Research Article

Some Convergence Theorems for Contractive Type Mappings in CAT(0) Spaces

Kyung Soo Kim

Graduate School of Education, Mathematics Education, Kyungnam University, Changwon, Kyungnam 631-701, Republic of Korea

Correspondence should be addressed to Kyung Soo Kim; kksmj@kyungnam.ac.kr

Received 9 September 2013; Accepted 22 October 2013

Academic Editor: Sehie Park

Copyright © 2013 Kyung Soo Kim. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We establish theorems of strong convergence, for the Ishikawa-type (or two step; cf. Ishikawa, 1974) iterative scheme, to a fixed point of a uniformly \(L \)-Lipschitzian asymptotically demicontractive mapping and a uniformly \(L \)-Lipschitzian hemicontractive mapping in CAT(0) space. Moreover, we will propose some open problems.

1. Introduction

Let \((X,d)\) be a metric space. One of the most interesting aspects of metric fixed point theory is to extend a linear version of known result to the nonlinear case in metric spaces. To achieve this, Takahashi [1] introduced a convex structure in a metric space \((X,d)\). A mapping \(W: X \times X \times [0,1] \rightarrow X\) is a convex structure in \(X\) if

\[
d(u, W(x, y, \lambda)) \leq \lambda d(u, x) + (1 - \lambda) d(u, y)
\]

for all \(x, y \in X\) and \(\lambda \in [0,1]\). A metric space together with a convex structure \(W\) is known as a convex metric space. A nonempty subset \(K\) of a convex metric space is said to be convex if

\[
W(x, y, \lambda) \in K
\]

for all \(x, y \in K\) and \(\lambda \in [0,1]\). In fact, every normed space and its convex subsets are convex metric spaces but the converse is not true, in general (see, [1]).

Example 1 (see [2]). Let \(X = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 > 0, x_2 > 0\}\), for all \(x = (x_1, x_2), y = (y_1, y_2) \in X\), and \(\lambda \in [0,1]\). We define a mapping \(W: X \times X \times [0,1] \rightarrow X\) by

\[
W(x, y, \lambda) = \left(\alpha x_1 + (1 - \lambda) y_1, \frac{\lambda x_1 x_2 + (1 - \lambda) y_1 y_2}{\lambda x_1 + (1 - \lambda) y_1} \right),
\]

and define a metric \(d: X \times X \rightarrow [0, \infty)\) by

\[
d(x, y) = |x_1 - y_1| + |x_1x_2 - y_1y_2|.
\]

Then we can show that \((X, d, W)\) is a convex metric space, but it is not a normed linear space.

A metric space \(X\) is a CAT(0) space (the term is due to Gromov [3] and it is an acronym for E. Cartan, A. D. Aleksandrov, and V. A. Toponogov) if it is geodesically connected and if every geodesic triangle in \(X\) is at least as “thin” as its comparison triangle in the Euclidean plane (see, e.g., [4], page 159). It is well known that any complete, simply connected Riemannian manifold nonpositive sectional curvature is a CAT(0) space. The precise definition is given below. For a thorough discussion of these spaces and of the fundamental role they play in various branches of mathematics, see Bridson and Haefliger [4] or Burago et al. [5].

Let \((X, d)\) be a metric space. A geodesic path joining \(x \in X\) to \(y \in X\) (or, more briefly, a geodesic from \(x\) to \(y\)) is a mapping \(c\) from a closed interval \([0, l]\) \subset \mathbb{R} to \(X\) such that \(c(0) = x\), \(c(l) = y\), and \(d(c(t), c(t')) = |t - t'|\), for all \(t, t' \in [0, l]\). In particular, \(c\) is an isometry and \(d(x, y) = l\). The image \(c\) of \(c\) is called a geodesic (or metric) segment joining \(x\) and \(y\). When it is unique, this geodesic is denoted by \([x, y]\). The space \((X, d)\) is said to be a geodesic space if every two points of \(X\) are joined by a geodesic, and \(X\) is said to be uniquely geodesic if there is exactly one geodesic joining \(x\) and \(y\) for each \(x, y \in X\). A
subset \(Y \subseteq X \) is said to be **convex** if \(Y \) includes every geodesic segment joining any two of its points.

A geodesic triangle \(\Delta(x_1, x_2, x_3) \) is a geodesic metric space \((X, d)\) that consists of three points \(x_1, x_2, x_3 \in X \) (the vertices of \(\Delta \)) and is a geodesic segment between each pair of vertices (the edges of \(\Delta \)). A comparison triangle for the geodesic triangle \(\Delta(x_1, x_2, x_3) \) in \((X, d)\) is a triangle \(\Delta\tilde{x}_i(x_i, x_{i+1}) = \Delta(x_i, x_{i+1}, x_{i+2}) \) in \(\mathbb{R}^2 \) such that \(d_{\mathbb{R}^2}(\tilde{x}_i, \tilde{x}_{i+1}) = d(x_i, x_{i+1}) \) for \(i, j \in \{1, 2, 3\} \). Such a triangle always exists (see, [4]).

A geodesic metric space is said to be a CAT(0) space if all geodesic triangles of appropriate size satisfy the following CAT(0) comparison axiom.

Let \(\Delta \) be a geodesic triangle in \(X \) and let \(\Delta \subset \mathbb{R}^2 \) be a comparison triangle for \(\Delta \). Then \(\Delta \) is said to satisfy the CAT(0) inequality if for all \(x, y \in \Delta \) and all comparison points \(\bar{x}, \bar{y} \in \Delta \),

\[
d(x, y) \leq d(\bar{x}, \bar{y}).
\]

(5)

Complete CAT(0) spaces are often called **Hadamard spaces** (see, [6]). If \(x, y \in X \) are points of a CAT(0) space and if \(y_0 \) is the midpoint of the segment \([y_1, y_2]\), which we will denote by \(y_1 \oplus y_2 \) or \(y_1 \odot y_2 \), then the CAT(0) inequality implies

\[
d^2\left(x, \frac{y_1 \oplus y_2}{2}\right) \leq \frac{1}{2}d^2(x, y_1) + \frac{1}{2}d^2(x, y_2) - \frac{1}{4}d^2(y_1, y_2).
\]

(6)

This inequality is the (CN) inequality of Bruhat and Tits [7]. In fact, a geodesic space is a CAT(0) space if and only if it satisfies the (CN) inequality (cf. [4], page 163). The previous inequality has been extended by Khamsi and Kirk [8] as

\[
d^2(z, ax \oplus (1 - a) y)
\leq a \cdot d^2(z, x) + (1 - a) d^2(z, y) - a(1 - a)d^2(x, y),
\]

(\(CN^a\))

for any \(a \in [0, 1] \) and \(x, y \in X \). The inequality (\(CN^a\)) also appeared in [9].

Let us recall that a geodesic metric space is a CAT(0) space if and only if it satisfies the (CN) inequality (see, [4], page 163). Moreover, if \(X \) is a CAT(0) metric space and \(x, y \in X \), then for any \(a \in [0, 1] \), there exists a unique point \(ax \oplus (1 - a)y \in [x, y] \) such that

\[
d(z, ax \oplus (1 - a) y) \leq ad(z, x) + (1 - a) d(z, y)
\]

(7)

for any \(z \in X \) and \([x, y] = [ax \oplus (1 - a)y : a \in [0, 1]]\). In view of the previous inequality, CAT(0) space has Takahashi’s convex structure \(W(x, y, a) = ax \oplus (1 - a)y \). It is easy to see that for any \(x, y \in X \) and \(\lambda \in [0, 1],

\[
d(x, (1 - \lambda)x \oplus \lambda y) = \lambda d(x, y),
\]

\[
d(y, (1 - \lambda)x \oplus \lambda y) = (1 - \lambda)d(x, y).
\]

(8)

As a consequence,

\[
1 \cdot x \oplus 0 \cdot y = x,
\]

\[
(1 - \lambda) x \oplus \lambda x = \lambda x \oplus (1 - \lambda)x = x.
\]

(9)

Moreover, a subset \(K \) of CAT(0) space \(X \) is convex if for any \(x, y \in K \), we have \([x, y] \in K\).

Definition 2. Let \(C \) be a nonempty subset of a metric space \((X, d)\). Let \(F(T) \) denote the fixed point set of \(T \). Let \(F(T) \neq \emptyset \).

(1) A mapping \(T : C \rightarrow C \) is said to be **\(k \)-strict asymptotically pseudocontractive** with sequence \(\{a_n\} \) if \(\lim_{n \rightarrow \infty} a_n = 1 \) for some constant \(k \), \(0 \leq k < 1 \) and

\[
d^2(T^n x, T^n y) - a_n^2 d^2(x, y) + k(d(x, T^n x) - d(x, T^n y))^2,
\]

for all \(x, y \in C, n \in \mathbb{N} \).

If \(k = 0 \), then \(T \) is said to be **asymptotically nonexpansive** with sequence \(\{a_n\} \), that is,

\[
d(T^n x, T^n y) \leq a_n d(x, y), \quad \forall x, y \in C.
\]

(11)

(2) A mapping \(T : C \rightarrow C \) is said to be **asymptotically demicontractive** with sequence \(\{a_n\} \) if \(\lim_{n \rightarrow \infty} a_n = 1 \) for some constant \(k \), \(0 \leq k < 1 \), and

\[
d^2(T^n x, p) - a_n^2 d^2(x, p) + k \cdot d^2(x, T^n x),
\]

\[
\forall p \in F(T),
\]

for all \(x \in C, n \in \mathbb{N} \).

If \(k = 0 \), then \(T \) is said to be **asymptotically quasi-nonexpansive** with sequence \(\{a_n\} \), that is,

\[
d(T^n x, p) \leq a_n d(x, p), \quad \forall x \in C, \forall p \in F(T).
\]

(13)

(3) A mapping \(T : C \rightarrow C \) is said to be **asymptotically pseudocontractive** with sequence \(\{a_n\} \) if \(\lim_{n \rightarrow \infty} a_n = 1 \) and

\[
d^2(T^n x, T^n y) - a_n^2 d^2(x, y) + [d(x, T^n x) - d(x, T^n y)]^2,
\]

for all \(x, y \in C, n \in \mathbb{N} \).

(14)

(4) A mapping \(T : C \rightarrow C \) is said to be **asymptotically hemicontractive** with sequence \(\{a_n\} \) if \(\lim_{n \rightarrow \infty} a_n = 1 \) and

\[
d^2(T^n x, p) - a_n d^2(x, p) + d^2(x, T^n x), \quad \forall p \in F(T),
\]

(15)

for all \(x \in C, n \in \mathbb{N} \).

(5) A mapping \(T : C \rightarrow C \) is said to be **uniformly L-Lipschitzian** if for some constant \(L > 0,\)

\[
d(T^n x, T^n y) \leq L \cdot d(x, y), \quad \forall x, y \in C.
\]

(16)

for all \(n \in \mathbb{N} \).

Liu [10] has proved the convergence of Mann and Ishikawa iterative sequence for uniformly L-Lipschitzian asymptotically demicontractive and hemicontractive mappings in Hilbert space (cf. [11]). The existence of (common)
fixed points of one mapping (or two mappings or family of mappings) is not known in many situations. So the approximation of fixed points of one or more nonexpansive, asymptotically nonexpansive, or asymptotically quasi-nonexpansive mappings by various iterations have been extensively studied in Banach spaces, convex metric spaces, CAT(0) spaces, and so on (see, [2, 6, 8, 9, 12–27]).

In this paper, we establish theorems of strong convergence for the Ishikawa-type (or two step, cf. [28]) iteration scheme to a fixed point of a uniformly L-Lipschitzian asymptotically demicontractive mapping and a uniformly L-Lipschitzian asymptotically hemicontractive mapping in CAT(0) space. Moreover, we will propose some open problems.

2. Preliminaries

We introduce the following iteration process.

Let C be a nonempty convex subset of a CAT(0) space (X, d) and let $T : C \to C$ be a given mapping. Let $x_1 \in C$ be a given point.

Algorithm 3. The sequences $\{x_n\}$ and $\{y_n\}$ defined by the iterative process

$$
x_{n+1} = (1 - \alpha_n) x_n \oplus \alpha_n T^\sigma x_n, \quad y_n = (1 - \beta_n) x_n \oplus \beta_n T^\sigma x_n, \quad n \geq 1,
$$

is called an *Ishikawa-type* iterative sequence (cf. [28]).

If $\beta_n \equiv 0$, then Algorithm 3 reduces to the following.

Algorithm 4. The sequence $\{x_n\}$ defined by the iterative process

$$
x_{n+1} = (1 - \alpha_n) x_n \oplus \alpha_n T^\sigma x_n, \quad n \geq 1,
$$

is called a *Mann-type* iterative sequence (cf. [29]).

Lemma 5 (see [10]). Let sequences $\{a_n\}, \{b_n\}$ satisfy that

$$
a_{n+1} \leq a_n + b_n, \quad a_n \geq 0, \text{ for all } n \in \mathbb{N}, \sum_{n=1}^{\infty} b_n \text{ is convergent, and } \{a_n\} \text{ has a subsequence } \{a_{n_k}\} \text{ converging to } 0. \text{ Then, we must have }
$$

$$
\lim_{n \to \infty} a_n = 0.
$$

3. Convergence Theorems

Lemma 6. Let (X, d) be a CAT(0) space and let C be a nonempty convex subset of X. Let $T : C \to C$ be an uniformly L-Lipschitzian mapping and let $\{a_n\}, \{b_n\}$ be sequence in $[0, 1]$. Define the iteration scheme $\{x_n\}$ as Algorithm 3. Then

$$
d(x_n, Tx_n) \leq d(x_n, T^\sigma x_n) + L \left(1 + 2L + L^2\right) d(x_{n-1}, T^{\sigma-1} x_{n-1}),
$$

for all $n \geq 1$.

Proof. Let $C_n = d(x_n, T^m x_n)$, we have

$$
d(x_{n-1}, y_{n-1}) = d(x_{n-1}, (1 - \beta_{n-1}) x_{n-1} \oplus \beta_{n-1} T^{\sigma} y_{n-1})
$$

$$
\leq \beta_{n-1} d(x_{n-1}, T^{\sigma} x_{n-1})
$$

$$
= \beta_{n-1} C_{n-1}.
$$

From (22), we get

$$
d(x_{n-1}, T^\sigma y_{n-1}) \leq d(x_{n-1}, T^\sigma x_{n-1}) + d(T^\sigma y_{n-1}, T^\sigma x_{n-1})
$$

$$
\leq C_{n-1} + L \cdot d(x_{n-1}, y_{n-1})
$$

From (22) and (23), we get

$$
d(x_n, Tx_n)
$$

$$
\leq d(x_n, T^\sigma x_n) + d(T^\sigma x_n, Tx_n)
$$

$$
\leq C_n + L \cdot d(x_{n-1}, Tx_n)
$$

$$
\leq C_n + L \cdot d(x_{n-1}, x_n) + d(T^\sigma x_n, Tx_n)
$$

$$
\leq C_n + L^2 \cdot d(x_{n-1}, x_n) + L \cdot d(T^\sigma x_n, x_n)
$$

$$
\leq C_n + L^2 \cdot d\left(1 - \alpha_n\right) x_{n-1} \oplus \alpha_n T^{\sigma-1} x_{n-1}, y_{n-1}\right)
$$

$$
+ L \cdot d\left(T^{\sigma-1} x_{n-1}, 1 - \alpha_n\right) x_{n-1} \oplus \alpha_n T^{\sigma-1} y_{n-1}\right)
$$

$$
\leq C_n + L^2 \cdot \alpha_{n-1} \cdot d\left(T^{\sigma-1} y_{n-1}, x_{n-1}\right)
$$

$$
+ L \cdot \left(1 - \alpha_{n-1}\right) d\left(T^{\sigma-1} x_{n-1}, x_{n-1}\right)
$$

$$
\leq C_n + L^2 \cdot \alpha_{n-1} \cdot d\left(T^{\sigma-1} y_{n-1}, T^{\sigma-1} x_{n-1}\right)
$$

$$
\leq C_n + L^2 \cdot \alpha_{n-1} \cdot \left(C_{n-1} + \beta_{n-1} \cdot L \cdot C_{n-1}\right)
$$

$$
+ L \cdot \left(1 - \alpha_{n-1}\right) C_{n-1} + L^2 \cdot \alpha_{n-1} \cdot \beta_{n-1} \cdot C_{n-1}
$$

$$
\leq C_n + L \left(1 + 2L + L^2\right) C_{n-1}, \quad n \geq 1.
$$

This completes the proof of Lemma 6.

Theorem 7. Let (X, d) be a complete CAT(0) space, let C be a nonempty bounded closed convex subset of X, and let $T : C \to C$ be a completely continuous and uniformly L-Lipschitzian and asymptotically demicontractive mapping with sequence $\{a_n\}, \alpha_n, \delta \in [0, 1), \sum_{n=1}^{\infty} (\alpha_n^2 - 1) < \infty, \epsilon \leq \alpha_n \leq 1 - k - \epsilon$, for all $n \in \mathbb{N}$ and some $\epsilon > 0$. Given $x_0 \in C$, define the iteration scheme $\{x_n\}$ by

$$
x_{n+1} = (1 - \alpha_n) x_n \oplus \alpha_n T^\sigma x_n, \quad n \geq 1.
$$

Then $\{x_n\}$ converges strongly to some fixed point of T. \hfill \square
Proof. Since T is a completely continuous mapping in a bounded closed convex subset C of complete metric space, from Schauder's theorem, $F(T)$ is nonempty. It follows from (CN') inequality that
\[
d^2(x_{n+1}, p) = d^2((1 - \alpha_n)x_n \oplus \alpha_nT^nx_n, p)
\leq (1 - \alpha_n) d^2(x_n, p) + \alpha_n d^2(T^nx_n, p)
\leq (1 - \alpha_n) d^2(x_n, T^nx_n),
\] (26)
for all $p \in F(T)$. Since T is a asymptotically demicontractive, we get
\[
d^2(x_{n+1}, p) \leq (1 - \alpha_n) d^2(x_n, p)
+ \alpha_n \{a_n^2 d^2(x_n, p) + k \cdot d^2(T^nx_n, p)\}
- \alpha_n (1 - \alpha_n) d^2(x_n, T^nx_n)
= d^2(x_n, p) + \alpha_n (a_n^2 - 1) d^2(x_n, p)
- \alpha_n (1 - \alpha_n - k) d^2(x_n, T^nx_n),
\forall p \in F(T).
\] (27)
Since $0 < \varepsilon \leq \alpha_n \leq 1 - k - \varepsilon$, we have $1 - k - \alpha_n \geq \varepsilon$. Thus,
\[
\alpha_n (1 - k - \alpha_n) \geq \varepsilon^2.
\] (28)
From (27), we have
\[
d^2(x_{n+1}, p) \leq d^2(x_n, p) + \alpha_n (a_n^2 - 1) d^2(x_n, p)
- \varepsilon^2 \cdot d^2(x_n, T^nx_n),
\forall p \in F(T).
\] (29)
Therefore,
\[
\varepsilon^2 \cdot d^2(x_n, T^nx_n) \leq d^2(x_n, p) - d^2(x_{n+1}, p) + (a_n^2 - 1) M.
\] (30)
So
\[
\sum_{n=1}^{m} \varepsilon^2 \cdot d^2(x_n, T^nx_n)
\leq d^2(x_1, p) - d^2(x_{m+1}, p) + \sum_{n=1}^{m} (a_n^2 - 1) M
\leq 2M + \sum_{n=1}^{\infty} (a_n^2 - 1) M,
\] for all $m \in \mathbb{N}$. Since $\sum_{n=1}^{\infty} (a_n^2 - 1) < \infty$, we get
\[
\sum_{n=1}^{\infty} \varepsilon^2 \cdot d^2(x_n, T^nx_n) < \infty.
\] (33)
Therefore,
\[
\lim_{n \to \infty} d^2(x_n, T^nx_n) = 0, \quad \lim_{n \to \infty} d(x_n, T^nx_n) = 0.
\] (34)
Since T is a uniformly L-Lipschitzian, it follows from Lemma 6 that
\[
\lim_{n \to \infty} d(x_n, Tx_n) = 0.
\] (35)
Since $\{x_n\}$ is a bounded sequence and T is completely continuous, there exist a convergent subsequence $\{Tx_n\}$ of $\{T^nx_n\}$. Therefore, from (35), $\{x_n\}$ has a convergent subsequence $\{x_n\}$. Let $\lim_{n \to \infty} x_n = q$. It follows from the continuity of T and (35), we have $q = Tq$. Therefore, $\{x_n\}$ has a subsequence which converges to the fixed point q of T. Let $p = q$ in the inequality (30). Since $\sum_{n=1}^{\infty} (a_n^2 - 1) < \infty$ and $\sum_{n=1}^{\infty} \varepsilon^2 \cdot d^2(x_n, T^nx_n) < \infty$, from (30) and Lemma 5, we have
\[
\lim_{n \to \infty} d^2(x_n, q) = 0.
\] (36)
Therefore,
\[
\lim_{n \to \infty} x_n = q.
\] (37)
This completes the proof of Theorem 7.

Corollary 8. Let (X, d) be a complete CAT(0) space, let C be a nonempty bounded closed convex subset of X, and let $T : C \to C$ be a completely continuous and uniformly L-Lipschitzian and k-strict asymptotically pseudocontractive with sequence $\{a_n\}$, $a_n \in [1, \infty)$, $\sum_{n=1}^{\infty} (a_n^2 - 1) < \infty$, and $\varepsilon \leq a_n \leq 1 - k - \varepsilon$, for all $n \in \mathbb{N}$ and some $\varepsilon > 0$. Given $x_0 \in C$, define the iteration scheme $\{x_n\}$ by
\[
x_{n+1} = (1 - \alpha_n)x_n \oplus \alpha_n T^nx_n, \quad n \geq 1.
\] (38)
Then $\{x_n\}$ converges strongly to some fixed point of T.

Proof. By Definition 2, T is k-strict asymptotically pseudocontractive; then T must be asymptotically demicontractive. Therefore, Corollary 8 can be proved by using Theorem 7.

Lemma 9. Let (X, d) be a CAT(0) space and let C be a nonempty convex subset of X. Let $T : C \to C$ be an uniformly L-Lipschitzian and asymptotically hemicontractive with sequence $\{a_n\} \subset [1, \infty)$, for all $n \in \mathbb{N}$, and $F(T)$ is nonempty. Define the iteration scheme $\{x_n\}$ as follows:
\[
x_{n+1} = (1 - \alpha_n)x_n \oplus \alpha_n T^nx_n, \quad n \geq 1.
\] (39)
Then the following inequality holds:
\[
d^2(x_{n+1}, p) \leq [1 + \alpha_n (a_n - 1) (a_n (a_n + 1) + 1)] d^2(x_n, p)
- \alpha_n (a_n - 1) (a_n - 1 - L^2 \beta_n^2) d^2(x_n, T^nx_n)
- \alpha_n (\beta_n - \alpha_n) d^2(x_n, T^ny_n),
\] (40)
for all $p \in F(T)$.
Proof. It follows from (CN∗) inequality that
\[
d^2(x_{n+1}, p) = d^2((1 - \alpha_n) x_n \oplus \alpha_n T^a y_n, p)
\leq (1 - \alpha_n) d^2(x_n, p) + \alpha_n d^2(T^a y_n, p)
- (1 - \alpha_n) \alpha_n d^2(x_n, T^a y_n),
\]
for all \(p \in F(T)\). Since \(T\) is asymptotically hemicontractive, we get
\[
d^2(T^a y_n, p) \leq a_n d^2(y_n, p) + d^2(y_n, T^a y_n),
\]
\[
d^2(T^a x_n, p) \leq a_n d^2(x_n, p) + d^2(x_n, T^a x_n).
\]
From (42) and (44), we have
\[
d^2(y_n, p) \leq (1 - \beta_n) d^2(x_n, p)
+ \beta_n [a_n d^2(x_n, p) + d^2(x_n, T^a x_n)]
- (1 - \beta_n) \beta_n d^2(x_n, T^a x_n)
= [1 + (a_n - 1) \beta_n] d^2(x_n, p) + \beta_n^2 d^2(x_n, T^a x_n).
\]
From (CN∗) inequality, we have
\[
d^2(y_n, T^a y_n) = d^2((1 - \beta_n) x_n \oplus \beta_n T^a x_n, T^a y_n)
\leq (1 - \beta_n) d^2(x_n, T^a y_n) + \beta_n d^2(T^a x_n, T^a y_n)
- (1 - \beta_n) \beta_n d^2(x_n, T^a x_n).
\]
Substituting (45) and (46) into (43), we get
\[
d^2(T^a y_n, p)
\leq a_n [1 + (a_n - 1) \beta_n] d^2(x_n, p) + a_n \beta_n^2 d^2(x_n, T^a x_n)
+ (1 - \beta_n) d^2(x_n, T^a y_n) + \beta_n d^2(T^a x_n, T^a y_n)
- (1 - \beta_n) \beta_n^2 d^2(x_n, T^a x_n).
\]
From (41) and (47), we obtain
\[
d^2(x_{n+1}, p)
\leq (1 - \alpha_n) d^2(x_n, p) + \alpha_n a_n [1 + (a_n - 1) \beta_n] d^2(x_n, p)
+ \alpha_n a_n \beta_n^2 d^2(x_n, T^a y_n) + \alpha_n d^2(T^a x_n, T^a y_n)
+ \alpha_n \beta_n d^2(T^a x_n, T^a y_n) - \alpha_n \beta_n (1 - \beta_n) \beta_n d^2(x_n, T^a x_n)
- (1 - \alpha_n) a_n d^2(x_n, T^a y_n)
= [1 + a_n (a_n - 1) + a_n (a_n - 1) \beta_n] d^2(x_n, p)
- \alpha_n \beta_n (1 - \beta_n - a_n \beta_n) d^2(x_n, T^a y_n)
- \alpha_n (\beta_n - a_n) d^2(x_n, T^a x_n) + \alpha_n \beta_n^2 d^2(T^a x_n, T^a y_n).
\]
Since \(T\) is uniformly \(L\)-Lipschitzian, we have
\[
d(T^a x_n, T^a y_n) \leq L \cdot d(x_n, y_n)
= L \cdot d(x_n, (1 - \beta_n) x_n \oplus \beta_n T^a x_n)
\leq L \beta_n \cdot d(x_n, T^a x_n).
\]
Substituting (49) into (48), we obtain
\[
d^2(x_{n+1}, p) \leq [1 + a_n (a_n - 1) (1 + a_n \beta_n)] d^2(x_n, p)
- \alpha_n \beta_n (1 - \beta_n - a_n \beta_n - L \beta_n^2) d^2(x_n, T^a x_n)
- \alpha_n (\beta_n - a_n) d^2(x_n, T^a y_n), \quad \forall p \in F(T).
\]
This completes the proof of Lemma 9.

\qed

Lemma 10. Let \((X, d)\) be a CAT(0) space and let \(C\) be a nonempty bounded convex subset of \(X\). Let \(T : C \to C\) be a uniformly \(L\)-Lipschitzian and asymptotically hemicontractive with sequence \([a_n] \subseteq [1, \infty]\), for all \(n \in \mathbb{N}\) and \(\sum_{n=1}^{\infty} (a_n - 1) < \infty\). Let \(F(T)\) be nonempty. Given \(x_1 \in C\), define the iteration scheme \([x_n]\) by
\[
x_{n+1} = (1 - \alpha_n) x_n \oplus \alpha_n T^a y_n,
\]
y_n = (1 - \beta_n) x_n \oplus \beta_n T^a x_n, \quad n \geq 1.
\]
If \(0 \leq \alpha_n \leq \beta_n \leq b\) for some \(b > 0\) and \(b \in (0, (\sqrt{1 + L^2} - 1)/L^2)\), then
\[
\lim_{n \to \infty} d(x_n, T x_n) = 0.
\]

Proof. First, we will prove \(\lim_{n \to \infty} d(x_n, T^a x_n) = 0\). From Lemma 9 and \(0 \leq \alpha_n \leq \beta_n\), we have
\[
d^2(x_{n+1}, p) \leq [1 + a_n (a_n - 1) (1 + a_n \beta_n)] d^2(x_n, p)
- \alpha_n \beta_n (1 - \beta_n - a_n \beta_n - L \beta_n^2) d^2(x_n, T^a x_n).
\]
Thus
\[d^2(x_{n+1}, p) - d^2(x_n, p) \]
\[\leq \alpha_n (a_n - 1) (1 + a_n \beta_n) d^2(x_n, p) \]
\[- \alpha_n \beta_n (1 - \beta_n - a_n \beta_n - L^2 \beta_n^2) d^2(x_n, T^n x_n). \]

Since \(\sum_{n=1}^{\infty} (a_n - 1) < \infty \), we have \(\lim_{n \to \infty} (a_n - 1) = 0 \). Hence, \(\{a_n\} \) is bounded. By boundedness of \(C \) and \(0 \leq \alpha_n \leq \beta_n \leq 1 \), we obtain that \(\{\alpha_n (1 + a_n \beta_n) d^2(x_n, p)\} \) is bounded. Therefore, there exists a constant \(M > 0 \) such that
\[0 \leq \alpha_n (1 + a_n \beta_n) d^2(x_n, p) \leq M. \] (55)

From (54) and (55), we get
\[d^2(x_{n+1}, p) - d^2(x_n, p) \leq (a_n - 1) M - \alpha_n \beta_n (1 - \beta_n - a_n \beta_n - L^2 \beta_n^2) d^2(x_n, T^n x_n). \] (56)

Let \(D = 1 - 2b - L^2 b^2 > 0 \). Since \(\lim_{n \to \infty} a_n = 1 \), there exists \(N \in \mathbb{N} \) such that
\[1 - \beta_n - a_n \beta_n - L^2 \beta_n^2 \geq 1 - b - a_n b - L^2 b^2 \geq \frac{D}{2} > 0, \] (57)

for all \(n \geq N \). Suppose that \(\lim_{n \to \infty} d(x_n, T^n x_n) \neq 0 \), then there exist a \(\varepsilon_0 > 0 \) and a subsequence \(\{x_{n_i}\} \) of \(\{x_n\} \) such that
\[d^2(x_{n_i}, T^{n_i} x_{n_i}) \geq \varepsilon_0. \] (58)

Without loss of generality, we let \(n_1 \geq N \). From (56), we have
\[\alpha_n \beta_n (1 - \beta_n - a_n \beta_n - L^2 \beta_n^2) d^2(x_n, T^n x_n) \]
\[\leq (a_n - 1) M + d^2(x_n, p) - d^2(x_{n+1}, p), \] (59)

so
\[\sum_{i=1}^{n} \alpha_n \beta_n (1 - \beta_n - a_n \beta_n - L^2 \beta_n^2) d^2(x_n, T^n x_n) \]
\[= \sum_{m=n_1}^{n} \alpha_m \beta_m (1 - \beta_m - a_m \beta_m - L^2 \beta_m^2) d^2(x_m, T^m x_m) \]
\[\leq \sum_{m=n_1}^{n} (a_m - 1) M + d^2(x_m, p) - d^2(x_{m+1}, p). \] (60)

From (57)–(60) and \(\varepsilon \leq \alpha_n \leq \beta_n \), we obtain
\[i \cdot \varepsilon^2 \cdot \frac{D}{2} \cdot \varepsilon_0 \leq \sum_{m=n_1}^{n} (a_m - 1) M + d^2(x_m, p) - d^2(x_{m+1}, p). \] (61)

Since \(\sum_{n=1}^{\infty} (a_n - 1) < \infty \) and the boundedness of \(C \), the right side of (61) is bounded. However, if we have \(i \to \infty \), then the left side of (61) is unbounded. This is a contradiction. Therefore,
\[\lim_{n \to \infty} d(x_n, T^n x_n) = 0. \] (62)

Since \(T \) is a uniformly \(L \)-Lipschitzian, from Lemma 6, we get
\[\lim_{n \to \infty} d(x_n, T x_n) = 0. \] (63)

This completes the proof of Lemma 10.

Theorem 11. Let \((X, d)\) be a complete CAT(0) space, let \(C \) be a nonempty bounded closed convex subset of \(X \), and let \(T : C \to C \) be a completely continuous and uniformly \(L \)-Lipschitzian and asymptotically hemicontractive with sequence \(\{a_n\} \subset [1, \infty) \) satisfying \(\sum_{n=1}^{\infty} (a_n - 1) < \infty \) for all \(n \in \mathbb{N} \). Given \(x_1 \in C \), define the iterative scheme \(\{x_n\} \) by
\[x_{n+1} = (1 - \alpha_n) x_n \oplus \alpha_n T^n y_n, \]
\[y_n = (1 - \beta_n) x_n \oplus \beta_n T^n x_n, \quad n \geq 1. \] (64)

If \(\{\alpha_n\}, \{\beta_n\} \subset [0, 1] \) with \(\varepsilon \leq \alpha_n \leq \beta_n \leq b \) for some \(\varepsilon > 0 \) and \(b \in (0, (1 + L^2 - 1)/L^2) \), then \(\{x_n\} \) converges strongly to some fixed point of \(T \).

Proof. Since \(T \) is a completely continuous mapping in a bounded closed convex subset \(C \) of complete metric space, from Schauder’s theorem, \(F(T) \) is nonempty. Since \(T \) is completely continuous, there exist a convergent subset \(\{T x_n\} \) of \(\{T x_n\} \). Let
\[\lim_{i \to \infty} T x_n = p. \] (65)

Since \(\lim_{n \to \infty} d(x_n, T x_n) = 0 \), from Lemma 10, we have
\[\lim_{i \to \infty} x_n = p. \] (66)

On the other hand, from the continuity of \(T \), (66), and Lemma 10, we have
\[d(p, T p) = \lim_{i \to \infty} d(x_n, T x_n) = 0. \] (67)

This means that \(p \) is a fixed point of \(T \). From (55), (57), and \(\alpha_n \leq \beta_n \), we obtain Lemma 9 that
\[d^2(x_{m+1}, p) \leq d^2(x_m, p) + (a_n - 1) M. \] (68)

From (66), there exists a subsequence \(\{d^2(x_n, p)\} \) which converges to 0. Therefore, from Lemma 5 and (68),
\[\lim_{n \to \infty} d^2(x_n, p) = 0. \] (69)

Hence,
\[\lim_{n \to \infty} x_n = p. \] (70)

This completes the proof of Theorem 11. □
Corollary 12. Let \((X, d)\) be a complete CAT(0) space, let \(C\) be a nonempty bounded closed convex subset of \(X\), and let \(T : C \to C\) be a completely continuous and uniformly \(L\)-Lipschitzian and asymptotically pseudocontractive with sequence \(\{a_n\} \subseteq [1, \infty)\) satisfying \(\sum_{n=1}^{\infty} (a_n^2 - 1) < \infty\), for all \(n \in \mathbb{N}\). Given \(x_0 \in C\), define the iterative scheme \(\{x_n\}\) by

\[
x_{n+1} = (1 - \alpha_n) x_n \oplus \alpha_n T^{(n)} y_n,
\]

and

\[
y_n = (1 - \beta_n) x_n \oplus \beta_n T^{(n)} x_n, \quad n \geq 1.
\]

Then \(\{x_n\}\) converges strongly to some fixed point of \(T\).

Proof. By Definition 2, \(T\) is an asymptotically pseudocontractive mapping, then \(T\) is an asymptotically hemicontractive mapping. Since \(\alpha_n \in [1, \infty)\), we have \(a_n^2 - 1 \geq \alpha_n - 1 \geq 0\). Obviously, \(\sum_{n=1}^{\infty} (\alpha_n - 1) \leq \sum_{n=1}^{\infty} (a_n^2 - 1) < \infty\). Therefore, Corollary 12 can be proved by using Theorem II.

4. Some Remarks and Open Problems

Let \(S\) be a semigroup. We denote by \(B(S)\) the space of all bounded real-valued functions defined on \(S\) with supremum norm. For each \(s \in S\), we define the left and right translation operators \(l_s\) and \(r_s\) on \(B(S)\) by

\[
(l_s f)(t) = f(st), \quad (r_s f)(t) = f(ts),
\]

for each \(t \in S\) and \(f \in B(S)\), respectively. Let \(X\) be a subspace of \(B(S)\) containing \(1\). An element \(\mu\) in the dual space \(X^*\) of \(X\) is said to be a mean on \(X\) if \(\|\mu\| = \mu(1) = 1\). For \(s \in S\), we can define a point evaluation \(\delta_s\), by \(\delta_s(f) = f(s)\) for each \(f \in X\). It is well known that \(\mu\) is a mean on \(X\) if and only if

\[
\inf_{s \in S} \delta_s(f) \leq \mu(f) \leq \sup_{s \in S} \delta_s(f),
\]

for each \(f \in X\). Each mean on \(X\) is the weak* limit of convex combination of point evaluations.

Let \(X\) be a translation invariant subspace of \(B(S)\) (i.e., \(l_s X \subseteq X\) and \(r_s X \subseteq X\) for each \(s \in S\)) containing \(1\). Then a mean \(\mu\) on \(X\) is said to be left invariant (resp., right invariant) if

\[
\mu(l_s f) = \mu(f) \quad \text{(resp.,} \quad \mu(r_s f) = \mu(f)\),
\]

for each \(s \in S\) and \(f \in X\). A mean \(\mu\) on \(X\) is said to be invariant if \(\mu\) is both left and right invariant ([30–34]). \(X\) is said to be left (resp., right) amenable if \(X\) has a left (resp., right) invariant mean. \(X\) is amenable if \(X\) is left and right amenable. In this case, we say that the semigroup \(S\) is an amenable semigroup (see [35, 36]). Moreover, \(B(S)\) is amenable when \(S\) is a commutative semigroup or a solvable group. However, the free group or semigroup of two generators is not left or right amenable.

A net \(\{\mu_\alpha\}\) of means on \(X\) is said to be asymptotically left (resp., right) invariant if

\[
\lim_{\alpha} (\mu_\alpha (l_s f) - \mu_\alpha (f)) = 0 \quad \text{(resp.,} \quad \lim_{\alpha} (\mu_\alpha (r_s f) - \mu_\alpha (f)) = 0),
\]

for each \(f \in X\) and \(s \in S\), and it is said to be left (resp., right) strongly asymptotically invariant (or strong regular) if

\[
\lim_{\alpha} \|\mu_\alpha - \mu\| = 0 \quad \text{(resp.,} \quad \lim_{\alpha} \|\mu_\alpha - \mu\| = 0),
\]

for each \(s \in S\), where \(l_s^*\) and \(r_s^*\) are the adjoint operators of \(l_s\) and \(r_s\), respectively. Such nets were first studied by Day in [35] where they were called weak* invariant and norm invariant, respectively.

It is easy to see that if a semigroup \(S\) is left (resp., right) amenable, then the semigroup \(S' = S \cup \{e\}\), where \(e s = s e = s'\) for all \(s' \in S\) is also left (resp., right) amenable and conversely.

A semigroup \(S\) is called left reversible if any two right ideals of \(S\) have nonvoid intersection, that is, \(a S \cap b S \neq \emptyset\) for \(a, b \in S\). In this case, \((S, \leq)\) is a directed system when the binary relation “\(\leq\)” on \(S\) is defined by \(a \leq b\) if and only if \(\{a\} \cup a S \supseteq \{b\} \cup b S\), for \(a, b \in S\). It is easy to see that \(t \leq t s\) for all \(t, s \in S\). Further, if \(t \leq s\), then \(pt \leq ps\) for all \(p \in S\). The class of left reversible semigroup includes all groups and commutative semigroups. If a semigroup \(S\) is left amenable, then \(S\) is left reversible. But the converse is not true ([31, 37–41]).

Let \(S\) be a semigroup and \(F(T)\) denote the fixed point set of \(T\). Then \(F(S) = \{T_s : s \in S\}\) is called a representation of \(S\) if \(T_e = I\) and \(T_{st} = T_s T_t\) for each \(s, t \in S\). We denote by \(F(3)\) the set of common fixed points of \(\{T_s : s \in S\}\), that is,

\[
F(3) = \bigcap_{s \in S} F(T_s) = \bigcap_{s \in S} \{x \in C : T_s x = x\}.
\]

Open Problem 1. It will be interesting to obtain a generalization of both Theorems 7 and 11 to commutative, amenable, and reversible semigroups as in the case of Hilbert spaces or some Banach spaces (cf. [8, 30, 32, 42–45]).

For a real number \(\kappa\), a \(CAT(\kappa)\) space is defined by a geodesic metric space whose geodesic triangle is sufficiently thinner than the corresponding triangle in a model space with curvature \(\kappa\).

For \(\kappa = 0\), the 2-dimensional model space \(M_\kappa^2 = M_0^2\) is the Euclidean space \(\mathbb{R}^2\) with the metric induced from the Euclidean norm. For \(\kappa > 0\), \(M_\kappa^2\) is the 2-dimensional sphere \((1/\sqrt{\kappa})\mathbb{S}^2\) whose metric is length of a minimal great arc joining each two points. For \(\kappa < 0\), \(M_\kappa^2\) is the 2-dimensional hyperbolic space \((1/\sqrt{-\kappa})\mathbb{H}^2\) with the metric defined by a usual hyperbolic distance. For more details about the properties of \(CAT(\kappa)\) spaces, see [4, 46–48].

Open Problem 2. It will be interesting to obtain a generalization of both Theorems 7 and 11 to \(CAT(\kappa)\) space.

Conflict of Interests

The author declares that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

The author would like to thank Professor A. T.-M. Lau and Professor J. K. Kim for their helpful suggestions. Also, special
thanks are due to the referees for their deep insight which improved the presentation of this paper. This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2012R1A1A4A01010526).

