𝑛
			

			
				
				𝑆
				𝑦
			

			

				𝑛
			

			
				
				‖
				‖
				−
				𝑝
				≤
				𝛽
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				
				𝛾
				−
				𝑝
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				≤
				𝛽
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				
				𝛾
				−
				𝑝
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				
				×
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				+
				2
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				
				≤
				‖
				‖
				𝑥
				‖
				𝑝
				‖
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				+
				2
				𝑏
				‖
				𝑝
				‖
				𝛼
			

			

				𝑛
			

			

				.
			

		
	

						Since 
	
		
			

				∑
			

			
				∞
				𝑛
				=
				0
			

			

				𝛼
			

			

				𝑛
			

			
				<
				∞
			

		
	
, it is clear that 
	
		
			

				∑
			

			
				∞
				𝑛
				=
				0
			

			
				2
				𝑏
				‖
				𝑝
				‖
				𝛼
			

			

				𝑛
			

			
				<
				∞
			

		
	
. Thus, by Corollary 17, we conclude that 
							
	
 		
 			
				(
				5
				5
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				e
				x
				i
				s
				t
				s
				f
				o
				r
				e
				a
				c
				h
				𝑝
				∈
				F
				i
				x
				(
				𝑆
				)
				∩
				Ξ
				∩
				Γ
				,
			

		
	

						and the sequence 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 is bounded. Taking into account that 
	
		
			

				𝑃
			

			

				𝐶
			

		
	
, 
	
		
			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

		
	
, 
	
		
			

				𝐵
			

			

				1
			

		
	
 and 
	
		
			

				𝐵
			

			

				2
			

		
	
 are Lipschitz continuous, we can easily see that 
	
		
			
				{
				𝑧
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝑢
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			

				{
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝑦
			

			

				𝑛
			

			

				}
			

		
	
, and 
	
		
			
				{
				̃
				𝑧
			

			

				𝑛
			

			

				}
			

		
	
 are bounded, where 
	
		
			
				̃
				𝑧
			

			

				𝑛
			

			
				=
				𝑃
			

			

				𝐶
			

			
				(
				𝑧
			

			

				𝑛
			

			
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			

				)
			

		
	
 for all 
	
		
			
				𝑛
				≥
				0
			

		
	
.Step 2. Consider 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				𝐵
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				2
			

			
				𝑝
				‖
				=
				0
			

		
	
, 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				𝐵
			

			

				1
			

			
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				1
			

			
				𝑞
				‖
				=
				0
			

		
	
 and 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑧
			

			

				𝑛
			

			
				‖
				=
				0
			

		
	
, where 
	
		
			
				𝑞
				=
				𝑃
			

			

				𝐶
			

			
				(
				𝑝
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				𝑝
				)
			

		
	
.Indeed, utilizing Lemma 18 and the convexity of 
	
		
			
				‖
				⋅
				‖
			

			

				2
			

		
	
, we obtain from (16) and (47)–(52) that
							
	
 		
 			
				(
				5
				6
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				=
				‖
				‖
				𝛽
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				
				−
				𝑝
				+
				𝛾
			

			

				𝑛
			

			
				
				𝑦
			

			

				𝑛
			

			
				
				−
				𝑝
				+
				𝛿
			

			

				𝑛
			

			
				
				𝑆
				𝑦
			

			

				𝑛
			

			
				
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				≤
				𝛽
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				
				𝛾
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				
				×
				‖
				‖
				‖
				1
			

			
				
			
			

				𝛾
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				
				𝛾
			

			

				𝑛
			

			
				
				𝑦
			

			

				𝑛
			

			
				
				−
				𝑝
				+
				𝛿
			

			

				𝑛
			

			
				
				𝑆
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				‖
				−
				𝑝
				
				
			

			

				2
			

			
				≤
				𝛽
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				
				𝛾
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				≤
				𝛽
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				
				𝛾
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				
				×
				
				𝜎
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				𝜏
			

			

				𝑛
			

			
				‖
				‖
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				
				1
				−
				𝜎
			

			

				𝑛
			

			
				−
				𝜏
			

			

				𝑛
			

			
				
				‖
				‖
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				
				≤
				𝛽
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				
				𝛾
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				
				×
				
				𝜎
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				𝜏
			

			

				𝑛
			

			
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				2
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑧
				‖
				𝑝
				‖
			

			

				𝑛
			

			
				‖
				‖
				+
				
				𝜆
				−
				𝑝
			

			
				2
				𝑛
			

			
				
				𝛼
			

			

				𝑛
			

			
				+
				‖
				𝐴
				‖
			

			

				2
			

			

				
			

			

				2
			

			
				
				‖
				‖
				𝑥
				−
				1
			

			

				𝑛
			

			
				−
				𝑧
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			
				
				+
				
				1
				−
				𝜎
			

			

				𝑛
			

			
				−
				𝜏
			

			

				𝑛
			

			
				
				×
				
				‖
				‖
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				−
				𝜇
			

			

				2
			

			
				
				2
				𝛽
			

			

				2
			

			
				−
				𝜇
			

			

				2
			

			
				
				‖
				‖
				𝐵
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				2
			

			
				𝑝
				‖
				‖
			

			

				2
			

			
				−
				𝜇
			

			

				1
			

			
				
				2
				𝛽
			

			

				1
			

			
				−
				𝜇
			

			

				1
			

			
				
				‖
				‖
				𝐵
			

			

				1
			

			
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				1
			

			
				𝑞
				‖
				‖
			

			

				2
			

			
				
				
				≤
				𝛽
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				
				𝛾
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				
				×
				
				𝜎
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				𝜏
			

			

				𝑛
			

			
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				2
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑧
				‖
				𝑝
				‖
			

			

				𝑛
			

			
				‖
				‖
				+
				
				𝜆
				−
				𝑝
			

			
				2
				𝑛
			

			
				
				𝛼
			

			

				𝑛
			

			
				+
				‖
				𝐴
				‖
			

			

				2
			

			

				
			

			

				2
			

			
				
				‖
				‖
				𝑥
				−
				1
			

			

				𝑛
			

			
				−
				𝑧
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			
				
				+
				
				1
				−
				𝜎
			

			

				𝑛
			

			
				−
				𝜏
			

			

				𝑛
			

			
				
				×
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				2
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑧
				‖
				𝑝
				‖
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				−
				𝜇
			

			

				2
			

			
				
				2
				𝛽
			

			

				2
			

			
				−
				𝜇
			

			

				2
			

			
				
				‖
				‖
				𝐵
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				2
			

			
				𝑝
				‖
				‖
			

			

				2
			

			
				−
				𝜇
			

			

				1
			

			
				
				2
				𝛽
			

			

				1
			

			
				−
				𝜇
			

			

				1
			

			
				
				‖
				‖
				𝐵
			

			

				1
			

			
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				1
			

			
				𝑞
				‖
				‖
			

			

				2
			

			
				=
				‖
				‖
				𝑥
				
				
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				
				𝛾
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				
				×
				
				
				1
				−
				𝜎
			

			

				𝑛
			

			
				
				2
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑧
				‖
				𝑝
				‖
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				+
				𝜏
			

			

				𝑛
			

			
				
				𝜆
			

			
				2
				𝑛
			

			
				
				𝛼
			

			

				𝑛
			

			
				+
				‖
				𝐴
				‖
			

			

				2
			

			

				
			

			

				2
			

			
				
				‖
				‖
				𝑥
				−
				1
			

			

				𝑛
			

			
				−
				𝑧
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			
				−
				
				1
				−
				𝜎
			

			

				𝑛
			

			
				−
				𝜏
			

			

				𝑛
			

			
				
				×
				
				𝜇
			

			

				2
			

			
				
				2
				𝛽
			

			

				2
			

			
				−
				𝜇
			

			

				2
			

			
				
				‖
				‖
				𝐵
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				2
			

			
				𝑝
				‖
				‖
			

			

				2
			

			
				+
				𝜇
			

			

				1
			

			
				
				2
				𝛽
			

			

				1
			

			
				−
				𝜇
			

			

				1
			

			
				
				‖
				‖
				𝐵
			

			

				1
			

			
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				1
			

			
				𝑞
				‖
				‖
			

			

				2
			

			
				≤
				‖
				‖
				𝑥
				
				
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				2
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑧
				‖
				𝑝
				‖
			

			

				𝑛
			

			
				‖
				‖
				−
				
				𝛾
				−
				𝑝
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				
				
				𝜏
			

			

				𝑛
			

			
				
				1
				−
				𝜆
			

			
				2
				𝑛
			

			
				
				𝛼
			

			

				𝑛
			

			
				+
				‖
				𝐴
				‖
			

			

				2
			

			

				
			

			

				2
			

			
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑧
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			
				+
				
				1
				−
				𝜎
			

			

				𝑛
			

			
				−
				𝜏
			

			

				𝑛
			

			
				
				×
				
				𝜇
			

			

				2
			

			
				
				2
				𝛽
			

			

				2
			

			
				−
				𝜇
			

			

				2
			

			
				
				‖
				‖
				𝐵
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				2
			

			
				𝑝
				‖
				‖
			

			

				2
			

			
				+
				𝜇
			

			

				1
			

			
				
				2
				𝛽
			

			

				1
			

			
				−
				𝜇
			

			

				1
			

			
				
				‖
				‖
				𝐵
			

			

				1
			

			
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				1
			

			
				𝑞
				‖
				‖
			

			

				2
			

			
				.
				
				
			

		
	

						Therefore,
							
	
 		
 			
				(
				5
				7
				)
			
 		
	

	
		
			
				
				𝛾
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				
				
				𝜏
			

			

				𝑛
			

			
				
				1
				−
				𝜆
			

			
				2
				𝑛
			

			
				
				𝛼
			

			

				𝑛
			

			
				+
				‖
				𝐴
				‖
			

			

				2
			

			

				
			

			

				2
			

			
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑧
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			
				+
				
				1
				−
				𝜎
			

			

				𝑛
			

			
				−
				𝜏
			

			

				𝑛
			

			
				
				×
				
				𝜇
			

			

				2
			

			
				
				2
				𝛽
			

			

				2
			

			
				−
				𝜇
			

			

				2
			

			
				
				‖
				‖
				𝐵
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				2
			

			
				𝑝
				‖
				‖
			

			

				2
			

			
				+
				𝜇
			

			

				1
			

			
				
				2
				𝛽
			

			

				1
			

			
				−
				𝜇
			

			

				1
			

			
				
				‖
				‖
				𝐵
			

			

				1
			

			
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				1
			

			
				𝑞
				‖
				‖
			

			

				2
			

			
				≤
				‖
				‖
				𝑥
				
				
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				−
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				2
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑧
				‖
				𝑝
				‖
			

			

				𝑛
			

			
				‖
				‖
				.
				−
				𝑝
			

		
	

						Since 
	
		
			

				𝛼
			

			

				𝑛
			

			
				→
				0
				,
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑝
				‖
			

		
	
 exists, 
	
		
			
				l
				i
				m
				i
				n
				f
			

			
				𝑛
				→
				∞
			

			
				(
				𝛾
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				)
				>
				0
			

		
	
, 
	
		
			
				{
				𝜆
			

			

				𝑛
			

			
				}
				⊂
				[
				𝑎
				,
				𝑏
				]
			

		
	
 and 
	
		
			
				0
				<
				l
				i
				m
				i
				n
				f
			

			
				𝑛
				→
				∞
			

			

				𝜏
			

			

				𝑛
			

			
				≤
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			
				(
				𝜎
			

			

				𝑛
			

			
				+
				𝜏
			

			

				𝑛
			

			
				)
				<
				1
			

		
	
, it follows that
							
	
 		
 			
				(
				5
				8
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				=
				0
				,
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				𝐵
			

			

				1
			

			
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				1
			

			
				𝑞
				‖
				‖
				=
				0
				,
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				𝐵
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				2
			

			
				𝑝
				‖
				‖
				=
				0
				.
			

		
	
Step 3. Consider  
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				𝑆
				𝑦
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				‖
				=
				0
			

		
	
.Indeed, observe that
							
	
 		
 			
				(
				5
				9
				)
			
 		
	

	
		
			
				‖
				‖
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				−
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				=
				‖
				‖
				𝑃
			

			

				𝐶
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑧
			

			

				𝑛
			

			
				
				
				−
				𝑃
			

			

				𝐶
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				≤
				‖
				‖
				
				𝑥
				
				
			

			

				𝑛
			

			
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑧
			

			

				𝑛
			

			
				−
				
				𝑥
				
				
			

			

				𝑛
			

			
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				
				
				=
				𝜆
			

			

				𝑛
			

			
				‖
				‖
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑧
			

			

				𝑛
			

			
				
				−
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				
				‖
				‖
				≤
				𝜆
			

			

				𝑛
			

			
				
				𝛼
			

			

				𝑛
			

			
				+
				‖
				𝐴
				‖
			

			

				2
			

			
				
				‖
				‖
				𝑧
			

			

				𝑛
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				.
			

		
	
This together with 
	
		
			
				‖
				𝑧
			

			

				𝑛
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				→
				0
			

		
	
 implies that 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				‖
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				−
				𝑧
			

			

				𝑛
			

			
				‖
				=
				0
			

		
	
 and hence 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				‖
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				=
				0
			

		
	
. By firm nonexpansiveness of 
	
		
			

				𝑃
			

			

				𝐶
			

		
	
, we have
							
	
 		
 			
				(
				6
				0
				)
			
 		
	

	
		
			
				‖
				‖
				̃
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑞
			

			

				2
			

			
				=
				‖
				‖
				𝑃
			

			

				𝐶
			

			
				
				𝑧
			

			

				𝑛
			

			
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				
				−
				𝑃
			

			

				𝐶
			

			
				
				𝑝
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				𝑝
				
				‖
				‖
			

			

				2
			

			
				≤
				𝑧
				
				
			

			

				𝑛
			

			
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				
				−
				
				𝑝
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				𝑝
				
				,
				̃
				𝑧
			

			

				𝑛
			

			
				
				=
				1
				−
				𝑞
			

			
				
			
			
				2
				
				‖
				‖
				𝑧
			

			

				𝑛
			

			
				−
				𝑝
				−
				𝜇
			

			

				2
			

			
				
				𝐵
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				2
			

			
				𝑝
				
				‖
				‖
			

			

				2
			

			
				+
				‖
				‖
				̃
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑞
			

			

				2
			

			
				−
				‖
				‖
				
				𝑧
			

			

				𝑛
			

			
				
				−
				𝑝
				−
				𝜇
			

			

				2
			

			
				
				𝐵
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				2
			

			
				𝑝
				
				−
				
				̃
				𝑧
			

			

				𝑛
			

			
				
				‖
				‖
				−
				𝑞
			

			

				2
			

			
				
				≤
				1
			

			
				
			
			
				2
				
				‖
				‖
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				‖
				‖
				̃
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑞
			

			

				2
			

			
				−
				‖
				‖
				
				𝑧
			

			

				𝑛
			

			
				−
				̃
				𝑧
			

			

				𝑛
			

			
				
				−
				𝜇
			

			

				2
			

			
				
				𝐵
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				2
			

			
				𝑝
				
				‖
				‖
				−
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			
				
				=
				1
			

			
				
			
			
				2
				
				‖
				‖
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				‖
				‖
				̃
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑞
			

			

				2
			

			
				−
				‖
				‖
				𝑧
			

			

				𝑛
			

			
				−
				̃
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				−
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			
				+
				2
				𝜇
			

			

				2
			

			
				⟨
				𝑧
			

			

				𝑛
			

			
				−
				̃
				𝑧
			

			

				𝑛
			

			
				−
				(
				𝑝
				−
				𝑞
				)
				,
				𝐵
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				2
			

			
				𝑝
				⟩
				−
				𝜇
			

			
				2
				2
			

			
				‖
				‖
				𝐵
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				2
			

			
				𝑝
				‖
				‖
			

			

				2
			

			
				
				≤
				1
			

			
				
			
			
				2
				
				‖
				‖
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				‖
				‖
				̃
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑞
			

			

				2
			

			
				−
				‖
				‖
				𝑧
			

			

				𝑛
			

			
				−
				̃
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				−
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			
				+
				2
				𝜇
			

			

				2
			

			
				‖
				‖
				𝑧
			

			

				𝑛
			

			
				−
				̃
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				𝐵
				−
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				2
			

			
				𝑝
				‖
				‖
				
				,
			

		
	

						that is, 
							
	
 		
 			
				(
				6
				1
				)
			
 		
	

	
		
			
				‖
				‖
				̃
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑞
			

			

				2
			

			
				≤
				‖
				‖
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				−
				‖
				‖
				𝑧
			

			

				𝑛
			

			
				−
				̃
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				−
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			
				+
				2
				𝜇
			

			

				2
			

			
				‖
				‖
				𝑧
			

			

				𝑛
			

			
				−
				̃
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				𝐵
				−
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				2
			

			
				𝑝
				‖
				‖
				.
			

		
	
Moreover, using the argument technique similar to the previous one, we derive
							
	
 		
 			
				(
				6
				2
				)
			
 		
	

	
		
			
				‖
				‖
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				=
				‖
				‖
				𝑃
			

			

				𝐶
			

			
				
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝜇
			

			

				1
			

			

				𝐵
			

			

				1
			

			
				̃
				𝑧
			

			

				𝑛
			

			
				
				−
				𝑃
			

			

				𝐶
			

			
				
				𝑞
				−
				𝜇
			

			

				1
			

			

				𝐵
			

			

				1
			

			
				𝑞
				
				‖
				‖
			

			

				2
			

			
				≤
				
				
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝜇
			

			

				1
			

			

				𝐵
			

			

				1
			

			
				̃
				𝑧
			

			

				𝑛
			

			
				
				−
				
				𝑞
				−
				𝜇
			

			

				1
			

			

				𝐵
			

			

				1
			

			
				𝑞
				
				,
				𝑢
			

			

				𝑛
			

			
				
				=
				1
				−
				𝑝
			

			
				
			
			
				2
				
				‖
				‖
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝑞
				−
				𝜇
			

			

				1
			

			
				
				𝐵
			

			

				1
			

			
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				1
			

			
				𝑞
				
				‖
				‖
			

			

				2
			

			
				+
				‖
				‖
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				−
				‖
				‖
				
				̃
				𝑧
			

			

				𝑛
			

			
				
				−
				𝑞
				−
				𝜇
			

			

				1
			

			
				
				𝐵
			

			

				1
			

			
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				1
			

			
				𝑞
				
				−
				
				𝑢
			

			

				𝑛
			

			
				
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				
				≤
				1
			

			
				
			
			
				2
				
				‖
				‖
				̃
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑞
			

			

				2
			

			
				+
				‖
				‖
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				−
				‖
				‖
				
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				
				−
				𝜇
			

			

				1
			

			
				
				𝐵
			

			

				1
			

			
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				1
			

			
				𝑞
				
				‖
				‖
				+
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			
				
				=
				1
			

			
				
			
			
				2
				
				‖
				‖
				̃
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑞
			

			

				2
			

			
				+
				‖
				‖
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				−
				‖
				‖
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				+
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			
				+
				2
				𝜇
			

			

				1
			

			
				⟨
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				+
				(
				𝑝
				−
				𝑞
				)
				,
				𝐵
			

			

				1
			

			
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				1
			

			
				𝑞
				⟩
				−
				𝜇
			

			
				2
				1
			

			
				‖
				‖
				𝐵
			

			

				1
			

			
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				1
			

			
				𝑞
				‖
				‖
			

			

				2
			

			
				
				≤
				1
			

			
				
			
			
				2
				
				‖
				‖
				̃
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑞
			

			

				2
			

			
				+
				‖
				‖
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				−
				‖
				‖
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				+
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			
				+
				2
				𝜇
			

			

				1
			

			
				‖
				‖
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				+
				‖
				‖
				‖
				‖
				𝐵
				(
				𝑝
				−
				𝑞
				)
			

			

				1
			

			
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				1
			

			
				𝑞
				‖
				‖
				
				,
			

		
	

						that is, 
							
	
 		
 			
				(
				6
				3
				)
			
 		
	

	
		
			
				‖
				‖
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				≤
				‖
				‖
				̃
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑞
			

			

				2
			

			
				−
				‖
				‖
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				+
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			
				+
				2
				𝜇
			

			

				1
			

			
				‖
				‖
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				𝐵
				+
				(
				𝑝
				−
				𝑞
				)
			

			

				1
			

			
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				1
			

			
				𝑞
				‖
				‖
				.
			

		
	
Utilizing (47), (52), (61), and (63), we have
							
	
 		
 			
				(
				6
				4
				)
			
 		
	

	
		
			
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				=
				‖
				‖
				𝜎
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				
				−
				𝑝
				+
				𝜏
			

			

				𝑛
			

			

				
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				
				+
				
				−
				𝑝
				1
				−
				𝜎
			

			

				𝑛
			

			
				−
				𝜏
			

			

				𝑛
			

			
				𝑢
				
				
			

			

				𝑛
			

			
				
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				≤
				𝜎
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				𝜏
			

			

				𝑛
			

			
				‖
				‖
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				
				1
				−
				𝜎
			

			

				𝑛
			

			
				−
				𝜏
			

			

				𝑛
			

			
				
				‖
				‖
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				≤
				𝜎
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				𝜏
			

			

				𝑛
			

			
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				2
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				‖
				‖
				‖
				𝑧
				𝑝
				‖
			

			

				𝑛
			

			
				‖
				‖
				
				+
				
				−
				𝑝
				1
				−
				𝜎
			

			

				𝑛
			

			
				−
				𝜏
			

			

				𝑛
			

			
				
				×
				
				‖
				‖
				̃
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑞
			

			

				2
			

			
				−
				‖
				‖
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				+
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			
				+
				2
				𝜇
			

			

				1
			

			
				‖
				‖
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				𝐵
				+
				(
				𝑝
				−
				𝑞
				)
			

			

				1
			

			
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				1
			

			
				𝑞
				‖
				‖
				
				≤
				𝜎
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				𝜏
			

			

				𝑛
			

			
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				2
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑧
				‖
				𝑝
				‖
			

			

				𝑛
			

			
				‖
				‖
				
				+
				
				−
				𝑝
				1
				−
				𝜎
			

			

				𝑛
			

			
				−
				𝜏
			

			

				𝑛
			

			
				
				×
				
				‖
				‖
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				−
				‖
				‖
				𝑧
			

			

				𝑛
			

			
				−
				̃
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				−
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			
				+
				2
				𝜇
			

			

				2
			

			
				‖
				‖
				𝑧
			

			

				𝑛
			

			
				−
				̃
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				𝐵
				−
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				2
			

			
				𝑝
				‖
				‖
				−
				‖
				‖
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				+
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			
				+
				2
				𝜇
			

			

				1
			

			
				‖
				‖
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				𝐵
				+
				(
				𝑝
				−
				𝑞
				)
			

			

				1
			

			
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				1
			

			
				𝑞
				‖
				‖
				
				≤
				𝜎
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				𝜏
			

			

				𝑛
			

			
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				2
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑧
				‖
				𝑝
				‖
			

			

				𝑛
			

			
				‖
				‖
				
				+
				
				−
				𝑝
				1
				−
				𝜎
			

			

				𝑛
			

			
				−
				𝜏
			

			

				𝑛
			

			
				
				×
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				2
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑧
				‖
				𝑝
				‖
			

			

				𝑛
			

			
				‖
				‖
				−
				‖
				‖
				𝑧
				−
				𝑝
			

			

				𝑛
			

			
				−
				̃
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				−
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			
				+
				2
				𝜇
			

			

				2
			

			
				‖
				‖
				𝑧
			

			

				𝑛
			

			
				−
				̃
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				×
				‖
				‖
				𝐵
				−
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				2
			

			
				𝑝
				‖
				‖
				−
				‖
				‖
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				+
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			
				+
				2
				𝜇
			

			

				1
			

			
				‖
				‖
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				𝐵
				+
				(
				𝑝
				−
				𝑞
				)
			

			

				1
			

			
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				1
			

			
				𝑞
				‖
				‖
				
				≤
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				2
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑧
				‖
				𝑝
				‖
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				+
				2
				𝜇
			

			

				2
			

			
				‖
				‖
				𝑧
			

			

				𝑛
			

			
				−
				̃
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				𝐵
				−
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				2
			

			
				𝑝
				‖
				‖
				+
				2
				𝜇
			

			

				1
			

			
				‖
				‖
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				𝐵
				+
				(
				𝑝
				−
				𝑞
				)
			

			

				1
			

			
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				1
			

			
				𝑞
				‖
				‖
				−
				
				1
				−
				𝜎
			

			

				𝑛
			

			
				−
				𝜏
			

			

				𝑛
			

			
				
				
				‖
				‖
				𝑧
			

			

				𝑛
			

			
				−
				̃
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				−
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			
				+
				‖
				‖
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				+
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			
				
				.
			

		
	

						Thus, utilizing Lemma 14, from (16) and (64) it follows that
							
	
 		
 			
				(
				6
				5
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				=
				‖
				‖
				𝛽
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				
				−
				𝑝
				+
				𝛾
			

			

				𝑛
			

			
				
				𝑦
			

			

				𝑛
			

			
				
				−
				𝑝
				+
				𝛿
			

			

				𝑛
			

			
				
				𝑆
				𝑦
			

			

				𝑛
			

			
				
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				=
				‖
				‖
				‖
				𝛽
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				
				+
				
				−
				𝑝
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				⋅
				1
			

			
				
			
			
				1
				−
				𝛽
			

			

				𝑛
			

			
				×
				
				𝛾
			

			

				𝑛
			

			
				
				𝑦
			

			

				𝑛
			

			
				
				−
				𝑝
				+
				𝛿
			

			

				𝑛
			

			
				
				𝑆
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				‖
				−
				𝑝
				
				
			

			

				2
			

			
				=
				𝛽
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				×
				‖
				‖
				‖
				1
			

			
				
			
			
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				𝛾
			

			

				𝑛
			

			
				
				𝑦
			

			

				𝑛
			

			
				
				−
				𝑝
				+
				𝛿
			

			

				𝑛
			

			
				
				𝑆
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				‖
				−
				𝑝
				
				
			

			

				2
			

			
				−
				𝛽
			

			

				𝑛
			

			
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				×
				‖
				‖
				‖
				1
			

			
				
			
			
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				𝛾
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				
				+
				𝛿
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝑆
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				‖
				
				
			

			

				2
			

			
				≤
				𝛽
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				−
				𝛽
			

			

				𝑛
			

			
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				×
				‖
				‖
				‖
				1
			

			
				
			
			
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				𝛾
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				
				+
				𝛿
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝑆
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				‖
				
				
			

			

				2
			

			
				≤
				𝛽
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				×
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				2
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑧
				‖
				𝑝
				‖
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				+
				2
				𝜇
			

			

				2
			

			
				‖
				‖
				𝑧
			

			

				𝑛
			

			
				−
				̃
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				𝐵
				−
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				2
			

			
				𝑝
				‖
				‖
				+
				2
				𝜇
			

			

				1
			

			
				‖
				‖
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				𝐵
				+
				(
				𝑝
				−
				𝑞
				)
			

			

				1
			

			
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				1
			

			
				𝑞
				‖
				‖
				−
				
				1
				−
				𝜎
			

			

				𝑛
			

			
				−
				𝜏
			

			

				𝑛
			

			
				
				
				‖
				‖
				𝑧
			

			

				𝑛
			

			
				−
				̃
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				−
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			
				+
				‖
				‖
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				+
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			
				
				
				−
				𝛽
			

			

				𝑛
			

			
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				×
				‖
				‖
				‖
				1
			

			
				
			
			
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				𝛾
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				
				+
				𝛿
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝑆
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				‖
				
				
			

			

				2
			

			
				≤
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				2
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑧
				‖
				𝑝
				‖
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				+
				2
				𝜇
			

			

				2
			

			
				‖
				‖
				𝑧
			

			

				𝑛
			

			
				−
				̃
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				𝐵
				−
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				2
			

			
				𝑝
				‖
				‖
				+
				2
				𝜇
			

			

				1
			

			
				‖
				‖
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				𝐵
				+
				(
				𝑝
				−
				𝑞
				)
			

			

				1
			

			
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				1
			

			
				𝑞
				‖
				‖
				−
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				
				1
				−
				𝜎
			

			

				𝑛
			

			
				−
				𝜏
			

			

				𝑛
			

			
				
				
				‖
				‖
				𝑧
			

			

				𝑛
			

			
				−
				̃
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				−
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			
				+
				‖
				‖
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				+
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			
				
				−
				𝛽
			

			

				𝑛
			

			
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				×
				‖
				‖
				‖
				1
			

			
				
			
			
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				𝛾
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				
				+
				𝛿
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝑆
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				‖
				
				
			

			

				2
			

			

				,
			

		
	

						which hence implies that
							
	
 		
 			
				(
				6
				6
				)
			
 		
	

	
		
			
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				
				1
				−
				𝜎
			

			

				𝑛
			

			
				−
				𝜏
			

			

				𝑛
			

			
				
				×
				
				‖
				‖
				𝑧
			

			

				𝑛
			

			
				−
				̃
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				−
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			
				+
				‖
				‖
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				+
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			
				
				+
				𝛽
			

			

				𝑛
			

			
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				‖
				‖
				‖
				1
			

			
				
			
			
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				𝛾
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				
				+
				𝛿
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝑆
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				‖
				
				
			

			

				2
			

			
				≤
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				−
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				2
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑧
				‖
				𝑝
				‖
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				+
				2
				𝜇
			

			

				2
			

			
				‖
				‖
				𝑧
			

			

				𝑛
			

			
				−
				̃
				𝑧
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				𝐵
				−
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				2
			

			
				𝑝
				‖
				‖
				+
				2
				𝜇
			

			

				1
			

			
				‖
				‖
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				𝐵
				+
				(
				𝑝
				−
				𝑞
				)
			

			

				1
			

			
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				1
			

			
				𝑞
				‖
				‖
				.
			

		
	

						Since 
	
		
			
				0
				<
				l
				i
				m
				i
				n
				f
			

			
				𝑛
				→
				∞
			

			

				𝛽
			

			

				𝑛
			

			
				≤
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			

				𝛽
			

			

				𝑛
			

			
				<
				1
			

		
	
, 
	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			
				(
				𝜎
			

			

				𝑛
			

			
				+
				𝜏
			

			

				𝑛
			

			
				)
				<
				1
			

		
	
, 
	
		
			
				{
				𝜆
			

			

				𝑛
			

			
				}
				⊂
				[
				𝑎
				,
				𝑏
				]
			

		
	
, 
	
		
			

				𝛼
			

			

				𝑛
			

			
				→
				0
			

		
	
, 
	
		
			
				‖
				𝐵
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				2
			

			
				𝑝
				‖
				→
				0
			

		
	
, 
	
		
			
				‖
				𝐵
			

			

				1
			

			
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝐵
			

			

				1
			

			
				𝑞
				‖
				→
				0
			

		
	
 and 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑝
				‖
			

		
	
 exists, it follows from the boundedness of 
	
		
			
				{
				𝑢
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝑧
			

			

				𝑛
			

			

				}
			

		
	
 and 
	
		
			
				{
				̃
				𝑧
			

			

				𝑛
			

			

				}
			

		
	
 that 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				𝑧
			

			

				𝑛
			

			
				−
				̃
				𝑧
			

			

				𝑛
			

			
				−
				(
				𝑝
				−
				𝑞
				)
				‖
				=
				0
			

		
	
,
							
	
 		
 			
				(
				6
				7
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				̃
				𝑧
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				+
				(
				𝑝
				−
				𝑞
				)
				=
				0
				,
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				𝛾
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				
				+
				𝛿
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝑆
				𝑦
			

			

				𝑛
			

			
				
				‖
				‖
				=
				0
				.
			

		
	

						Consequently, it immediately follows that
							
	
 		
 			
				(
				6
				8
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				𝑧
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				=
				0
				,
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				𝑢
			

			

				𝑛
			

			

				−
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				‖
				‖
				=
				0
				.
			

		
	

						Also, note that
							
	
 		
 			
				(
				6
				9
				)
			
 		
	

	
		
			
				‖
				‖
				𝑦
			

			

				𝑛
			

			

				−
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				‖
				‖
				≤
				𝜎
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			

				−
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				‖
				‖
				+
				
				1
				−
				𝜎
			

			

				𝑛
			

			
				−
				𝜏
			

			

				𝑛
			

			
				
				‖
				‖
				𝑢
			

			

				𝑛
			

			

				−
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				‖
				‖
				→
				0
				.
			

		
	

						This together with 
	
		
			
				‖
				𝑥
			

			

				𝑛
			

			

				−
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				‖
				→
				0
			

		
	
 implies that 
							
	
 		
 			
				(
				7
				0
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				=
				0
				.
			

		
	

						Since
							
	
 		
 			
				(
				7
				1
				)
			
 		
	

	
		
			
				‖
				‖
				𝛿
			

			

				𝑛
			

			
				
				𝑆
				𝑦
			

			

				𝑛
			

			
				−
				𝑥
			

			

				𝑛
			

			
				
				‖
				‖
				=
				‖
				‖
				𝛾
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				
				+
				𝛿
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝑆
				𝑦
			

			

				𝑛
			

			
				
				+
				𝛾
			

			

				𝑛
			

			
				
				𝑦
			

			

				𝑛
			

			
				−
				𝑥
			

			

				𝑛
			

			
				
				‖
				‖
				≤
				‖
				‖
				𝛾
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				
				+
				𝛿
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝑆
				𝑦
			

			

				𝑛
			

			
				
				‖
				‖
				+
				𝛾
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				,
			

		
	

						we have
							
	
 		
 			
				(
				7
				2
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				𝑆
				𝑦
			

			

				𝑛
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				=
				0
				,
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				𝑆
				𝑦
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				=
				0
				.
			

		
	
Step  4. 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝑦
			

			

				𝑛
			

			
				}
				,
			

		
	
and 
	
		
			
				{
				𝑧
			

			

				𝑛
			

			

				}
			

		
	
 converge weakly to an element 
	
		
			
				
			
			
				𝑥
				∈
				F
				i
				x
				(
				𝑆
				)
				∩
				Ξ
				∩
				Γ
			

		
	
.Indeed, since 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 is bounded, there exists a subsequence 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				𝑖
			

			

				}
			

		
	
 of 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 that converges weakly to some 
	
		
			
				
			
			
				𝑥
				∈
				𝐶
			

		
	
. We obtain that 
	
		
			
				
			
			
				𝑥
				∈
				F
				i
				x
				(
				𝑆
				)
				∩
				Ξ
				∩
				Γ
			

		
	
. Taking into account that 
	
		
			
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				‖
				→
				0
			

		
	
 and 
	
		
			
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑧
			

			

				𝑛
			

			
				‖
				→
				0
			

		
	
 as 
	
		
			
				𝑛
				→
				∞
			

		
	
, we deduce that 
	
		
			

				𝑦
			

			

				𝑛
			

			

				𝑖
			

			

				→
			

			
				
			
			

				𝑥
			

		
	
 weakly and 
	
		
			

				𝑧
			

			

				𝑛
			

			

				𝑖
			

			

				→
			

			
				
			
			

				𝑥
			

		
	
 weakly. First, it is clear from Lemma 15 and 
	
		
			
				‖
				𝑆
				𝑦
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				‖
				→
				0
			

		
	
 that 
	
		
			
				
			
			
				𝑥
				∈
				F
				i
				x
				(
				𝑆
				)
			

		
	
. Now let us show that 
	
		
			
				
			
			
				𝑥
				∈
				Ξ
			

		
	
. Note that
							
	
 		
 			
				(
				7
				3
				)
			
 		
	

	
		
			
				‖
				‖
				𝑧
			

			

				𝑛
			

			
				
				𝑧
				−
				𝐺
			

			

				𝑛
			

			
				
				‖
				‖
				=
				‖
				‖
				𝑧
			

			

				𝑛
			

			
				−
				𝑃
			

			

				𝐶
			

			
				
				𝑃
			

			

				𝐶
			

			
				
				𝑧
			

			

				𝑛
			

			
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				
				−
				𝜇
			

			

				1
			

			

				𝐵
			

			

				1
			

			

				𝑃
			

			

				𝐶
			

			
				
				𝑧
			

			

				𝑛
			

			
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				‖
				‖
				=
				‖
				‖
				𝑧
				
				
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				→
				0
				,
			

		
	

						as 
	
		
			
				𝑛
				→
				∞
			

		
	
 where 
	
		
			
				𝐺
				∶
				𝐶
				→
				𝐶
			

		
	
 is defined as that in Lemma 1. According to Lemma 15, we get 
	
		
			
				
			
			
				𝑥
				∈
				Ξ
			

		
	
. Further, let us show that 
	
		
			
				
			
			
				𝑥
				∈
				Γ
			

		
	
. As a matter of fact, define
							
	
 		
 			
				(
				7
				4
				)
			
 		
	

	
		
			
				
				𝑇
				𝑣
				=
				∇
				𝑓
				(
				𝑣
				)
				+
				𝑁
			

			

				𝐶
			

			
				𝑣
				,
				i
				f
				𝑣
				∈
				𝐶
				,
				∅
				,
				i
				f
				𝑣
				∉
				𝐶
				,
			

		
	

						where 
	
		
			

				𝑁
			

			

				𝐶
			

			
				𝑣
				=
				{
				𝑤
				∈
				ℋ
			

			

				1
			

			
				∶
				⟨
				𝑣
				−
				𝑢
				,
				𝑤
				⟩
				≥
				0
				,
				∀
				𝑢
				∈
				𝐶
				}
			

		
	
. Then, 
	
		
			

				𝑇
			

		
	
 is maximal monotone and 
	
		
			
				0
				∈
				𝑇
				𝑣
			

		
	
 if and only if 
	
		
			
				𝑣
				∈
				V
				I
				(
				𝐶
				,
				∇
				𝑓
				)
			

		
	
; see [40] for more details. Let 
	
		
			
				(
				𝑣
				,
				𝑤
				)
				∈
				G
				p
				h
				(
				𝑇
				)
			

		
	
. Then, we have 
							
	
 		
 			
				(
				7
				5
				)
			
 		
	

	
		
			
				𝑤
				∈
				𝑇
				𝑣
				=
				∇
				𝑓
				(
				𝑣
				)
				+
				𝑁
			

			

				𝐶
			

			
				𝑣
				,
			

		
	

						and hence
							
	
 		
 			
				(
				7
				6
				)
			
 		
	

	
		
			
				𝑤
				−
				∇
				𝑓
				(
				𝑣
				)
				∈
				𝑁
			

			

				𝐶
			

			
				𝑣
				.
			

		
	

						So, we have
							
	
 		
 			
				(
				7
				7
				)
			
 		
	

	
		
			
				⟨
				𝑣
				−
				𝑢
				,
				𝑤
				−
				∇
				𝑓
				(
				𝑣
				)
				⟩
				≥
				0
				,
				∀
				𝑢
				∈
				𝐶
				.
			

		
	

						On the other hand, from 
							
	
 		
 			
				(
				7
				8
				)
			
 		
	

	
		
			

				𝑧
			

			

				𝑛
			

			
				=
				𝑃
			

			

				𝐶
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				
				
				,
				𝑣
				∈
				𝐶
				,
			

		
	

						we have 
							
	
 		
 			
				(
				7
				9
				)
			
 		
	

	
		
			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				
				−
				𝑧
			

			

				𝑛
			

			
				,
				𝑧
			

			

				𝑛
			

			
				
				−
				𝑣
				≥
				0
				,
			

		
	

						and hence, 
							
	
 		
 			
				(
				8
				0
				)
			
 		
	

	
		
			
				⟨
				𝑣
				−
				𝑧
			

			

				𝑛
			

			
				,
				𝑧
			

			

				𝑛
			

			
				−
				𝑥
			

			

				𝑛
			

			
				
			
			

				𝜆
			

			

				𝑛
			

			
				+
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				
				⟩
				≥
				0
				.
			

		
	

						Therefore, from 
							
	
 		
 			
				(
				8
				1
				)
			
 		
	

	
		
			
				𝑤
				−
				∇
				𝑓
				(
				𝑣
				)
				∈
				𝑁
			

			

				𝐶
			

			
				𝑣
				,
				𝑧
			

			

				𝑛
			

			

				𝑖
			

			
				∈
				𝐶
				,
			

		
	

						we have
							
	
 		
 			
				(
				8
				2
				)
			
 		
	

	
		
			
				
				𝑣
				−
				𝑧
			

			

				𝑛
			

			

				𝑖
			

			
				
				≥
				
				,
				𝑤
				𝑣
				−
				𝑧
			

			

				𝑛
			

			

				𝑖
			

			
				
				≥
				
				,
				∇
				𝑓
				(
				𝑣
				)
				𝑣
				−
				𝑧
			

			

				𝑛
			

			

				𝑖
			

			
				
				−
				
				,
				∇
				𝑓
				(
				𝑣
				)
				𝑣
				−
				𝑧
			

			

				𝑛
			

			

				𝑖
			

			
				,
				𝑧
			

			

				𝑛
			

			

				𝑖
			

			
				−
				𝑥
			

			

				𝑛
			

			

				𝑖
			

			
				
			
			

				𝜆
			

			

				𝑛
			

			

				𝑖
			

			
				+
				∇
				𝑓
			

			

				𝛼
			

			
				𝑛
				𝑖
			

			
				
				𝑥
			

			

				𝑛
			

			

				𝑖
			

			
				
				
				=
				
				𝑣
				−
				𝑧
			

			

				𝑛
			

			

				𝑖
			

			
				
				−
				
				,
				∇
				𝑓
				(
				𝑣
				)
				𝑣
				−
				𝑧
			

			

				𝑛
			

			

				𝑖
			

			
				,
				𝑧
			

			

				𝑛
			

			

				𝑖
			

			
				−
				𝑥
			

			

				𝑛
			

			

				𝑖
			

			
				
			
			

				𝜆
			

			

				𝑛
			

			

				𝑖
			

			
				
				𝑥
				+
				∇
				𝑓
			

			

				𝑛
			

			

				𝑖
			

			
				
				
				−
				𝛼
			

			

				𝑛
			

			

				𝑖
			

			
				
				𝑣
				−
				𝑧
			

			

				𝑛
			

			

				𝑖
			

			
				,
				𝑥
			

			

				𝑛
			

			

				𝑖
			

			
				
				=
				
				𝑣
				−
				𝑧
			

			

				𝑛
			

			

				𝑖
			

			
				
				𝑧
				,
				∇
				𝑓
				(
				𝑣
				)
				−
				∇
				𝑓
			

			

				𝑛
			

			

				𝑖
			

			
				+
				
				
				
				𝑣
				−
				𝑧
			

			

				𝑛
			

			

				𝑖
			

			
				
				𝑧
				,
				∇
				𝑓
			

			

				𝑛
			

			

				𝑖
			

			
				
				
				𝑥
				−
				∇
				𝑓
			

			

				𝑛
			

			

				𝑖
			

			
				−
				
				
				
				𝑣
				−
				𝑧
			

			

				𝑛
			

			

				𝑖
			

			
				,
				𝑧
			

			

				𝑛
			

			

				𝑖
			

			
				−
				𝑥
			

			

				𝑛
			

			

				𝑖
			

			
				
			
			

				𝜆
			

			

				𝑛
			

			

				𝑖
			

			
				
				−
				𝛼
			

			

				𝑛
			

			

				𝑖
			

			
				
				𝑣
				−
				𝑧
			

			

				𝑛
			

			

				𝑖
			

			
				,
				𝑥
			

			

				𝑛
			

			

				𝑖
			

			
				
				≥
				
				𝑣
				−
				𝑧
			

			

				𝑛
			

			

				𝑖
			

			
				
				𝑧
				,
				∇
				𝑓
			

			

				𝑛
			

			

				𝑖
			

			
				
				
				𝑥
				−
				∇
				𝑓
			

			

				𝑛
			

			

				𝑖
			

			
				−
				
				
				
				𝑣
				−
				𝑧
			

			

				𝑛
			

			

				𝑖
			

			
				,
				𝑧
			

			

				𝑛
			

			

				𝑖
			

			
				−
				𝑥
			

			

				𝑛
			

			

				𝑖
			

			
				
			
			

				𝜆
			

			

				𝑛
			

			

				𝑖
			

			
				
				−
				𝛼
			

			

				𝑛
			

			

				𝑖
			

			
				
				𝑣
				−
				𝑧
			

			

				𝑛
			

			

				𝑖
			

			
				,
				𝑥
			

			

				𝑛
			

			

				𝑖
			

			
				
				.
			

		
	

						Hence, we get
							
	
 		
 			
				(
				8
				3
				)
			
 		
	

	
		
			
				
				𝑣
				−
			

			
				
			
			
				
				𝑥
				,
				𝑤
				≥
				0
				,
				a
				s
				𝑖
				→
				∞
				.
			

		
	

						Since 
	
		
			

				𝑇
			

		
	
 is maximal monotone, we have 
	
		
			
				
			
			
				𝑥
				∈
				𝑇
			

			
				−
				1
			

			

				0
			

		
	
, and hence, 
	
		
			
				
			
			
				𝑥
				∈
				V
				I
				(
				𝐶
				,
				∇
				𝑓
				)
			

		
	
. Thus, it is clear that 
	
		
			
				
			
			
				𝑥
				∈
				Γ
			

		
	
. Therefore, 
	
		
			
				
			
			
				𝑥
				∈
				F
				i
				x
				(
				𝑆
				)
				∩
				Ξ
				∩
				Γ
			

		
	
.Let 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				𝑗
			

			

				}
			

		
	
 be another subsequence of 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 such that 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				𝑗
			

			

				}
			

		
	
 converges weakly to 
	
		
			
				̂
				𝑥
				∈
				𝐶
			

		
	
. Then, 
	
		
			
				̂
				𝑥
				∈
				F
				i
				x
				(
				𝑆
				)
				∩
				Ξ
				∩
				Γ
			

		
	
. Let us show that 
	
		
			
				
			
			
				𝑥
				=
				̂
				𝑥
			

		
	
. Assume that 
	
		
			
				
			
			
				𝑥
				≠
				̂
				𝑥
			

		
	
. From the Opial condition [41], we have 
							
	
 		
 			
				(
				8
				4
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			

				−
			

			
				
			
			
				𝑥
				‖
				‖
				=
				l
				i
				m
				i
				n
				f
			

			
				𝑖
				→
				∞
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			

				𝑖
			

			

				−
			

			
				
			
			
				𝑥
				‖
				‖
				<
				l
				i
				m
				i
				n
				f
			

			
				𝑖
				→
				∞
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			

				𝑖
			

			
				‖
				‖
				−
				̂
				𝑥
				=
				l
				i
				m
				i
				n
				f
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				̂
				𝑥
				=
				l
				i
				m
				i
				n
				f
			

			
				𝑗
				→
				∞
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			

				𝑗
			

			
				‖
				‖
				−
				̂
				𝑥
				<
				l
				i
				m
				i
				n
				f
			

			
				𝑗
				→
				∞
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			

				𝑗
			

			

				−
			

			
				
			
			
				𝑥
				‖
				‖
				=
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			

				−
			

			
				
			
			
				𝑥
				‖
				‖
				.
			

		
	

						This leads to a contradiction. Consequently, we have 
	
		
			
				
			
			
				𝑥
				=
				̂
				𝑥
			

		
	
. This implies that 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 converges weakly to 
	
		
			
				
			
			
				𝑥
				∈
				F
				i
				x
				(
				𝑆
				)
				∩
				Ξ
				∩
				Γ
			

		
	
. Further, from 
	
		
			
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				‖
				→
				0
			

		
	
 and 
	
		
			
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑧
			

			

				𝑛
			

			
				‖
				→
				0
			

		
	
, it follows that both 
	
		
			
				{
				𝑦
			

			

				𝑛
			

			

				}
			

		
	
 and 
	
		
			
				{
				𝑧
			

			

				𝑛
			

			

				}
			

		
	
 converge weakly to 
	
		
			
				
			
			

				𝑥
			

		
	
. This completes the proof. 
Corollary 21.  Let 
	
		
			

				𝐶
			

		
	
 be a nonempty closed convex subset of a real Hilbert space 
	
		
			

				ℋ
			

			

				1
			

		
	
. Let 
	
		
			
				𝐴
				∈
				𝐵
				(
				ℋ
			

			

				1
			

			
				,
				ℋ
			

			

				2
			

			

				)
			

		
	
 and 
	
		
			

				𝐵
			

			

				𝑖
			

			
				∶
				𝐶
				→
				ℋ
			

			

				1
			

		
	
 be 
	
		
			

				𝛽
			

			

				𝑖
			

		
	
-inverse strongly monotone for 
	
		
			
				𝑖
				=
				1
				,
				2
			

		
	
. Let 
	
		
			
				𝑆
				∶
				𝐶
				→
				𝐶
			

		
	
 be a 
	
		
			

				𝑘
			

		
	
-strictly pseudocontractive mapping such that 
	
		
			
				F
				i
				x
				(
				𝑆
				)
				∩
				Ξ
				∩
				Γ
				≠
				∅
			

		
	
. For given 
	
		
			

				𝑥
			

			

				0
			

			
				∈
				𝐶
			

		
	
 arbitrarily, let the sequences 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			
				}
				,
				{
				𝑦
			

			

				𝑛
			

			
				}
				,
				{
				𝑧
			

			

				𝑛
			

			

				}
			

		
	
 be generated iteratively by
							
	
 		
 			
				(
				8
				5
				)
			
 		
	

	
		
			

				𝑧
			

			

				𝑛
			

			
				=
				𝑃
			

			

				𝐶
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				,
				𝑦
				
				
			

			

				𝑛
			

			
				=
				𝜏
			

			

				𝑛
			

			

				𝑃
			

			

				𝐶
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑧
			

			

				𝑛
			

			
				+
				
				
				
				1
				−
				𝜏
			

			

				𝑛
			

			
				
				𝑃
			

			

				𝐶
			

			
				
				𝑃
			

			

				𝐶
			

			
				
				𝑧
			

			

				𝑛
			

			
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				
				−
				𝜇
			

			

				1
			

			

				𝐵
			

			

				1
			

			

				𝑃
			

			

				𝐶
			

			
				
				𝑧
			

			

				𝑛
			

			
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			

				𝑧
			

			

				𝑛
			

			
				,
				𝑥
				
				
			

			
				𝑛
				+
				1
			

			
				=
				𝛽
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				+
				𝛾
			

			

				𝑛
			

			

				𝑦
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				𝑆
				𝑦
			

			

				𝑛
			

			
				,
				∀
				𝑛
				≥
				0
				,
			

		
	

						where 
	
		
			

				𝜇
			

			

				𝑖
			

			
				∈
				(
				0
				,
				2
				𝛽
			

			

				𝑖
			

			

				)
			

		
	
 for 
	
		
			
				𝑖
				=
				1
				,
				2
			

		
	
, 
	
		
			
				{
				𝛼
			

			

				𝑛
			

			
				}
				⊂
				(
				0
				,
				∞
				)
			

		
	
, 
	
		
			
				{
				𝜆
			

			

				𝑛
			

			
				}
				⊂
				(
				0
				,
				1
				/
				‖
				𝐴
				‖
			

			

				2
			

			

				)
			

		
	
 and 
	
		
			
				{
				𝜏
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝛽
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝛾
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝛿
			

			

				𝑛
			

			
				}
				⊂
				[
				0
				,
				1
				]
			

		
	
 such that (i)
	
		
			

				∑
			

			
				∞
				𝑛
				=
				0
			

			

				𝛼
			

			

				𝑛
			

			
				<
				∞
			

		
	
;(ii)
	
		
			

				𝛽
			

			

				𝑛
			

			
				+
				𝛾
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				=
				1
			

		
	
 and 
	
		
			
				(
				𝛾
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				)
				𝑘
				≤
				𝛾
			

			

				𝑛
			

		
	
 for all 
	
		
			
				𝑛
				≥
				0
			

		
	
;(iii)
	
		
			
				0
				<
				l
				i
				m
				i
				n
				f
			

			
				𝑛
				→
				∞
			

			

				𝜏
			

			

				𝑛
			

			
				≤
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			

				𝜏
			

			

				𝑛
			

			
				<
				1
			

		
	
;(iv)
	
		
			
				0
				<
				l
				i
				m
				i
				n
				f
			

			
				𝑛
				→
				∞
			

			

				𝛽
			

			

				𝑛
			

			
				≤
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			

				𝛽
			

			

				𝑛
			

			
				<
				1
			

		
	
 and 
	
		
			
				l
				i
				m
				i
				n
				f
			

			
				𝑛
				→
				∞
			

			

				𝛿
			

			

				𝑛
			

			
				>
				0
			

		
	
;(v)
	
		
			
				0
				<
				l
				i
				m
				i
				n
				f
			

			
				𝑛
				→
				∞
			

			

				𝜆
			

			

				𝑛
			

			
				≤
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			

				𝜆
			

			

				𝑛
			

			
				<
				1
				/
				‖
				𝐴
				‖
			

			

				2
			

		
	
.Then all the sequences 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝑦
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝑧
			

			

				𝑛
			

			

				}
			

		
	
 converge weakly to an element 
	
		
			
				
			
			
				𝑥
				∈
				F
				i
				x
				(
				𝑆
				)
				∩
				Ξ
				∩
				Γ
			

		
	
. Furthermore, 
	
		
			

				(
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				)
			

		
	
 is a solution of the GSVI (3), where 
	
		
			
				
			
			
				𝑦
				=
				𝑃
			

			

				𝐶
			

			

				(
			

			
				
			
			
				𝑥
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				
			
			
				𝑥
				)
			

		
	
.
Proof. In Theorem 20, put 
	
		
			

				𝜎
			

			

				𝑛
			

			
				=
				0
			

		
	
 for all 
	
		
			
				𝑛
				≥
				0
			

		
	
. Then, in this case, Theorem 20 reduces to Corollary 21.
Next, utilizing Corollary 21, we give the following result.
Corollary 22.  Let 
	
		
			

				𝐶
			

		
	
 be a nonempty closed convex subset of a real Hilbert space 
	
		
			

				ℋ
			

			

				1
			

		
	
. Let 
	
		
			
				𝐴
				∈
				𝐵
				(
				ℋ
			

			

				1
			

			
				,
				ℋ
			

			

				2
			

			

				)
			

		
	
 and 
	
		
			
				𝑆
				∶
				𝐶
				→
				𝐶
			

		
	
 be a nonexpansive mapping such that 
	
		
			
				F
				i
				x
				(
				𝑆
				)
				∩
				Γ
				≠
				∅
			

		
	
. For given 
	
		
			

				𝑥
			

			

				0
			

			
				∈
				𝐶
			

		
	
 arbitrarily, let the sequences 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝑦
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝑧
			

			

				𝑛
			

			

				}
			

		
	
 be generated iteratively by
							
	
 		
 			
				(
				8
				6
				)
			
 		
	

	
		
			

				𝑧
			

			

				𝑛
			

			
				=
				𝑃
			

			

				𝐶
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				,
				𝑦
				
				
			

			

				𝑛
			

			
				=
				
				1
				−
				𝜏
			

			

				𝑛
			

			
				
				𝑧
			

			

				𝑛
			

			
				+
				𝜏
			

			

				𝑛
			

			

				𝑃
			

			

				𝐶
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑧
			

			

				𝑛
			

			
				,
				𝑥
				
				
			

			
				𝑛
				+
				1
			

			
				=
				𝛽
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				+
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				𝑆
				𝑦
			

			

				𝑛
			

			
				,
				∀
				𝑛
				≥
				0
				,
			

		
	

						where 
	
		
			
				{
				𝛼
			

			

				𝑛
			

			
				}
				⊂
				(
				0
				,
				∞
				)
			

		
	
, 
	
		
			
				{
				𝜆
			

			

				𝑛
			

			
				}
				⊂
				(
				0
				,
				1
				/
				‖
				𝐴
				‖
			

			

				2
			

			

				)
			

		
	
 and 
	
		
			
				{
				𝜏
			

			

				𝑛
			

			
				}
				,
				{
				𝛽
			

			

				𝑛
			

			
				}
				⊂
				[
				0
				,
				1
				]
			

		
	
 such that (i)
	
		
			

				∑
			

			
				∞
				𝑛
				=
				0
			

			

				𝛼
			

			

				𝑛
			

			
				<
				∞
			

		
	
;(ii)
	
		
			
				0
				<
				l
				i
				m
				i
				n
				f
			

			
				𝑛
				→
				∞
			

			

				𝜏
			

			

				𝑛
			

			
				≤
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			

				𝜏
			

			

				𝑛
			

			
				<
				1
			

		
	
;(iii)
	
		
			
				0
				<
				l
				i
				m
				i
				n
				f
			

			
				𝑛
				→
				∞
			

			

				𝛽
			

			

				𝑛
			

			
				≤
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			

				𝛽
			

			

				𝑛
			

			
				<
				1
			

		
	
;(iv)
	
		
			
				0
				<
				l
				i
				m
				i
				n
				f
			

			
				𝑛
				→
				∞
			

			

				𝜆
			

			

				𝑛
			

			
				≤
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			

				𝜆
			

			

				𝑛
			

			
				<
				1
				/
				‖
				𝐴
				‖
			

			

				2
			

		
	
.Then all the sequences 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝑦
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝑧
			

			

				𝑛
			

			

				}
			

		
	
 converge weakly to an element 
	
		
			
				
			
			
				𝑥
				∈
				F
				i
				x
				(
				𝑆
				)
				∩
				Γ
			

		
	
. 
Proof. In Corollary 21, put 
	
		
			

				𝐵
			

			

				1
			

			
				=
				𝐵
			

			

				2
			

			
				=
				0
			

		
	
 and 
	
		
			

				𝛾
			

			

				𝑛
			

			
				=
				0
			

		
	
. Then, 
	
		
			
				Ξ
				=
				𝐶
			

		
	
, 
	
		
			

				𝛽
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				=
				1
			

		
	
 for all 
	
		
			
				𝑛
				≥
				0
			

		
	
, and the iterative scheme (85) is equivalent to
							
	
 		
 			
				(
				8
				7
				)
			
 		
	

	
		
			

				𝑧
			

			

				𝑛
			

			
				=
				𝑃
			

			

				𝐶
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				,
				𝑦
				
				
			

			

				𝑛
			

			
				=
				𝜏
			

			

				𝑛
			

			

				𝑃
			

			

				𝐶
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑧
			

			

				𝑛
			

			
				+
				
				
				
				1
				−
				𝜏
			

			

				𝑛
			

			
				
				𝑧
			

			

				𝑛
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				=
				𝛽
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				𝑆
				𝑦
			

			

				𝑛
			

			
				,
				∀
				𝑛
				≥
				0
				.
			

		
	

						This is equivalent to (86). Since 
	
		
			

				𝑆
			

		
	
 is a nonexpansive mapping, 
	
		
			

				𝑆
			

		
	
 must be a 
	
		
			

				𝑘
			

		
	
-strictly pseudocontractive mapping with 
	
		
			
				𝑘
				=
				0
			

		
	
. In this case, it is easy to see that all the conditions (i)–(v) in Corollary 21 are satisfied. Therefore, in terms of Corollary 21, we obtain the desired result.
 Now, we are in a position to prove the weak convergence of the sequences generated by the Mann-type extragradient iterative algorithm (17) with regularization.
Theorem 23.  Let 
	
		
			

				𝐶
			

		
	
 be a nonempty closed convex subset of a real Hilbert space 
	
		
			

				ℋ
			

			

				1
			

		
	
. Let 
	
		
			
				𝐴
				∈
				𝐵
				(
				ℋ
			

			

				1
			

			
				,
				ℋ
			

			

				2
			

			

				)
			

		
	
 and 
	
		
			

				𝐵
			

			

				𝑖
			

			
				∶
				𝐶
				→
				ℋ
			

			

				1
			

		
	
 be 
	
		
			

				𝛽
			

			

				𝑖
			

		
	
-inverse strongly monotone for 
	
		
			
				𝑖
				=
				1
				,
				2
			

		
	
. Let 
	
		
			
				𝑆
				∶
				𝐶
				→
				𝐶
			

		
	
 be a 
	
		
			

				𝑘
			

		
	
-strictly pseudocontractive mapping such that 
	
		
			
				F
				i
				x
				(
				𝑆
				)
				∩
				Ξ
				∩
				Γ
				≠
				∅
			

		
	
. For given 
	
		
			

				𝑥
			

			

				0
			

			
				∈
				𝐶
			

		
	
 arbitrarily, let 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			
				}
				,
				{
				𝑢
			

			

				𝑛
			

			
				}
				,
				{
				̃
				𝑢
			

			

				𝑛
			

			

				}
			

		
	
 be the sequences generated by the Mann-type extragradient iterative algorithm (17) with regularization, where 
	
		
			

				𝜇
			

			

				𝑖
			

			
				∈
				(
				0
				,
				2
				𝛽
			

			

				𝑖
			

			

				)
			

		
	
 for 
	
		
			
				𝑖
				=
				1
				,
				2
			

		
	
, 
	
		
			
				{
				𝛼
			

			

				𝑛
			

			
				}
				⊂
				(
				0
				,
				∞
				)
			

		
	
, 
	
		
			
				{
				𝜆
			

			

				𝑛
			

			
				}
				⊂
				(
				0
				,
				1
				/
				‖
				𝐴
				‖
			

			

				2
			

			

				)
			

		
	
 and 
	
		
			
				{
				𝜎
			

			

				𝑛
			

			
				}
				,
				{
				𝛽
			

			

				𝑛
			

			
				}
				,
				{
				𝛾
			

			

				𝑛
			

			
				}
				,
				{
				𝛿
			

			

				𝑛
			

			
				}
				⊂
				[
				0
				,
				1
				]
			

		
	
 such that (i)
	
		
			

				∑
			

			
				∞
				𝑛
				=
				0
			

			

				𝛼
			

			

				𝑛
			

			
				<
				∞
			

		
	
;(ii)
	
		
			

				𝛽
			

			

				𝑛
			

			
				+
				𝛾
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				=
				1
			

		
	
 and 
	
		
			
				(
				𝛾
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				)
				𝑘
				≤
				𝛾
			

			

				𝑛
			

		
	
 for all 
	
		
			
				𝑛
				≥
				0
			

		
	
;(iii)
	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			

				𝜎
			

			

				𝑛
			

			
				<
				1
			

		
	
;(iv)
	
		
			
				0
				<
				l
				i
				m
				i
				n
				f
			

			
				𝑛
				→
				∞
			

			

				𝛽
			

			

				𝑛
			

			
				≤
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			

				𝛽
			

			

				𝑛
			

			
				<
				1
			

		
	
 and 
	
		
			
				l
				i
				m
				i
				n
				f
			

			
				𝑛
				→
				∞
			

			

				𝛿
			

			

				𝑛
			

			
				>
				0
			

		
	
;(v)
	
		
			
				0
				<
				l
				i
				m
				i
				n
				f
			

			
				𝑛
				→
				∞
			

			

				𝜆
			

			

				𝑛
			

			
				≤
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			

				𝜆
			

			

				𝑛
			

			
				<
				1
				/
				‖
				𝐴
				‖
			

			

				2
			

		
	
.Then the sequences 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝑢
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				̃
				𝑢
			

			

				𝑛
			

			

				}
			

		
	
 converge weakly to an element 
	
		
			
				
			
			
				𝑥
				∈
				F
				i
				x
				(
				𝑆
				)
				∩
				Ξ
				∩
				Γ
			

		
	
. Furthermore, 
	
		
			

				(
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				)
			

		
	
 is a solution of the GSVI (3), where 
	
		
			
				
			
			
				𝑦
				=
				𝑃
			

			

				𝐶
			

			

				(
			

			
				
			
			
				𝑥
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				
			
			
				𝑥
				)
			

		
	
.
Proof. First, taking into account 
	
		
			
				0
				<
				l
				i
				m
				i
				n
				f
			

			
				𝑛
				→
				∞
			

			

				𝜆
			

			

				𝑛
			

			
				≤
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			

				𝜆
			

			

				𝑛
			

			
				<
				1
				/
				‖
				𝐴
				‖
			

			

				2
			

		
	
, without loss of generality, we may assume that 
	
		
			
				{
				𝜆
			

			

				𝑛
			

			
				}
				⊂
				[
				𝑎
				,
				𝑏
				]
			

		
	
 for some 
	
		
			
				𝑎
				,
				𝑏
				∈
				(
				0
				,
				1
				/
				‖
				𝐴
				‖
			

			

				2
			

			

				)
			

		
	
. Repeating the same argument as that in the proof of Theorem 20, we can show that 
	
		
			

				𝑃
			

			

				𝐶
			

			
				(
				𝐼
				−
				𝜆
				∇
				𝑓
			

			

				𝛼
			

			

				)
			

		
	
 is 
	
		
			

				𝜁
			

		
	
-averaged for each 
	
		
			
				𝜆
				∈
				(
				0
				,
				1
				/
				(
				𝛼
				+
				‖
				𝐴
				‖
			

			

				2
			

			
				)
				)
			

		
	
, where 
	
		
			
				𝜁
				=
				(
				2
				+
				𝜆
				(
				𝛼
				+
				‖
				𝐴
				‖
			

			

				2
			

			
				)
				)
				/
				4
			

		
	
. Further, repeating the same argument as that in the proof of Theorem 20, we can also show that for each integer 
	
		
			
				𝑛
				≥
				0
			

		
	
, 
	
		
			

				𝑃
			

			

				𝐶
			

			
				(
				𝐼
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			

				)
			

		
	
 is 
	
		
			

				𝜁
			

			

				𝑛
			

		
	
-averaged with 
	
		
			

				𝜁
			

			

				𝑛
			

			
				=
				(
				2
				+
				𝜆
			

			

				𝑛
			

			
				(
				𝛼
			

			

				𝑛
			

			
				+
				‖
				𝐴
				‖
			

			

				2
			

			
				)
				)
				/
				4
				∈
				(
				0
				,
				1
				)
			

		
	
.Next we divide the remainder of the proof into several steps.Step 1.  
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 is bounded.Indeed, take 
	
		
			
				𝑝
				∈
				F
				i
				x
				(
				𝑆
				)
				∩
				Ξ
				∩
				Γ
			

		
	
 arbitrarily. Then 
	
		
			
				𝑆
				𝑝
				=
				𝑝
			

		
	
, 
	
		
			

				𝑃
			

			

				𝐶
			

			
				(
				𝐼
				−
				𝜆
				∇
				𝑓
				)
				𝑝
				=
				𝑝
			

		
	
 for 
	
		
			
				𝜆
				∈
				(
				0
				,
				2
				/
				‖
				𝐴
				‖
			

			

				2
			

			

				)
			

		
	
, and 
							
	
 		
 			
				(
				8
				8
				)
			
 		
	

	
		
			
				𝑝
				=
				𝑃
			

			

				𝐶
			

			
				
				𝑃
			

			

				𝐶
			

			
				
				𝑝
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				𝑝
				
				−
				𝜇
			

			

				1
			

			

				𝐵
			

			

				1
			

			

				𝑃
			

			

				𝐶
			

			
				
				𝑝
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				𝑝
				.
				
				
			

		
	

						For simplicity, we write
							
	
 		
 			
				(
				8
				9
				)
			
 		
	

	
		
			
				𝑞
				=
				𝑃
			

			

				𝐶
			

			
				
				𝑝
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				𝑝
				
				,
				̃
				𝑥
			

			

				𝑛
			

			
				=
				𝑃
			

			

				𝐶
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			

				𝑥
			

			

				𝑛
			

			
				
				,
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				=
				𝑃
			

			

				𝐶
			

			
				
				𝑢
			

			

				𝑛
			

			
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				̃
				𝑢
			

			

				𝑛
			

			
				,
				
				
			

		
	

						for each 
	
		
			
				𝑛
				≥
				0
			

		
	
. Then 
	
		
			

				𝑦
			

			

				𝑛
			

			
				=
				𝜎
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				+
				(
				1
				−
				𝜎
			

			

				𝑛
			

			

				)
			

			
				
			
			

				𝑢
			

			

				𝑛
			

		
	
 for each 
	
		
			
				𝑛
				≥
				0
			

		
	
. Utilizing the arguments similar to those of (46) and (47) in the proof of Theorem 20, from (17) we can obtain
							
	
 		
 			
				(
				9
				0
				)
			
 			
				(
				9
				1
				)
			
 		
	

	
		
			
				‖
				‖
				̃
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				≤
				‖
				‖
				𝑢
				−
				𝑝
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				+
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				‖
				‖
				‖
				𝑝
				‖
				,
				̃
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				≤
				‖
				‖
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				2
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				‖
				‖
				‖
				𝑝
				‖
				̃
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				.
				−
				𝑝
			

		
	

						Since 
	
		
			

				𝐵
			

			

				𝑖
			

			
				∶
				𝐶
				→
				ℋ
			

			

				1
			

		
	
 is 
	
		
			

				𝛽
			

			

				𝑖
			

		
	
-inverse strongly monotone and 
	
		
			
				0
				<
				𝜇
			

			

				𝑖
			

			
				<
				2
				𝛽
			

			

				𝑖
			

		
	
 for 
	
		
			
				𝑖
				=
				1
				,
				2
			

		
	
, utilizing the argument similar to that of (49) in the proof of Theorem 20, we can obtain that for all 
	
		
			
				𝑛
				≥
				0
			

		
	
,
							
	
 		
 			
				(
				9
				2
				)
			
 		
	

	
		
			
				‖
				‖
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				≤
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				−
				𝜇
			

			

				2
			

			
				
				2
				𝛽
			

			

				2
			

			
				−
				𝜇
			

			

				2
			

			
				
				‖
				‖
				𝐵
			

			

				2
			

			

				𝑥
			

			

				𝑛
			

			
				−
				𝐵
			

			

				2
			

			
				𝑝
				‖
				‖
			

			

				2
			

			
				−
				𝜇
			

			

				1
			

			
				
				2
				𝛽
			

			

				1
			

			
				−
				𝜇
			

			

				1
			

			
				
				‖
				‖
				𝐵
			

			

				1
			

			
				̃
				𝑥
			

			

				𝑛
			

			
				−
				𝐵
			

			

				1
			

			
				𝑞
				‖
				‖
			

			

				2
			

			
				≤
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			

				.
			

		
	

						Utilizing the argument similar to that of (52) in the proof of Theorem 20, from (90) we can obtain
							
	
 		
 			
				(
				9
				3
				)
			
 		
	

	
		
			
				‖
				‖
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				≤
				‖
				‖
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				2
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				‖
				‖
				‖
				𝑝
				‖
				̃
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				+
				
				𝜆
				−
				𝑝
			

			
				2
				𝑛
			

			
				
				𝛼
			

			

				𝑛
			

			
				+
				‖
				𝐴
				‖
			

			

				2
			

			

				
			

			

				2
			

			
				
				‖
				‖
				𝑢
				−
				1
			

			

				𝑛
			

			
				−
				̃
				𝑢
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			
				≤
				
				‖
				‖
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				+
				2
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				
				‖
				𝑝
				‖
			

			

				2
			

			

				.
			

		
	

						Hence, it follows from (92) and (93) that
							
	
 		
 			
				(
				9
				4
				)
			
 		
	

	
		
			
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				=
				‖
				‖
				𝜎
				−
				𝑝
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				
				+
				
				−
				𝑝
				1
				−
				𝜎
			

			

				𝑛
			

			
				
				
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				
				‖
				‖
				−
				𝑝
				≤
				𝜎
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				
				−
				𝑝
				1
				−
				𝜎
			

			

				𝑛
			

			
				
				‖
				‖
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				≤
				𝜎
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				
				−
				𝑝
				1
				−
				𝜎
			

			

				𝑛
			

			
				
				×
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				+
				2
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				
				≤
				‖
				‖
				𝑥
				‖
				𝑝
				‖
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				+
				2
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				‖
				𝑝
				‖
				.
			

		
	

						Since 
	
		
			
				(
				𝛾
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				)
				𝑘
				≤
				𝛾
			

			

				𝑛
			

		
	
 for all 
	
		
			
				𝑛
				≥
				0
			

		
	
, by Lemma 18 we can readily see from (94) that
							
	
 		
 			
				(
				9
				5
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				‖
				‖
				−
				𝑝
				≤
				𝛽
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				
				𝛾
				−
				𝑝
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				≤
				‖
				‖
				𝑥
				−
				𝑝
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				+
				2
				𝑏
				‖
				𝑝
				‖
				𝛼
			

			

				𝑛
			

			

				.
			

		
	

						Since 
	
		
			

				∑
			

			
				∞
				𝑛
				=
				0
			

			

				𝛼
			

			

				𝑛
			

			
				<
				∞
			

		
	
, it is clear that 
	
		
			

				∑
			

			
				∞
				𝑛
				=
				0
			

			
				2
				𝑏
				‖
				𝑝
				‖
				𝛼
			

			

				𝑛
			

			
				<
				∞
			

		
	
. Thus, by Corollary 17 we conclude that 
							
	
 		
 			
				(
				9
				6
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				e
				x
				i
				s
				t
				s
				f
				o
				r
				e
				a
				c
				h
				𝑝
				∈
				F
				i
				x
				(
				𝑆
				)
				∩
				Ξ
				∩
				Γ
				,
			

		
	

						and the sequence 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 is bounded. Since 
	
		
			

				𝑃
			

			

				𝐶
			

		
	
, 
	
		
			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

		
	
, 
	
		
			

				𝐵
			

			

				1
			

		
	
 and 
	
		
			

				𝐵
			

			

				2
			

		
	
 are Lipschitz continuous, it is easy to see that 
	
		
			
				{
				𝑢
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				̃
				𝑢
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			

				{
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝑦
			

			

				𝑛
			

			

				}
			

		
	
 and 
	
		
			
				{
				̃
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 are bounded, where 
	
		
			
				̃
				𝑥
			

			

				𝑛
			

			
				=
				𝑃
			

			

				𝐶
			

			
				(
				𝑥
			

			

				𝑛
			

			
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			

				𝑥
			

			

				𝑛
			

			

				)
			

		
	
 for all 
	
		
			
				𝑛
				≥
				0
			

		
	
.Step 2. Consider 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				𝐵
			

			

				2
			

			

				𝑥
			

			

				𝑛
			

			
				−
				𝐵
			

			

				2
			

			
				𝑝
				‖
				=
				0
			

		
	
, 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				𝐵
			

			

				1
			

			
				̃
				𝑥
			

			

				𝑛
			

			
				−
				𝐵
			

			

				1
			

			
				𝑞
				‖
				=
				0
			

		
	
 and 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				𝑢
			

			

				𝑛
			

			
				−
				̃
				𝑢
			

			

				𝑛
			

			
				‖
				=
				0
			

		
	
, where 
	
		
			
				𝑞
				=
				𝑃
			

			

				𝐶
			

			
				(
				𝑝
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				𝑝
				)
			

		
	
.Indeed, utilizing Lemma 18 and the convexity of 
	
		
			
				‖
				⋅
				‖
			

			

				2
			

		
	
, we obtain from (17), (92), and (93) that
							
	
 		
 			
				(
				9
				7
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				≤
				𝛽
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				
				𝛾
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				≤
				𝛽
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				
				𝛾
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				
				×
				
				𝜎
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				
				1
				−
				𝜎
			

			

				𝑛
			

			
				
				‖
				‖
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				
				≤
				𝛽
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				
				𝛾
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				
				×
				
				𝜎
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				
				1
				−
				𝜎
			

			

				𝑛
			

			
				
				×
				
				‖
				‖
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				2
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				‖
				‖
				‖
				𝑝
				‖
				̃
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				+
				
				𝜆
				−
				𝑝
			

			
				2
				𝑛
			

			
				
				𝛼
			

			

				𝑛
			

			
				+
				‖
				𝐴
				‖
			

			

				2
			

			

				
			

			

				2
			

			
				
				‖
				‖
				𝑢
				−
				1
			

			

				𝑛
			

			
				−
				̃
				𝑢
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			
				
				≤
				𝛽
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				
				𝛾
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				
				×
				
				𝜎
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				
				1
				−
				𝜎
			

			

				𝑛
			

			
				
				×
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				−
				𝜇
			

			

				2
			

			
				
				2
				𝛽
			

			

				2
			

			
				−
				𝜇
			

			

				2
			

			
				
				‖
				‖
				𝐵
			

			

				2
			

			

				𝑥
			

			

				𝑛
			

			
				−
				𝐵
			

			

				2
			

			
				𝑝
				‖
				‖
			

			

				2
			

			
				−
				𝜇
			

			

				1
			

			
				
				2
				𝛽
			

			

				1
			

			
				−
				𝜇
			

			

				1
			

			
				
				‖
				‖
				𝐵
			

			

				1
			

			
				̃
				𝑥
			

			

				𝑛
			

			
				−
				𝐵
			

			

				1
			

			
				𝑞
				‖
				‖
			

			

				2
			

			
				+
				2
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				‖
				‖
				‖
				𝑝
				‖
				̃
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				+
				
				𝜆
				−
				𝑝
			

			
				2
				𝑛
			

			
				
				𝛼
			

			

				𝑛
			

			
				+
				‖
				𝐴
				‖
			

			

				2
			

			

				
			

			

				2
			

			
				
				‖
				‖
				𝑢
				−
				1
			

			

				𝑛
			

			
				−
				̃
				𝑢
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			
				≤
				‖
				‖
				𝑥
				
				
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				2
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				‖
				‖
				‖
				𝑝
				‖
				̃
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				−
				
				𝛾
				−
				𝑝
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				
				
				1
				−
				𝜎
			

			

				𝑛
			

			
				
				×
				
				𝜇
			

			

				2
			

			
				
				2
				𝛽
			

			

				2
			

			
				−
				𝜇
			

			

				2
			

			
				
				‖
				‖
				𝐵
			

			

				2
			

			

				𝑥
			

			

				𝑛
			

			
				−
				𝐵
			

			

				2
			

			
				𝑝
				‖
				‖
			

			

				2
			

			
				+
				𝜇
			

			

				1
			

			
				
				2
				𝛽
			

			

				1
			

			
				−
				𝜇
			

			

				1
			

			
				
				‖
				‖
				𝐵
			

			

				1
			

			
				̃
				𝑥
			

			

				𝑛
			

			
				−
				𝐵
			

			

				1
			

			
				𝑞
				‖
				‖
			

			

				2
			

			
				+
				
				1
				−
				𝜆
			

			
				2
				𝑛
			

			
				
				𝛼
			

			

				𝑛
			

			
				+
				‖
				𝐴
				‖
			

			

				2
			

			

				
			

			

				2
			

			
				
				‖
				‖
				𝑢
			

			

				𝑛
			

			
				−
				̃
				𝑢
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			
				
				.
			

		
	

						Therefore,
							
	
 		
 			
				(
				9
				8
				)
			
 		
	

	
		
			
				
				𝛾
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				
				
				1
				−
				𝜎
			

			

				𝑛
			

			
				
				
				𝜇
			

			

				2
			

			
				
				2
				𝛽
			

			

				2
			

			
				−
				𝜇
			

			

				2
			

			
				
				‖
				‖
				𝐵
			

			

				2
			

			

				𝑥
			

			

				𝑛
			

			
				−
				𝐵
			

			

				2
			

			
				𝑝
				‖
				‖
			

			

				2
			

			
				+
				𝜇
			

			

				1
			

			
				
				2
				𝛽
			

			

				1
			

			
				−
				𝜇
			

			

				1
			

			
				
				‖
				‖
				𝐵
			

			

				1
			

			
				̃
				𝑥
			

			

				𝑛
			

			
				−
				𝐵
			

			

				1
			

			
				𝑞
				‖
				‖
			

			

				2
			

			
				+
				
				1
				−
				𝜆
			

			
				2
				𝑛
			

			
				
				𝛼
			

			

				𝑛
			

			
				+
				‖
				𝐴
				‖
			

			

				2
			

			

				
			

			

				2
			

			
				
				‖
				‖
				𝑢
			

			

				𝑛
			

			
				−
				̃
				𝑢
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			
				
				≤
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				−
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				2
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				‖
				‖
				‖
				𝑝
				‖
				̃
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				.
				−
				𝑝
			

		
	

						Since 
	
		
			

				𝛼
			

			

				𝑛
			

			
				→
				0
			

		
	
, 
	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			

				𝜎
			

			

				𝑛
			

			
				<
				1
			

		
	
, 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑝
				‖
			

		
	
 exists, 
	
		
			
				l
				i
				m
				i
				n
				f
			

			
				𝑛
				→
				∞
			

			
				(
				𝛾
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				)
				>
				0
			

		
	
 and 
	
		
			
				{
				𝜆
			

			

				𝑛
			

			
				}
				⊂
				[
				𝑎
				,
				𝑏
				]
			

		
	
 for some 
	
		
			
				𝑎
				,
				𝑏
				∈
				(
				0
				,
				1
				/
				‖
				𝐴
				‖
			

			

				2
			

			

				)
			

		
	
, it follows from the boundedness of 
	
		
			
				{
				̃
				𝑢
			

			

				𝑛
			

			

				}
			

		
	
 that
							
	
 		
 			
				(
				9
				9
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				𝑢
			

			

				𝑛
			

			
				−
				̃
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				=
				0
				,
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				𝐵
			

			

				1
			

			
				̃
				𝑥
			

			

				𝑛
			

			
				−
				𝐵
			

			

				1
			

			
				𝑞
				‖
				‖
				=
				0
				,
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				𝐵
			

			

				2
			

			

				𝑥
			

			

				𝑛
			

			
				−
				𝐵
			

			

				2
			

			
				𝑝
				‖
				‖
				=
				0
				.
			

		
	
Step 3. Consider 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				𝑆
				𝑦
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				‖
				=
				0
			

		
	
.Indeed, utilizing the Lipschitz continuity of 
	
		
			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

		
	
, we have
							
	
 		
 			
				(
				1
				0
				0
				)
			
 		
	

	
		
			
				‖
				‖
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				−
				̃
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				=
				‖
				‖
				𝑃
			

			

				𝐶
			

			
				
				𝑢
			

			

				𝑛
			

			
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				̃
				𝑢
			

			

				𝑛
			

			
				
				
				−
				𝑃
			

			

				𝐶
			

			
				
				𝑢
			

			

				𝑛
			

			
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				
				
				≤
				𝜆
			

			

				𝑛
			

			
				
				𝛼
			

			

				𝑛
			

			
				+
				‖
				𝐴
				‖
			

			

				2
			

			
				
				‖
				‖
				̃
				𝑢
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				.
			

		
	

						This together with 
	
		
			
				‖
				̃
				𝑢
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				‖
				→
				0
			

		
	
 implies that 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				‖
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				−
				̃
				𝑢
			

			

				𝑛
			

			
				‖
				=
				0
			

		
	
 and hence 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				‖
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				‖
				=
				0
			

		
	
. Utilizing the arguments similar to those of (61) and (63) in the proof of Theorem 20, we get
							
	
 		
 			
				(
				1
				0
				1
				)
			
 		
	

	
		
			
				‖
				‖
				̃
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑞
			

			

				2
			

			
				≤
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				−
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				̃
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			
				+
				2
				𝜇
			

			

				2
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				̃
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				𝐵
				−
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			

				𝑥
			

			

				𝑛
			

			
				−
				𝐵
			

			

				2
			

			
				𝑝
				‖
				‖
				,
				‖
				‖
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				≤
				‖
				‖
				̃
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑞
			

			

				2
			

			
				−
				‖
				‖
				̃
				𝑥
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				+
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			
				+
				2
				𝜇
			

			

				1
			

			
				‖
				‖
				̃
				𝑥
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				𝐵
				+
				(
				𝑝
				−
				𝑞
				)
			

			

				1
			

			
				̃
				𝑥
			

			

				𝑛
			

			
				−
				𝐵
			

			

				1
			

			
				𝑞
				‖
				‖
				.
			

		
	

						Utilizing (91) and (101), we have
							
	
 		
 			
				(
				1
				0
				2
				)
			
 		
	

	
		
			
				‖
				‖
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				=
				‖
				‖
				̃
				𝑢
			

			

				𝑛
			

			
				−
				𝑝
				+
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				−
				̃
				𝑢
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			
				≤
				‖
				‖
				̃
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				
				+
				2
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				−
				̃
				𝑢
			

			

				𝑛
			

			

				,
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				
				≤
				‖
				‖
				−
				𝑝
				̃
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				‖
				‖
				+
				2
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				−
				̃
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				‖
				‖
				≤
				‖
				‖
				𝑢
				−
				𝑝
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				2
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				‖
				‖
				‖
				𝑝
				‖
				̃
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				−
				𝑝
				+
				2
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				−
				̃
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				‖
				‖
				≤
				‖
				‖
				−
				𝑝
				̃
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑞
			

			

				2
			

			
				−
				‖
				‖
				̃
				𝑥
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				+
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			
				+
				2
				𝜇
			

			

				1
			

			
				‖
				‖
				̃
				𝑥
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				𝐵
				+
				(
				𝑝
				−
				𝑞
				)
			

			

				1
			

			
				̃
				𝑥
			

			

				𝑛
			

			
				−
				𝐵
			

			

				1
			

			
				𝑞
				‖
				‖
				+
				2
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				‖
				‖
				‖
				𝑝
				‖
				̃
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				−
				𝑝
				+
				2
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				−
				̃
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				‖
				‖
				≤
				‖
				‖
				𝑥
				−
				𝑝
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				−
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				̃
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			
				+
				2
				𝜇
			

			

				2
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				̃
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				𝐵
				−
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			

				𝑥
			

			

				𝑛
			

			
				−
				𝐵
			

			

				2
			

			
				𝑝
				‖
				‖
				−
				‖
				‖
				̃
				𝑥
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				+
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			
				+
				2
				𝜇
			

			

				1
			

			
				‖
				‖
				̃
				𝑥
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				𝐵
				+
				(
				𝑝
				−
				𝑞
				)
			

			

				1
			

			
				̃
				𝑥
			

			

				𝑛
			

			
				−
				𝐵
			

			

				1
			

			
				𝑞
				‖
				‖
				+
				2
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				‖
				‖
				‖
				𝑝
				‖
				̃
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				−
				𝑝
				+
				2
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				−
				̃
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				‖
				‖
				.
				−
				𝑝
			

		
	

						Thus, utilizing Lemma 14, from (17) and (102), it follows that
							
	
 		
 			
				(
				1
				0
				3
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				≤
				𝛽
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				−
				𝛽
			

			

				𝑛
			

			
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				×
				‖
				‖
				‖
				1
			

			
				
			
			
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				𝛾
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				
				+
				𝛿
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝑆
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				‖
				
				
			

			

				2
			

			
				≤
				𝛽
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				×
				
				𝜎
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				
				1
				−
				𝜎
			

			

				𝑛
			

			
				
				‖
				‖
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				
				−
				𝛽
			

			

				𝑛
			

			
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				‖
				‖
				‖
				1
			

			
				
			
			
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				𝛾
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				
				+
				𝛿
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝑆
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				‖
				
				
			

			

				2
			

			
				≤
				𝛽
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				×
				
				𝜎
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				
				1
				−
				𝜎
			

			

				𝑛
			

			
				
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				−
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				̃
				𝑥
			

			

				𝑛
			

			
				−
				(
				𝑝
				−
				𝑞
				)
				‖
			

			

				2
			

			
				+
				2
				𝜇
			

			

				2
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				̃
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				‖
				𝐵
				−
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			

				𝑥
			

			

				𝑛
			

			
				−
				𝐵
			

			

				2
			

			
				𝑝
				‖
				‖
				−
				‖
				‖
				̃
				𝑥
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				+
				‖
				‖
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			
				+
				2
				𝜇
			

			

				1
			

			
				‖
				‖
				̃
				𝑥
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				+
				‖
				×
				‖
				‖
				𝐵
				(
				𝑝
				−
				𝑞
				)
			

			

				1
			

			
				̃
				𝑥
			

			

				𝑛
			

			
				−
				𝐵
			

			

				1
			

			
				𝑞
				‖
				‖
				+
				2
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				‖
				‖
				‖
				𝑝
				‖
				̃
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				−
				𝑝
				+
				2
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				−
				̃
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				
				
				−
				𝛽
			

			

				𝑛
			

			
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				×
				‖
				‖
				‖
				1
			

			
				
			
			
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				𝛾
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				
				+
				𝛿
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝑆
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				‖
				
				
			

			

				2
			

			
				≤
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				−
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				
				1
				−
				𝜎
			

			

				𝑛
			

			
				
				×
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				̃
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			
				+
				‖
				‖
				̃
				𝑥
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				+
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			
				
				+
				2
				𝜇
			

			

				2
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				̃
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				𝐵
				−
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			

				𝑥
			

			

				𝑛
			

			
				−
				𝐵
			

			

				2
			

			
				𝑝
				‖
				‖
				+
				2
				𝜇
			

			

				1
			

			
				‖
				‖
				̃
				𝑥
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				+
				‖
				‖
				‖
				‖
				𝐵
				(
				𝑝
				−
				𝑞
				)
			

			

				1
			

			
				̃
				𝑥
			

			

				𝑛
			

			
				−
				𝐵
			

			

				1
			

			
				𝑞
				‖
				‖
				+
				2
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				‖
				‖
				‖
				𝑝
				‖
				̃
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				−
				𝑝
				+
				2
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				−
				̃
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				−
				𝛽
			

			

				𝑛
			

			
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				‖
				‖
				‖
				1
			

			
				
			
			
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				𝛾
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				
				+
				𝛿
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝑆
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				‖
				
				
			

			

				2
			

			

				,
			

		
	

						which hence implies that
							
	
 		
 			
				(
				1
				0
				4
				)
			
 		
	

	
		
			
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				
				1
				−
				𝜎
			

			

				𝑛
			

			
				
				×
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				̃
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			
				+
				‖
				‖
				̃
				𝑥
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				+
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			
				
				+
				𝛽
			

			

				𝑛
			

			
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				‖
				‖
				‖
				1
			

			
				
			
			
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				𝛾
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				
				+
				𝛿
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝑆
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				‖
				
				
			

			

				2
			

			
				≤
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				−
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				‖
				‖
				−
				𝑝
			

			

				2
			

			
				+
				2
				𝜆
			

			

				𝑛
			

			

				𝛼
			

			

				𝑛
			

			
				‖
				‖
				‖
				𝑝
				‖
				̃
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				+
				2
				𝜇
			

			

				2
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				̃
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				𝐵
				−
				(
				𝑝
				−
				𝑞
				)
			

			

				2
			

			

				𝑥
			

			

				𝑛
			

			
				−
				𝐵
			

			

				2
			

			
				𝑝
				‖
				‖
				+
				2
				𝜇
			

			

				1
			

			
				‖
				‖
				̃
				𝑥
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				𝐵
				+
				(
				𝑝
				−
				𝑞
				)
			

			

				1
			

			
				̃
				𝑥
			

			

				𝑛
			

			
				−
				𝐵
			

			

				1
			

			
				𝑞
				‖
				‖
				‖
				‖
				+
				2
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				−
				̃
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				‖
				‖
				.
				−
				𝑝
			

		
	

						Since 
	
		
			
				0
				<
				l
				i
				m
				i
				n
				f
			

			
				𝑛
				→
				∞
			

			

				𝛽
			

			

				𝑛
			

			
				≤
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			

				𝛽
			

			

				𝑛
			

			
				<
				1
			

		
	
, 
	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			

				𝜎
			

			

				𝑛
			

			
				<
				1
			

		
	
, 
	
		
			
				{
				𝜆
			

			

				𝑛
			

			
				}
				⊂
				[
				𝑎
				,
				𝑏
				]
			

		
	
, 
	
		
			

				𝛼
			

			

				𝑛
			

			
				→
				0
			

		
	
, 
	
		
			
				‖
				𝐵
			

			

				2
			

			

				𝑥
			

			

				𝑛
			

			
				−
				𝐵
			

			

				2
			

			
				𝑝
				‖
				→
				0
			

		
	
, 
	
		
			
				‖
				𝐵
			

			

				1
			

			
				̃
				𝑥
			

			

				𝑛
			

			
				−
				𝐵
			

			

				1
			

			
				𝑞
				‖
				→
				0
			

		
	
, 
	
		
			

				‖
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				−
				̃
				𝑢
			

			

				𝑛
			

			
				‖
				→
				0
			

		
	
 and 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑝
				‖
			

		
	
 exists, it follows from the boundedness of 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				̃
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝑢
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				̃
				𝑢
			

			

				𝑛
			

			

				}
			

		
	
 and 
	
		
			

				{
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			

				}
			

		
	
 that 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				𝑥
			

			

				𝑛
			

			
				−
				̃
				𝑥
			

			

				𝑛
			

			
				−
				(
				𝑝
				−
				𝑞
				)
				‖
				=
				0
			

		
	
:
							
	
 		
 			
				(
				1
				0
				5
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				̃
				𝑥
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				+
				(
				𝑝
				−
				𝑞
				)
				=
				0
				,
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				𝛾
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				
				+
				𝛿
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝑆
				𝑦
			

			

				𝑛
			

			
				
				‖
				‖
				=
				0
				.
			

		
	

						Consequently, it immediately follows that
							
	
 		
 			
				(
				1
				0
				6
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				=
				0
				,
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			

				−
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				‖
				‖
				=
				0
				.
			

		
	

						This together with 
	
		
			
				‖
				𝑦
			

			

				𝑛
			

			

				−
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				‖
				≤
				𝜎
			

			

				𝑛
			

			
				‖
				𝑥
			

			

				𝑛
			

			

				−
			

			
				
			
			

				𝑢
			

			

				𝑛
			

			
				‖
				→
				0
			

		
	
 implies that
							
	
 		
 			
				(
				1
				0
				7
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				=
				0
				.
			

		
	

						Since
							
	
 		
 			
				(
				1
				0
				8
				)
			
 		
	

	
		
			
				‖
				‖
				𝛿
			

			

				𝑛
			

			
				
				𝑆
				𝑦
			

			

				𝑛
			

			
				−
				𝑥
			

			

				𝑛
			

			
				
				‖
				‖
				=
				‖
				‖
				𝛾
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				
				+
				𝛿
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝑆
				𝑦
			

			

				𝑛
			

			
				
				+
				𝛾
			

			

				𝑛
			

			
				
				𝑦
			

			

				𝑛
			

			
				−
				𝑥
			

			

				𝑛
			

			
				
				‖
				‖
				≤
				‖
				‖
				𝛾
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				
				+
				𝛿
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝑆
				𝑦
			

			

				𝑛
			

			
				
				‖
				‖
				+
				𝛾
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				,
			

		
	

						we have
							
	
 		
 			
				(
				1
				0
				9
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				𝑆
				𝑦
			

			

				𝑛
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				=
				0
				,
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				𝑆
				𝑦
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				=
				0
				.
			

		
	
Step 4.  
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝑢
			

			

				𝑛
			

			

				}
			

		
	
 and 
	
		
			
				{
				̃
				𝑢
			

			

				𝑛
			

			

				}
			

		
	
 converge weakly to an element 
	
		
			
				
			
			
				𝑥
				∈
				F
				i
				x
				(
				𝑆
				)
				∩
				Ξ
				∩
				Γ
			

		
	
.Indeed, since 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 is bounded, there exists a subsequence 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				𝑖
			

			

				}
			

		
	
 of 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 that converges weakly to some 
	
		
			
				
			
			
				𝑥
				∈
				𝐶
			

		
	
. We obtain that 
	
		
			
				
			
			
				𝑥
				∈
				F
				i
				x
				(
				𝑆
				)
				∩
				Ξ
				∩
				Γ
			

		
	
. Taking into account that 
	
		
			
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				‖
				→
				0
			

		
	
 and 
	
		
			
				‖
				̃
				𝑢
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				‖
				→
				0
			

		
	
 and 
	
		
			
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				‖
				→
				0
			

		
	
, we deduce that 
	
		
			

				𝑦
			

			

				𝑛
			

			

				𝑖
			

			

				→
			

			
				
			
			

				𝑥
			

		
	
 weakly and 
	
		
			
				̃
				𝑢
			

			

				𝑛
			

			

				𝑖
			

			

				→
			

			
				
			
			

				𝑥
			

		
	
 weakly.First, it is clear from Lemma 15 and 
	
		
			
				‖
				𝑆
				𝑦
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				‖
				→
				0
			

		
	
 that 
	
		
			
				
			
			
				𝑥
				∈
				F
				i
				x
				(
				𝑆
				)
			

		
	
. Now let us show that 
	
		
			
				
			
			
				𝑥
				∈
				Ξ
			

		
	
. Note that
							
	
 		
 			
				(
				1
				1
				0
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				
				𝑥
				−
				𝐺
			

			

				𝑛
			

			
				
				‖
				‖
				=
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑃
			

			

				𝐶
			

			
				
				𝑃
			

			

				𝐶
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			

				𝑥
			

			

				𝑛
			

			
				
				−
				𝜇
			

			

				1
			

			

				𝐵
			

			

				1
			

			

				𝑃
			

			

				𝐶
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			

				𝑥
			

			

				𝑛
			

			
				‖
				‖
				=
				‖
				‖
				𝑥
				
				
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				‖
				‖
				→
				0
				,
			

		
	

						as 
	
		
			
				𝑛
				→
				∞
			

		
	
, where 
	
		
			
				𝐺
				∶
				𝐶
				→
				𝐶
			

		
	
 is defined as that in Lemma 1. According to Lemma 15, we get 
	
		
			
				
			
			
				𝑥
				∈
				Ξ
			

		
	
. Further, let us show that 
	
		
			
				
			
			
				𝑥
				∈
				Γ
			

		
	
. As a matter of fact, define
							
	
 		
 			
				(
				1
				1
				1
				)
			
 		
	

	
		
			
				
				𝑇
				𝑣
				=
				∇
				𝑓
				(
				𝑣
				)
				+
				𝑁
			

			

				𝐶
			

			
				𝑣
				,
				i
				f
				𝑣
				∈
				𝐶
				,
				∅
				,
				i
				f
				𝑣
				∉
				𝐶
				,
			

		
	

						where 
	
		
			

				𝑁
			

			

				𝐶
			

			
				𝑣
				=
				{
				𝑤
				∈
				ℋ
			

			

				1
			

			
				∶
				⟨
				𝑣
				−
				𝑢
				,
				𝑤
				⟩
				≥
				0
				,
				∀
				𝑢
				∈
				𝐶
				}
			

		
	
. Utilizing the argument similar to that of Step 4 in the proof of Theorem 20, from the relation
							
	
 		
 			
				(
				1
				1
				2
				)
			
 		
	

	
		
			
				̃
				𝑢
			

			

				𝑛
			

			
				=
				𝑃
			

			

				𝐶
			

			
				
				𝑢
			

			

				𝑛
			

			
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑢
			

			

				𝑛
			

			
				
				
				,
				𝑣
				∈
				𝐶
				,
			

		
	

						we can easily conclude that
							
	
 		
 			
				(
				1
				1
				3
				)
			
 		
	

	
		
			
				
				𝑣
				−
			

			
				
			
			
				
				𝑥
				,
				𝑤
				≥
				0
				.
			

		
	

						It is easy to see that 
	
		
			
				
			
			
				𝑥
				∈
				Γ
			

		
	
. Therefore, 
	
		
			
				
			
			
				𝑥
				∈
				F
				i
				x
				(
				𝑆
				)
				∩
				Ξ
				∩
				Γ
			

		
	
. Finally, utilizing the Opial condition [41], we infer that 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 converges weakly to 
	
		
			
				
			
			
				𝑥
				∈
				F
				i
				x
				(
				𝑆
				)
				∩
				Ξ
				∩
				Γ
			

		
	
. Further, from 
	
		
			
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑢
			

			

				𝑛
			

			
				‖
				→
				0
			

		
	
 and 
	
		
			
				‖
				𝑥
			

			

				𝑛
			

			
				−
				̃
				𝑢
			

			

				𝑛
			

			
				‖
				→
				0
			

		
	
, it follows that both 
	
		
			
				{
				𝑢
			

			

				𝑛
			

			

				}
			

		
	
 and 
	
		
			
				{
				̃
				𝑢
			

			

				𝑛
			

			

				}
			

		
	
 converge weakly to 
	
		
			
				
			
			

				𝑥
			

		
	
. This completes the proof.
Corollary 24.  Let 
	
		
			

				𝐶
			

		
	
 be a nonempty closed convex subset of a real Hilbert space 
	
		
			

				ℋ
			

			

				1
			

		
	
. Let 
	
		
			
				𝐴
				∈
				𝐵
				(
				ℋ
			

			

				1
			

			
				,
				ℋ
			

			

				2
			

			

				)
			

		
	
 and 
	
		
			

				𝐵
			

			

				𝑖
			

			
				∶
				𝐶
				→
				ℋ
			

			

				1
			

		
	
 be 
	
		
			

				𝛽
			

			

				𝑖
			

		
	
-inverse strongly monotone for 
	
		
			
				𝑖
				=
				1
				,
				2
			

		
	
. Let 
	
		
			
				𝑆
				∶
				𝐶
				→
				𝐶
			

		
	
 be a 
	
		
			

				𝑘
			

		
	
-strictly pseudocontractive mapping such that 
	
		
			
				F
				i
				x
				(
				𝑆
				)
				∩
				Ξ
				∩
				Γ
				≠
				∅
			

		
	
. For given 
	
		
			

				𝑥
			

			

				0
			

			
				∈
				𝐶
			

		
	
 arbitrarily, let the sequences 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝑢
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				̃
				𝑢
			

			

				𝑛
			

			

				}
			

		
	
 be generated iteratively by
							
	
 		
 			
				(
				1
				1
				4
				)
			
 		
	

	
		
			

				𝑢
			

			

				𝑛
			

			
				=
				𝑃
			

			

				𝐶
			

			
				
				𝑃
			

			

				𝐶
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			

				𝑥
			

			

				𝑛
			

			
				
				−
				𝜇
			

			

				1
			

			

				𝐵
			

			

				1
			

			

				𝑃
			

			

				𝐶
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			

				𝑥
			

			

				𝑛
			

			
				,
				
				
				̃
				𝑢
			

			

				𝑛
			

			
				=
				𝑃
			

			

				𝐶
			

			
				
				𝑢
			

			

				𝑛
			

			
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑢
			

			

				𝑛
			

			
				,
				𝑦
				
				
			

			

				𝑛
			

			
				=
				𝑃
			

			

				𝐶
			

			
				
				𝑢
			

			

				𝑛
			

			
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				̃
				𝑢
			

			

				𝑛
			

			
				,
				𝑥
				
				
			

			
				𝑛
				+
				1
			

			
				=
				𝛽
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				+
				𝛾
			

			

				𝑛
			

			

				𝑦
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				𝑆
				𝑦
			

			

				𝑛
			

			
				,
				∀
				𝑛
				≥
				0
				,
			

		
	

						where 
	
		
			

				𝜇
			

			

				𝑖
			

			
				∈
				(
				0
				,
				2
				𝛽
			

			

				𝑖
			

			

				)
			

		
	
 for 
	
		
			
				𝑖
				=
				1
				,
				2
			

		
	
, 
	
		
			
				{
				𝛼
			

			

				𝑛
			

			
				}
				⊂
				(
				0
				,
				∞
				)
			

		
	
, 
	
		
			
				{
				𝜆
			

			

				𝑛
			

			
				}
				⊂
				(
				0
				,
				1
				/
				‖
				𝐴
				‖
			

			

				2
			

			

				)
			

		
	
 and 
	
		
			
				{
				𝛽
			

			

				𝑛
			

			
				}
				,
				{
				𝛾
			

			

				𝑛
			

			
				}
				,
				{
				𝛿
			

			

				𝑛
			

			
				}
				⊂
				[
				0
				,
				1
				]
			

		
	
 such that (i)
	
		
			

				∑
			

			
				∞
				𝑛
				=
				0
			

			

				𝛼
			

			

				𝑛
			

			
				<
				∞
			

		
	
;(ii)
	
		
			

				𝛽
			

			

				𝑛
			

			
				+
				𝛾
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				=
				1
			

		
	
 and 
	
		
			
				(
				𝛾
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				)
				𝑘
				≤
				𝛾
			

			

				𝑛
			

		
	
 for all 
	
		
			
				𝑛
				≥
				0
			

		
	
;(iii)
	
		
			
				0
				<
				l
				i
				m
				i
				n
				f
			

			
				𝑛
				→
				∞
			

			

				𝛽
			

			

				𝑛
			

			
				≤
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			

				𝛽
			

			

				𝑛
			

			
				<
				1
			

		
	
 and 
	
		
			
				l
				i
				m
				i
				n
				f
			

			
				𝑛
				→
				∞
			

			

				𝛿
			

			

				𝑛
			

			
				>
				0
			

		
	
;(iv)
	
		
			
				0
				<
				l
				i
				m
				i
				n
				f
			

			
				𝑛
				→
				∞
			

			

				𝜆
			

			

				𝑛
			

			
				≤
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			

				𝜆
			

			

				𝑛
			

			
				<
				1
				/
				‖
				𝐴
				‖
			

			

				2
			

		
	
.Then the sequences 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝑢
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				̃
				𝑢
			

			

				𝑛
			

			

				}
			

		
	
 converge weakly to an element 
	
		
			
				
			
			
				𝑥
				∈
				F
				i
				x
				(
				𝑆
				)
				∩
				Ξ
				∩
				Γ
			

		
	
. Furthermore, 
	
		
			

				(
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑦
				)
			

		
	
 is a solution of GSVI (3), where 
	
		
			
				
			
			
				𝑦
				=
				𝑃
			

			

				𝐶
			

			

				(
			

			
				
			
			
				𝑥
				−
				𝜇
			

			

				2
			

			

				𝐵
			

			

				2
			

			
				
			
			
				𝑥
				)
			

		
	
.
Next, utilizing Corollary 24, we derive the following result.
Corollary 25.  Let 
	
		
			

				𝐶
			

		
	
 be a nonempty closed convex subset of a real Hilbert space 
	
		
			

				ℋ
			

			

				1
			

		
	
. Let 
	
		
			
				𝐴
				∈
				𝐵
				(
				ℋ
			

			

				1
			

			
				,
				ℋ
			

			

				2
			

			

				)
			

		
	
 and 
	
		
			
				𝑆
				∶
				𝐶
				→
				𝐶
			

		
	
 be a nonexpansive mapping such that 
	
		
			
				F
				i
				x
				(
				𝑆
				)
				∩
				Γ
				≠
				∅
			

		
	
. For given 
	
		
			

				𝑥
			

			

				0
			

			
				∈
				𝐶
			

		
	
 arbitrarily, let the sequences 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				̃
				𝑢
			

			

				𝑛
			

			

				}
			

		
	
 be generated iteratively by
							
	
 		
 			
				(
				1
				1
				5
				)
			
 		
	

	
		
			
				̃
				𝑢
			

			

				𝑛
			

			
				=
				𝑃
			

			

				𝐶
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				,
				𝑥
				
				
			

			
				𝑛
				+
				1
			

			
				=
				𝛽
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				+
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				𝑆
				𝑃
			

			

				𝐶
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				̃
				𝑢
			

			

				𝑛
			

			
				,
				
				
				∀
				𝑛
				≥
				0
				,
			

		
	

						where 
	
		
			
				{
				𝛼
			

			

				𝑛
			

			
				}
				⊂
				(
				0
				,
				∞
				)
			

		
	
, 
	
		
			
				{
				𝜆
			

			

				𝑛
			

			
				}
				⊂
				(
				0
				,
				1
				/
				‖
				𝐴
				‖
			

			

				2
			

			

				)
			

		
	
 and 
	
		
			
				{
				𝛽
			

			

				𝑛
			

			
				}
				⊂
				[
				0
				,
				1
				]
			

		
	
 such that (i)
	
		
			

				∑
			

			
				∞
				𝑛
				=
				0
			

			

				𝛼
			

			

				𝑛
			

			
				<
				∞
			

		
	
;(ii)
	
		
			
				0
				<
				l
				i
				m
				i
				n
				f
			

			
				𝑛
				→
				∞
			

			

				𝛽
			

			

				𝑛
			

			
				≤
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			

				𝛽
			

			

				𝑛
			

			
				<
				1
			

		
	
;(iii)
	
		
			
				0
				<
				l
				i
				m
				i
				n
				f
			

			
				𝑛
				→
				∞
			

			

				𝜆
			

			

				𝑛
			

			
				≤
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			

				𝜆
			

			

				𝑛
			

			
				<
				1
				/
				‖
				𝐴
				‖
			

			

				2
			

		
	
.Then, both the sequences 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 and 
	
		
			
				{
				̃
				𝑢
			

			

				𝑛
			

			

				}
			

		
	
 converge weakly to an element 
	
		
			
				
			
			
				𝑥
				∈
				F
				i
				x
				(
				𝑆
				)
				∩
				Γ
			

		
	
.
Proof. In Corollary 24, put 
	
		
			

				𝐵
			

			

				1
			

			
				=
				𝐵
			

			

				2
			

			
				=
				0
			

		
	
 and 
	
		
			

				𝛾
			

			

				𝑛
			

			
				=
				0
			

		
	
. Then, 
	
		
			
				Ξ
				=
				𝐶
			

		
	
, 
	
		
			

				𝛽
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				=
				1
			

		
	
 for all 
	
		
			
				𝑛
				≥
				0
			

		
	
, and the iterative scheme (114) is equivalent to
							
	
 		
 			
				(
				1
				1
				6
				)
			
 		
	

	
		
			

				𝑢
			

			

				𝑛
			

			
				=
				𝑥
			

			

				𝑛
			

			
				,
				̃
				𝑢
			

			

				𝑛
			

			
				=
				𝑃
			

			

				𝐶
			

			
				
				𝑢
			

			

				𝑛
			

			
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				𝑢
			

			

				𝑛
			

			
				,
				𝑦
				
				
			

			

				𝑛
			

			
				=
				𝑃
			

			

				𝐶
			

			
				
				𝑢
			

			

				𝑛
			

			
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			
				
				̃
				𝑢
			

			

				𝑛
			

			
				,
				𝑥
				
				
			

			
				𝑛
				+
				1
			

			
				=
				𝛽
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			
				𝑆
				𝑦
			

			

				𝑛
			

			
				,
				∀
				𝑛
				≥
				0
				.
			

		
	

						This is equivalent to (115). Since 
	
		
			

				𝑆
			

		
	
 is a nonexpansive mapping, 
	
		
			

				𝑆
			

		
	
 must be a 
	
		
			

				𝑘
			

		
	
-strictly pseudocontractive mapping with 
	
		
			
				𝑘
				=
				0
			

		
	
. In this case, it is easy to see that all the conditions (i)–(iv) in Corollary 24 are satisfied. Therefore, in terms of Corollary 24, we obtain the desired result. 
Remark 26. Compared with the Ceng and Yao [31, Theorem 3.1], our Corollary 25 coincides essentially with [31, Theorem 3.1]. This shows that our Theorem 23 includes [31, Theorem 3.1] as a special case.
Remark 27. Our Theorems 20 and 23 improve, extend, and develop [20, Theorem 5.7], [31, Theorem 3.1], [7, Theorem 3.2], and [14, Theorem 3.1] in the following aspects. (i)Compared with the relaxed extragradient iterative algorithm in [7, Theorem 3.2], our Mann-type extragradient iterative algorithms with regularization remove the requirement of boundedness for the domain 
	
		
			

				𝐶
			

		
	
 in which various mappings are defined.(ii)Because [31, Theorem 3.1] is the supplementation, improvement, and extension of [20, Theorem 5.7] and our Theorem 23 includes [31, Theorem 3.1] as a special case, beyond question our results are very interesting and quite valuable.(iii)The problem of finding an element of 
	
		
			
				F
				i
				x
				(
				𝑆
				)
				∩
				Ξ
				∩
				Γ
			

		
	
 in our Theorems 20 and 23 is more general than the corresponding problems in [20, Theorem 5.7] and [31, Theorem 3.1], respectively.(iv)The hybrid extragradient method for finding an element of 
	
		
			
				F
				i
				x
				(
				𝑆
				)
				∩
				Ξ
				∩
				V
				I
				(
				𝐶
				,
				𝐴
				)
			

		
	
 in [14, Theorem 3.1] is extended to develop our Mann-type extragradient iterative algorithms (16) and (17) with regularization for finding an element of 
	
		
			
				F
				i
				x
				(
				𝑆
				)
				∩
				Ξ
				∩
				Γ
			

		
	
.(v)The proof of our results are very different from that of [14, Theorem 3.1] because our argument technique depends on the Opial condition, the restriction on the regularization parameter sequence 
	
		
			
				{
				𝛼
			

			

				𝑛
			

			

				}
			

		
	
, and the properties of the averaged mappings 
	
		
			

				𝑃
			

			

				𝐶
			

			
				(
				𝐼
				−
				𝜆
			

			

				𝑛
			

			
				∇
				𝑓
			

			

				𝛼
			

			

				𝑛
			

			

				)
			

		
	
 to a great extent.(vi)Because our iterative algorithms (16) and (17) involve two inverse strongly monotone mappings 
	
		
			

				𝐵
			

			

				1
			

		
	
 and 
	
		
			

				𝐵
			

			

				2
			

		
	
, a 
	
		
			

				𝑘
			

		
	
-strictly pseudocontractive self-mapping 
	
		
			

				𝑆
			

		
	
 and several parameter sequences, they are more flexible and more subtle than the corresponding ones in [20, Theorem 5.7] and [31, Theorem 3.1], respectively.
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