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Abstract. 
This paper focuses on almost-periodic time-dependent perturbations of an almost-periodic differential equation near the degenerate equilibrium point. Using the KAM method, the perturbed equation can be reduced to a suitable normal form with zero as equilibrium point by an affine almost-periodic transformation. Hence, for the equation we can obtain a small almost-periodic solution.


1. Introduction and Main Result
Reducibility of nonautonomous finite-dimensional systems with quasiperiodic coefficients has basic importance in the analysis of dynamical systems; see [1, 2]. Unfortunately, we cannot guarantee in general such reducibility. In the last years, establishing the reducibility of finite-dimensional systems by means of the KAM tools is an active field of research, and many authors are devoted to the study of reducibility of such systems. In 1996, Jorba and Simó [3] considered reducibility of the following nonlinear quasiperiodic system near an elliptic equilibrium point:
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				̇
				𝑥
				=
				(
				𝐴
				+
				𝜖
				𝑄
				(
				𝑡
				,
				𝜖
				)
				)
				𝑥
				+
				𝜖
				𝑔
				(
				𝑡
				,
				𝜖
				)
				+
				ℎ
				(
				𝑥
				,
				𝑡
				,
				𝜖
				)
				,
				𝑥
				∈
				ℝ
			

			

				𝑑
			

			

				,
			

		
	

					where 
	
		
			

				𝐴
			

		
	
 is assumed to be elliptic. 
	
		
			
				𝑄
				(
				𝑡
				,
				𝜖
				)
			

		
	
, 
	
		
			
				𝑔
				(
				𝑡
				,
				𝜖
				)
			

		
	
 and 
	
		
			
				ℎ
				(
				𝑥
				,
				𝑡
				,
				𝜖
				)
			

		
	
 depend on time in a quasiperiodic way with basic frequencies 
	
		
			
				(
				𝜔
			

			

				1
			

			
				,
				…
				,
				𝜔
			

			

				𝑟
			

			

				)
			

		
	
, 
	
		
			
				ℎ
				(
				𝑥
				,
				𝜔
				𝑡
				)
				=
				𝑂
				(
				𝑥
			

			

				2
			

			

				)
			

		
	
 as 
	
		
			
				𝑥
				→
				0
			

		
	
. Under a nondegenerate condition and a nonresonant condition, using KAM iteration they proved that for most sufficiently small 
	
		
			

				𝜖
			

		
	
 by an affine quasiperiodic transformation the system (1) is reducible to the following form: 
						
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				̇
				𝑥
				=
				𝐴
			

			

				∗
			

			
				(
				𝜖
				)
				𝑥
				+
				ℎ
			

			

				∗
			

			
				(
				𝑥
				,
				𝑡
				,
				𝜖
				)
				,
				𝑥
				∈
				ℝ
			

			

				𝑑
			

			

				,
			

		
	

					where 
	
		
			

				𝐴
			

			

				∗
			

		
	
 is a constant matrix close to 
	
		
			

				𝐴
			

		
	
 and 
	
		
			

				ℎ
			

			

				∗
			

			
				(
				𝑥
				,
				𝑡
				,
				𝜖
				)
				=
				𝑂
				(
				𝑥
			

			

				2
			

			
				)
				(
				𝑥
				→
				0
				)
			

		
	
 is a high-order term close to 
	
		
			

				ℎ
			

		
	
. Therefore, the system (1) has a quasiperiodic solution near the zero equilibrium point. Some similar results were obtained in [4].
Recently, Xu and Jiang [5] considered the following nonlinear quasiperiodic differential equation: 
						
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				̇
				𝑥
				=
				𝑥
			

			
				2
				𝑛
				+
				1
			

			
				+
				ℎ
				(
				𝑥
				,
				𝜔
				𝑡
				)
				+
				𝑓
				(
				𝑥
				,
				𝜔
				𝑡
				)
				,
				𝑥
				∈
				ℝ
				,
			

		
	

					where 
	
		
			
				𝑛
				≥
				0
			

		
	
 is an integer, 
	
		
			
				ℎ
				=
				𝑂
				(
				𝑥
			

			
				2
				𝑛
				+
				2
			

			

				)
			

		
	
  
	
		
			
				(
				𝑥
				→
				0
				)
			

		
	
 is a higher-order term, 
	
		
			

				𝑓
			

		
	
 is a small perturbation term, and 
	
		
			

				ℎ
			

		
	
 and 
	
		
			

				𝑓
			

		
	
 are all real analytic in 
	
		
			

				𝑥
			

		
	
 and 
	
		
			

				𝑡
			

		
	
, quasiperiodic in 
	
		
			

				𝑡
			

		
	
 with frequency 
	
		
			

				𝜔
			

		
	
. Under the Diophantine condition, when 
	
		
			

				𝑓
			

		
	
 is sufficiently small the differential equation (3) can be reduced to a suitable normal form with zero as equilibrium point by an affine quasiperiodic transformation, so it has a quasiperiodic solution near zero.
In 1996, Xu and You [6] considered the following linear almost-periodic differential equation: 
						
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			
				[
				]
				̇
				𝑥
				=
				𝐴
				+
				𝜖
				𝑄
				(
				𝑡
				)
				𝑥
				,
				𝑥
				∈
				ℝ
			

			

				𝑑
			

			

				,
			

		
	

					where 
	
		
			

				𝐴
			

		
	
 is a constant 
	
		
			
				𝑑
				×
				𝑑
			

		
	
 matrix with different eigenvalues 
	
		
			

				𝜆
			

			

				1
			

			
				,
				…
				,
				𝜆
			

			

				𝑑
			

		
	
 and 
	
		
			
				𝑄
				(
				𝑡
				)
			

		
	
 is a 
	
		
			
				𝑑
				×
				𝑑
			

		
	
 almost-periodic matrix with the frequency 
	
		
			
				𝜔
				=
				(
				𝜔
			

			

				1
			

			
				,
				𝜔
			

			

				2
			

			
				,
				…
				)
			

		
	
. Under some small divisor condition, they proved that, for most sufficiently small 
	
		
			

				𝜖
			

		
	
 the system (4) is reducible to the form 
	
		
			
				̇
				𝑦
				=
				𝐵
				𝑦
			

		
	
 by an affine almost-periodic transformation.
By the above inspired works [5, 6], we consider the following nonlinear almost-periodic differential equation: 
						
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			
				̇
				𝑥
				=
				(
				𝐴
				+
				𝜖
				𝑎
				(
				𝑡
				)
				)
				𝑥
			

			
				2
				𝑛
				+
				1
			

			
				+
				ℎ
				(
				𝑥
				,
				𝑡
				,
				𝜖
				)
				+
				𝑓
				(
				𝑥
				,
				𝑡
				,
				𝜖
				)
				,
				𝑥
				∈
				ℝ
				,
			

		
	

					where 
	
		
			
				𝑛
				≥
				0
			

		
	
 is an integer, 
	
		
			

				𝐴
			

		
	
 is a positive number, 
	
		
			

				𝜖
			

		
	
 is a small parameter, 
	
		
			

				ℎ
			

		
	
 is a higher-order term, and 
	
		
			

				𝑓
			

		
	
 is a small perturbation term. Under some suitable conditions, we show that the differential equation (5) can be reduced to a suitable normal form with zero as equilibrium point by an affine almost-periodic transformation, so it has an almost-periodic solution near zero.
For our purpose, we first introduce some definitions and notations. 
Definition 1. The function 
	
		
			
				𝑓
				(
				𝑡
				)
			

		
	
 is called a quasiperiodic function of 
	
		
			

				𝑡
			

		
	
 with frequencies 
	
		
			

				𝜔
			

			

				1
			

			
				,
				𝜔
			

			

				2
			

			
				,
				…
				,
				𝜔
			

			

				𝑚
			

		
	
, if there is a function 
	
		
			
				𝐹
				(
				𝜃
				)
				=
				𝐹
				(
				𝜃
			

			

				1
			

			
				,
				𝜃
			

			

				2
			

			
				,
				…
				,
				𝜃
			

			

				𝑚
			

			

				)
			

		
	
, which is 
	
		
			
				2
				𝜋
			

		
	
-periodic in all its arguments 
	
		
			

				𝜃
			

			

				𝑖
			

		
	
  
	
		
			
				(
				𝑖
				=
				1
				,
				…
				,
				𝑚
				)
			

		
	
, such that 
	
		
			
				𝑓
				(
				𝑡
				)
				=
				𝐹
				(
				𝜔
				𝑡
				)
				=
				𝐹
				(
				𝜔
			

			

				1
			

			
				𝑡
				,
				𝜔
			

			

				2
			

			
				𝑡
				,
				…
				,
				𝜔
			

			

				𝑚
			

			
				𝑡
				)
			

		
	
. If 
	
		
			
				𝐹
				(
				𝜃
				)
			

		
	
 is analytic on a strip domain 
	
		
			

				𝕋
			

			

				𝑠
			

			
				=
				{
				𝜃
				∈
				ℂ
			

			

				𝑚
			

			
				/
				2
				𝜋
				ℤ
			

			

				𝑚
			

			
				∣
				|
				𝐼
				𝑚
				𝜃
			

			

				𝑗
			

			
				|
				≤
				𝑠
				,
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑚
				}
			

		
	
, we say that 
	
		
			
				𝑓
				(
				𝑡
				)
			

		
	
 is analytic quasiperiodic on 
	
		
			

				𝕋
			

			

				𝑠
			

		
	
. Expand 
	
		
			
				𝑓
				(
				𝑡
				)
			

		
	
 as a Fourier series 
	
		
			
				∑
				𝑓
				=
			

			
				𝑘
				∈
				ℤ
			

			

				𝑚
			

			

				𝑓
			

			

				𝑘
			

			

				𝑒
			

			
				𝑖
				⟨
				𝑘
				,
				𝜃
				⟩
			

		
	
, where 
	
		
			
				√
				𝑖
				=
			

			
				
			
			
				−
				1
			

		
	
 and 
	
		
			
				𝜃
				=
				𝜔
				𝑡
			

		
	
. Define 
	
		
			
				‖
				𝑓
				‖
			

			

				𝕋
			

			

				𝑠
			

			
				=
				∑
			

			
				𝑘
				∈
				ℤ
			

			

				𝑚
			

			
				|
				𝑓
			

			

				𝑘
			

			
				|
				𝑒
			

			
				𝑠
				|
				𝑘
				|
			

		
	
.Write 
	
		
			
				𝐷
				(
				0
				,
				𝑟
				)
				=
				{
				𝑥
				∈
				ℂ
				|
				𝑥
				|
				≤
				𝑟
				}
			

		
	
 and 
	
		
			

				Δ
			

			
				𝑟
				,
				𝑠
			

			
				=
				𝐷
				(
				0
				,
				𝑟
				)
				×
				𝕋
			

			

				𝑠
			

		
	
.
Definition 2. Let 
	
		
			
				𝑃
				(
				𝑥
				,
				𝑡
				)
			

		
	
 be real analytic in 
	
		
			

				𝑥
			

		
	
 and t on 
	
		
			

				Δ
			

			
				𝑟
				,
				𝑠
			

		
	
, and let 
	
		
			
				𝑃
				(
				𝑥
				,
				𝑡
				)
			

		
	
 be quasiperiodic with respect to 
	
		
			

				𝑡
			

		
	
 with the frequency 
	
		
			

				𝜔
			

		
	
. Then 
	
		
			

				𝑃
			

		
	
 can be expanded as a Fourier series as follows: 
							
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			
				
				𝑃
				(
				𝑥
				,
				𝑡
				)
				=
			

			
				𝑘
				∈
				ℤ
			

			

				𝑚
			

			

				𝑃
			

			

				𝑘
			

			
				(
				𝑥
				)
				𝑒
			

			
				𝑖
				⟨
				𝑘
				,
				𝜃
				⟩
			

			

				.
			

		
	

						Define a norm by 
							
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			
				‖
				𝑃
				‖
			

			

				Δ
			

			
				𝑟
				,
				𝑠
			

			
				=
				
			

			
				𝑘
				∈
				ℤ
			

			

				𝑚
			

			
				|
				|
				𝑃
			

			

				𝑘
			

			
				|
				|
			

			

				𝑟
			

			

				𝑒
			

			
				|
				𝑘
				|
				𝑠
			

			

				,
			

		
	

						where 
	
		
			

				𝑃
			

			

				𝑘
			

			
				∑
				(
				𝑥
				)
				=
			

			
				∞
				𝑙
				=
				0
			

			

				𝑃
			

			
				𝑙
				𝑘
			

			

				𝑥
			

			

				𝑙
			

		
	
 and 
	
		
			
				|
				𝑃
			

			

				𝑘
			

			

				|
			

			

				𝑟
			

			
				=
				s
				u
				p
			

			
				𝑥
				∈
				𝐷
				(
				0
				,
				𝑟
				)
			

			

				∑
			

			
				∞
				𝑙
				=
				0
			

			
				|
				𝑃
			

			
				𝑙
				𝑘
			

			
				|
				|
				𝑥
				|
			

			

				𝑙
			

		
	
. It is easy to see that 
							
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				‖
				‖
				𝑃
			

			

				1
			

			

				𝑃
			

			

				2
			

			
				‖
				‖
			

			

				Δ
			

			
				𝑟
				,
				𝑠
			

			
				≤
				‖
				‖
				𝑃
			

			

				1
			

			
				‖
				‖
			

			

				Δ
			

			
				𝑟
				,
				𝑠
			

			
				⋅
				‖
				‖
				𝑃
			

			

				2
			

			
				‖
				‖
			

			

				Δ
			

			
				𝑟
				,
				𝑠
			

			

				.
			

		
	

Definition 3 (see [7]).  A function 
	
		
			

				Δ
			

		
	
 is called an approximation function if it satisfies the following:(1)
	
		
			
				Δ
				∶
				[
				0
				,
				+
				∞
				)
				→
				[
				1
				,
				+
				∞
				)
			

		
	
, 
	
		
			
				Δ
				(
				0
				)
				=
				1
			

		
	
, and 
	
		
			

				Δ
			

		
	
 is a nondecreasing function;(2)
	
		
			
				l
				o
				g
				Δ
				(
				𝑡
				)
				/
				𝑡
			

		
	
 is a decreasing function in 
	
		
			
				[
				0
				,
				+
				∞
				)
			

		
	
;(3)
	
		
			

				∫
			

			
				∞
				0
			

			
				l
				o
				g
				Δ
				(
				𝑡
				)
				/
				𝑡
			

			

				2
			

			
				<
				+
				∞
			

		
	
. 
					Obviously, any positive power of an approximation function is again an approximation function, so is the product of two such functions.
Definition 4 (see [8]). Suppose that 
	
		
			

				ℕ
			

		
	
 is the natural number set and 
	
		
			

				𝜏
			

		
	
 is a set composed of the subset of 
	
		
			

				ℕ
			

		
	
. We say that 
	
		
			
				(
				𝜏
				,
				[
				⋅
				]
				)
			

		
	
 is the finite spatial structure on 
	
		
			

				ℕ
			

		
	
 if 
	
		
			

				𝜏
			

		
	
 satisfies the following:(1)the empty set 
	
		
			
				∅
				∈
				𝜏
			

		
	
;(2)if 
	
		
			

				Λ
			

			

				1
			

			
				,
				Λ
			

			

				2
			

			
				∈
				𝜏
			

		
	
, then 
	
		
			

				Λ
			

			

				1
			

			
				∪
				Λ
			

			

				2
			

			
				∈
				𝜏
			

		
	
;(3)
	
		
			

				⋃
			

			
				Λ
				∈
				𝜏
			

			
				Λ
				=
				ℕ
			

		
	
, 
	
		
			
				[
				∅
				]
				=
				0
			

		
	
 and 
	
		
			
				[
				Λ
			

			

				1
			

			
				∪
				Λ
			

			

				2
			

			
				]
				≤
				[
				Λ
			

			

				1
			

			
				]
				+
				[
				Λ
			

			

				2
			

			

				]
			

		
	
 (
	
		
			
				[
				⋅
				]
			

		
	
 is called a weight function defined in 
	
		
			

				𝜏
			

		
	
). 
Definition 5. Assume 
	
		
			
				𝑘
				=
				(
				𝑘
			

			

				1
			

			
				,
				𝑘
			

			

				2
			

			
				,
				…
				)
				∈
				ℤ
			

			

				∞
			

		
	
, the set
							
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				𝑖
				s
				u
				p
				p
				𝑘
				=
				
				
			

			

				1
			

			
				,
				𝑖
			

			

				2
			

			
				,
				…
				,
				𝑖
			

			

				𝑛
			

			
				
				∣
				𝑘
			

			

				𝑗
			

			
				≠
				0
				a
				s
				𝑗
				=
				𝑖
			

			

				1
			

			
				,
				𝑖
			

			

				2
			

			
				,
				…
				,
				𝑖
			

			

				𝑛
			

			
				;
				𝑘
			

			

				𝑗
			

			
				
				=
				0
				a
				s
				𝑗
				=
				o
				t
				h
				e
				r
				w
				i
				s
				e
			

		
	

						is called the support set of 
	
		
			

				𝑘
			

		
	
. Consider
							
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				[
				𝑘
				]
				=
				∶
				i
				n
				f
			

			
				s
				u
				p
				p
				𝑘
				⊂
				Λ
				,
				Λ
				∈
				𝜏
			

			
				[
				Λ
				]
			

		
	

						is called the weight of 
	
		
			

				𝑘
			

		
	
, and 
	
		
			
				∑
				|
				𝑘
				|
				=
				∶
			

			
				∞
				𝑖
				=
				1
			

			
				|
				𝑘
			

			

				𝑖
			

			

				|
			

		
	
.
Definition 6. If 
	
		
			
				∑
				𝑄
				(
				𝑡
				)
				=
			

			
				Λ
				∈
				𝜏
			

			

				𝑄
			

			

				Λ
			

			
				(
				𝑡
				)
			

		
	
 with 
	
		
			

				𝑄
			

			

				Λ
			

			
				(
				𝑡
				)
			

		
	
 is quasiperiodic function with the frequency 
	
		
			

				𝜔
			

			

				Λ
			

			
				=
				{
				𝜔
			

			

				𝑖
			

			
				∣
				𝑖
				∈
				Λ
				}
			

		
	
, then 
	
		
			
				𝑄
				(
				𝑡
				)
			

		
	
 is said to be almost-periodic function with the finite spatial structure 
	
		
			
				(
				𝜏
				,
				[
				⋅
				]
				)
			

		
	
. If 
	
		
			
				𝜔
				=
				(
				𝜔
			

			

				1
			

			
				,
				𝜔
			

			

				2
			

			
				,
				…
				)
			

		
	
 is the biggest subset of 
	
		
			
				∪
				𝜔
			

			

				Λ
			

		
	
 in the sense of integer modulus, then 
	
		
			

				𝜔
			

		
	
 is called to be the frequency of 
	
		
			
				𝑄
				(
				𝑡
				)
			

		
	
.If almost-periodic function 
	
		
			
				𝑄
				(
				𝑡
				)
			

		
	
 has a rapidly converging Fourier series expansion
							
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			
				
				𝑄
				(
				𝑡
				)
				=
			

			
				𝑘
				∈
				𝑍
			

			

				∞
			

			

				𝑈
			

			

				𝑘
			

			

				𝑒
			

			
				𝑖
				⟨
				𝑘
				,
				𝜔
				𝑡
				⟩
			

			

				,
			

		
	

						where 
	
		
			
				𝜔
				=
				(
				𝜔
			

			

				1
			

			
				,
				𝜔
			

			

				2
			

			
				,
				…
				)
			

		
	
 is the frequency and 
	
		
			
				𝑘
				=
				(
				𝑘
			

			

				1
			

			
				,
				𝑘
			

			

				2
			

			
				,
				…
				)
			

		
	
 have only finitely many nonzero components, then 
	
		
			
				𝑄
				(
				𝑡
				)
			

		
	
 is analytic in 
	
		
			

				𝑡
			

		
	
. 
Definition 7. Let 
	
		
			
				∑
				𝑄
				(
				𝑡
				)
				=
			

			
				Λ
				∈
				𝜏
			

			

				𝑄
			

			

				Λ
			

			
				(
				𝑡
				)
			

		
	
 with the frequency 
	
		
			
				𝜔
				=
				(
				𝜔
			

			

				1
			

			
				,
				𝜔
			

			

				2
			

			
				,
				…
				)
			

		
	
. For 
	
		
			
				𝑚
				≥
				0
			

		
	
, 
	
		
			
				𝑠
				≥
				0
			

		
	
,
							
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				𝑄
				(
				𝑡
				)
			

			
				𝑚
				,
				𝑠
			

			
				=
				
			

			
				Λ
				∈
				𝜏
			

			

				𝑒
			

			
				𝑚
				[
				Λ
				]
			

			
				‖
				‖
				𝑄
			

			

				Λ
			

			
				‖
				‖
				(
				𝑡
				)
			

			

				𝕋
			

			

				𝑠
			

		
	

						is called the weight norm of 
	
		
			
				𝑄
				(
				𝑡
				)
			

		
	
 in the finite spatial structure 
	
		
			
				(
				𝜏
				,
				[
				⋅
				]
				)
			

		
	
. 
From Definition 7, we know that 
	
		
			
				|
				𝑄
				(
				𝑡
				)
				|
				≤
				|
				|
				|
				𝑄
				(
				𝑡
				)
				|
				|
				|
			

			
				0
				,
				𝑠
			

			
				≤
				|
				|
				|
				𝑄
				(
				𝑡
				)
				|
				|
				|
			

			
				𝑚
				,
				𝑠
			

		
	
, for 
	
		
			
				𝑚
				≥
				0
			

		
	
, 
	
		
			
				𝑠
				≥
				0
			

		
	
.
Definition 8. Let 
	
		
			
				∑
				𝑃
				(
				𝑥
				,
				𝑡
				)
				=
			

			
				Λ
				∈
				𝜏
			

			

				𝑃
			

			

				Λ
			

			
				(
				𝑥
				,
				𝑡
				)
			

		
	
 with the frequency 
	
		
			
				𝜔
				=
				(
				𝜔
			

			

				1
			

			
				,
				𝜔
			

			

				2
			

			
				⋯
				)
			

		
	
, for 
	
		
			
				𝑚
				≥
				0
			

		
	
, 
	
		
			
				𝑠
				≥
				0
			

		
	
, 
							
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				𝑃
				(
				𝑥
				,
				𝑡
				)
			

			
				𝑚
				,
				Δ
			

			
				𝑟
				,
				𝑠
			

			
				=
				
			

			
				Λ
				∈
				𝜏
			

			

				𝑒
			

			
				𝑚
				[
				Λ
				]
			

			
				‖
				‖
				𝑃
			

			

				Λ
			

			
				‖
				‖
				(
				𝑥
				,
				𝑡
				)
			

			

				Δ
			

			
				𝑟
				,
				𝑠
			

		
	

						is called the weight norm of 
	
		
			
				𝑃
				(
				𝑥
				,
				𝑡
				)
			

		
	
 in the finite spatial structure 
	
		
			
				(
				𝜏
				,
				[
				⋅
				]
				)
			

		
	
. 
Let 
	
		
			
				∑
				𝑄
				(
				𝑡
				)
				=
			

			
				Λ
				∈
				𝜏
			

			

				𝑄
			

			

				Λ
			

			
				(
				𝑡
				)
			

		
	
 be almost-periodic function; then 
						
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				[
				𝑄
				]
				=
				l
				i
				m
			

			
				𝑇
				→
				∞
			

			

				
			

			
				𝑇
				−
				𝑇
			

			
				𝑄
				(
				𝑡
				)
				𝑑
				𝑡
			

		
	

					is called the mean value of 
	
		
			
				𝑄
				(
				𝑡
				)
			

		
	
. The existence of the limit can be found in [9].
Throughout this paper, we assume that the following hypotheses hold
	
		
			
				(
				H
				1
				)
			

		
	
 the functions 
	
		
			

				𝑎
			

		
	
, 
	
		
			

				ℎ
			

		
	
, and 
	
		
			

				𝑓
			

		
	
 are real analytic in all variables and almost-periodic in 
	
		
			

				𝑡
			

		
	
 with common frequency vector 
	
		
			
				𝜔
				=
				(
				𝜔
			

			

				1
			

			
				,
				𝜔
			

			

				2
			

			
				,
				…
				)
			

		
	
; they also have the the finite spatial structure 
	
		
			
				(
				𝜏
				,
				[
				⋅
				]
				)
			

		
	
;
	
		
			
				(
				H
				2
				)
			

		
	

	
		
			
				|
				⟨
				𝑘
				,
				𝜔
				⟩
				|
				≥
				𝛼
				/
				Δ
			

			

				4
			

			
				(
				|
				𝑘
				|
				)
				Δ
			

			

				4
			

			
				(
				[
				𝑘
				]
				)
			

		
	
, 
	
		
			
				𝑘
				∈
				ℤ
			

			

				∞
			

			
				⧵
				{
				0
				}
			

		
	
, where 
	
		
			
				𝛼
				>
				0
			

		
	
 is a constant and 
	
		
			

				Δ
			

		
	
 is an approximation function;
	
		
			
				(
				H
				3
				)
			

		
	

	
		
			
				ℎ
				=
				𝒪
				(
				𝑥
			

			
				2
				𝑛
				+
				2
			

			

				)
			

		
	
  
	
		
			
				(
				𝑥
				→
				0
				)
			

		
	
, where 
	
		
			
				𝑛
				≥
				0
			

		
	
, and for fixed 
	
		
			

				𝑚
			

			

				0
			

		
	
, 
	
		
			
				𝑠
				>
				0
			

		
	
, we have 
									
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				𝑎
				(
				𝑡
				)
			

			

				𝑚
			

			

				0
			

			
				,
				𝑠
			

			
				<
				+
				∞
				.
			

		
	

Now we are ready to state the main result of this paper. 
Theorem 9.  Suppose that conditions 
	
		
			
				(
				𝐻
				1
				)
				-
				-
				(
				𝐻
				3
				)
			

		
	
 hold. Then there exists sufficiently small 
	
		
			
				𝜖
				>
				0
			

		
	
, such that if 
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				|
				𝑓
				|
				|
				|
				|
				|
				|
			

			

				𝑚
			

			

				0
			

			
				,
				Δ
			

			
				𝑟
				,
				𝑠
			

			
				≤
				𝜖
				,
			

		
	

						then there exists an affine real analytic almost-periodic transformation of the form 
	
		
			
				𝑥
				=
				𝑦
				+
				𝑢
				(
				𝑡
				)
			

		
	
 such that the differential equation (5) is changed to 
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				̇
				𝑦
				=
				𝐴
			

			

				∗
			

			

				𝑦
			

			
				2
				𝑛
				+
				1
			

			
				+
				𝑓
			

			

				∗
			

			
				(
				𝑦
				,
				𝑡
				)
				,
			

		
	

						where 
	
		
			

				𝑓
			

			

				∗
			

			
				(
				𝑦
				,
				𝑡
				)
				=
				𝑂
				(
				𝑦
				)
			

		
	
 as 
	
		
			
				𝑦
				→
				0
			

		
	
. Moreover, 
	
		
			

				𝑢
			

		
	
 is a real analytic almost-periodic in 
	
		
			

				𝑡
			

		
	
 with 
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				𝑢
				(
				𝑡
				)
			

			
				0
				,
				𝑠
				/
				2
			

			
				
				𝜖
				=
				𝑂
			

			
				1
				/
				(
				2
				𝑛
				+
				2
				)
			

			
				
				,
			

		
	

						and 
	
		
			
				𝑥
				=
				𝑢
				(
				𝑡
				)
			

		
	
 is also an almost-periodic solution of (5).
2. Normal Form for an Almost-Periodic Equation with Parameters
The proof of Theorem 9 is based on a norm form theorem for an almost-periodic equation with parameters. In this section, we first consider the following real almost-periodic differential equation with two parameters:
						
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				[
				𝑎
				]
				̇
				𝑥
				=
				(
				𝐴
				+
				𝜖
				)
				𝜉
			

			
				2
				𝑛
				+
				1
			

			
				−
				𝜆
				+
				(
				𝐴
				+
				𝜖
				𝑎
				(
				𝑡
				)
				)
				Ω
				(
				𝜉
				)
				𝑥
				+
				𝑃
				(
				𝑥
				,
				𝑡
				;
				𝜉
				,
				𝜆
				)
				,
			

		
	

					where 
	
		
			
				[
				𝑎
				]
			

		
	
 is the mean value of 
	
		
			
				𝑎
				(
				𝑡
				)
			

		
	
. 
	
		
			
				𝜆
				∈
				𝐽
				=
				[
				−
				1
				,
				1
				]
			

		
	
, 
	
		
			
				𝜉
				∈
				𝐼
				=
				[
				−
				𝛿
				,
				𝛿
				]
			

		
	
 are parameters and 
	
		
			
				Ω
				(
				𝜉
				)
				=
				(
				2
				𝑛
				+
				1
				)
				𝜉
			

			
				2
				𝑛
			

		
	
.
Let 
	
		
			
				𝑇
				⊂
				ℝ
			

			

				2
			

		
	
 and 
	
		
			
				𝑝
				=
				(
				𝜉
				,
				𝜆
				)
			

		
	
. Denote by 
						
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			
				
				𝐵
				(
				𝑇
				,
				𝜎
				)
				=
				𝑝
				∈
				ℂ
			

			

				2
			

			
				
				∣
				d
				i
				s
				t
				(
				𝑝
				,
				𝑇
				)
				≤
				𝜎
			

		
	

					the complex 
	
		
			

				𝜎
			

		
	
-neighborhood of 
	
		
			

				𝑇
			

		
	
 in the two-dimensional complex space 
	
		
			

				ℂ
			

			

				2
			

		
	
.
We will invoke the KAM iteration technique to prove the following normal form theorem. 
Theorem 10.  Let 
	
		
			

				𝑀
			

			

				0
			

			
				=
				𝐵
				(
				𝐼
				×
				𝐽
				,
				𝜎
			

			

				0
			

			

				)
			

		
	
. Suppose that 
	
		
			

				Ω
			

		
	
 and 
	
		
			

				𝑃
			

		
	
 are analytic on 
	
		
			

				𝑀
			

			

				0
			

		
	
 and 
	
		
			

				Δ
			

			

				𝑟
			

			

				0
			

			
				,
				𝑠
			

			

				0
			

			
				×
				𝑀
			

			

				0
			

		
	
, respectively. Let 
	
		
			

				𝜌
			

			

				0
			

			
				=
				𝑠
			

			

				0
			

			
				/
				8
			

		
	
 and let 
	
		
			

				𝐸
			

			

				0
			

			
				>
				0
			

		
	
. Let 
	
		
			

				𝐾
			

			

				0
			

			
				>
				0
			

		
	
 such that 
	
		
			

				𝐸
			

			

				0
			

			
				=
				𝑒
			

			
				−
				𝜌
			

			

				0
			

			

				𝐾
			

			

				0
			

		
	
. There exists a sufficiently small 
	
		
			

				𝐸
			

			

				0
			

			
				>
				0
			

		
	
 such that if 
							
	
 		
 			
				(
				2
				1
				)
			
 			
				(
				2
				2
				)
			
 		
	

	
		
			

				𝜖
			

			

				0
			

			
				
			
			

				𝐸
			

			

				0
			

			

				𝜎
			

			

				0
			

			
				≤
				1
			

			
				
			
			
				4
				,
				𝜖
			

			

				0
			

			
				
			
			

				𝑟
			

			

				0
			

			

				𝜎
			

			

				0
			

			
				≤
				1
			

			
				
			
			
				,
				𝐸
				1
				6
			

			

				0
			

			
				
			
			

				𝑟
			

			

				0
			

			
				|
				|
				|
				|
				|
				|
				𝑃
				|
				|
				|
				|
				|
				|
				≤
				1
				,
			

			

				𝑚
			

			

				0
			

			
				,
				Δ
			

			
				𝑟
				0
				0
				,
				𝑠
			

			
				×
				𝑀
			

			

				0
			

			
				≤
				𝜖
			

			

				0
			

			
				=
				𝛼
				𝑟
			

			

				0
			

			

				𝐸
			

			

				0
			

			
				
			
			
				Γ
				
				𝑚
			

			

				0
			

			
				
				Γ
				
				𝜌
				/
				2
			

			

				0
			

			
				
				,
			

		
	

						where 
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			
				Γ
				(
				𝜌
				)
				=
				∶
				s
				u
				p
			

			
				𝑡
				≥
				0
			

			
				
				Δ
			

			

				4
			

			
				(
				𝑡
				)
				𝑒
			

			
				−
				𝜌
				𝑡
			

			
				
				,
			

		
	

						then there exists a real 
	
		
			

				𝐶
			

			

				∞
			

		
	
-smooth curve in 
	
		
			

				𝑀
			

			

				0
			

		
	
, 
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				[
				𝑎
				]
				𝑇
				∶
				𝜆
				=
				𝜆
				(
				𝜉
				)
				=
				(
				𝐴
				+
				𝜖
				)
				𝜉
			

			
				2
				𝑛
				+
				1
			

			
				+
				
				𝑁
				(
				𝜉
				)
				,
				𝜉
				∈
				𝐼
				.
			

		
	

						And for every 
	
		
			
				𝑝
				∈
				𝑇
			

		
	
, there exists an affine analytic almost-periodic transformation 
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			
				Φ
				(
				⋅
				,
				𝑡
				;
				𝑝
				)
				∶
				𝑥
				=
				𝑦
				+
				𝑢
			

			

				∗
			

			
				(
				𝑡
				;
				𝑝
				)
				,
			

		
	

						which changes (19) to 
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			
				̇
				𝑦
				=
				Ω
			

			

				∗
			

			
				(
				𝑝
				)
				𝑦
				+
				𝑃
			

			

				∗
			

			
				(
				𝑦
				,
				𝑡
				,
				𝑝
				)
			

		
	

						with 
	
		
			

				𝑃
			

			

				∗
			

			
				(
				𝑦
				,
				𝑡
				,
				𝑝
				)
				=
				𝑂
				(
				𝑦
			

			

				2
			

			

				)
			

		
	
  
	
		
			
				(
				𝑦
				→
				0
				)
			

		
	
. Moreover, 
							
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			
				|
				|
				
				|
				|
				𝑁
				(
				𝜉
				)
				≤
				4
				𝜖
			

			

				0
			

			
				,
				|
				|
				Ω
			

			

				∗
			

			
				|
				|
				≤
				(
				𝑝
				)
				−
				𝐴
				Ω
				(
				𝑝
				)
				2
				𝜖
			

			

				0
			

			
				
			
			

				𝑟
			

			

				0
			

			
				,
				∀
				𝑝
				=
				(
				𝜉
				,
				𝜆
				)
				∈
				𝑇
				.
			

		
	
 Furthermore, for 
	
		
			
				𝑝
				∈
				𝑇
			

		
	
, 
	
		
			
				𝑥
				=
				𝑢
			

			

				∗
			

			
				(
				𝑡
				,
				𝑝
				)
			

		
	
 is an analytic almost-periodic solution of the differential equation (19) with 
	
		
			
				𝜆
				=
				𝜆
				(
				𝜉
				)
			

		
	
. 
Lemma 11.  Let 
	
		
			
				𝑁
				(
				𝑝
				)
				=
				(
				𝐴
				+
				𝜖
				[
				𝑎
				]
				)
				𝜉
			

			
				2
				𝑛
				+
				1
			

			
				−
				𝜆
				+
				ℎ
				(
				𝑝
				)
			

		
	
, 
	
		
			
				𝑝
				=
				(
				𝜉
				,
				𝜆
				)
				∈
				𝑀
			

		
	
. Suppose that 
	
		
			

				ℎ
			

		
	
 is real analytic on 
	
		
			
				𝑀
				⊂
				ℂ
			

			

				2
			

		
	
 with 
							
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			
				‖
				‖
				𝒟
			

			

				𝑝
			

			
				ℎ
				‖
				‖
			

			

				𝑀
			

			
				=
				‖
				‖
				ℎ
			

			

				𝜆
			

			
				‖
				‖
			

			

				𝑀
			

			
				+
				‖
				‖
				ℎ
			

			

				𝜉
			

			
				‖
				‖
			

			

				𝑀
			

			
				<
				1
			

			
				
			
			
				2
				.
			

		
	

						Suppose that, on the domain 
	
		
			

				𝑀
			

		
	
, 
	
		
			
				𝑁
				(
				𝜉
				,
				𝜆
				)
				=
				0
			

		
	
 determines implicitly a real analytic curve 
	
		
			
				𝑇
				∶
				𝜆
				=
				𝜆
				(
				𝜉
				)
			

		
	
, 
	
		
			
				𝜉
				∈
				𝐼
			

			

				𝜎
			

			

				−
			

			
				/
				2
			

		
	
, such that 
	
		
			
				𝐵
				(
				𝑇
				,
				𝜖
			

			

				−
			

			
				/
				𝐸
			

			

				−
			

			
				)
				⊂
				𝑀
			

		
	
, where 
	
		
			

				𝜖
			

			

				−
			

		
	
, 
	
		
			

				𝐸
			

			

				−
			

		
	
 and 
	
		
			

				𝜎
			

			

				−
			

		
	
 are supposed to be well defined. Let 
	
		
			

				𝑁
			

			

				+
			

			
				(
				𝑝
				)
				=
				(
				𝐴
				+
				𝜖
				[
				𝑎
				]
				)
				𝜉
			

			
				2
				𝑛
				+
				1
			

			
				−
				𝜆
				+
				ℎ
			

			

				+
			

			
				(
				𝑝
				)
			

		
	
, where 
	
		
			

				ℎ
			

			

				+
			

			
				
				ℎ
				=
				ℎ
				+
			

		
	
 with 
	
		
			
				‖
				
				ℎ
				‖
			

			

				𝑀
			

			
				≤
				𝜖
			

		
	
. Suppose that 
	
		
			
				𝜖
				/
				𝐸
				≤
				𝜖
			

			

				−
			

			
				/
				4
				𝐸
			

			

				−
			

		
	
 with 
	
		
			
				𝐸
				>
				0
			

		
	
. Then there exists a domain of 
	
		
			

				ℂ
			

			

				2
			

		
	
, 
	
		
			

				𝑀
			

			

				+
			

			
				⊂
				𝑀
			

		
	
 with 
	
		
			
				d
				i
				s
				t
				(
				𝑀
			

			

				+
			

			
				,
				𝜕
				𝑀
				)
				≥
				𝜖
			

			

				−
			

			
				/
				4
				𝐸
			

			

				−
			

		
	
, such that 
	
		
			

				𝑁
			

			

				+
			

		
	
 is real analytic on 
	
		
			

				𝑀
			

			

				+
			

		
	
 and 
	
		
			
				
				ℎ
			

		
	
 satisfies 
	
		
			
				‖
				𝒟
			

			

				𝑝
			

			
				
				ℎ
				‖
			

			

				𝑀
			

			

				+
			

			
				≤
				𝜖
				𝐸
			

			

				−
			

			
				/
				𝜖
			

			

				−
			

		
	
. If 
							
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			
				‖
				‖
				𝒟
			

			

				𝑝
			

			

				ℎ
			

			

				+
			

			
				‖
				‖
			

			

				𝑀
			

			

				+
			

			
				≤
				1
			

			
				
			
			
				2
				,
			

		
	

						then, on the domain 
	
		
			

				𝑀
			

			

				+
			

		
	
, 
	
		
			

				𝑁
			

			

				+
			

			
				(
				𝑝
				)
				=
				0
			

		
	
 determines implicitly a real analytic curve 
	
		
			

				𝑇
			

			

				+
			

			
				∶
				𝜆
				=
				𝜆
			

			

				+
			

			
				(
				𝜉
				)
			

		
	
, 
	
		
			
				𝜉
				∈
				𝐼
			

			
				𝜎
				/
				2
			

		
	
  
	
		
			
				(
				𝜎
				<
				𝜎
			

			

				−
			

			

				)
			

		
	
, such that 
							
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			
				|
				|
				𝜆
			

			

				+
			

			
				|
				|
				(
				𝜉
				)
				−
				𝜆
				(
				𝜉
				)
				≤
				2
				𝜖
				,
				𝜉
				∈
				𝐼
			

			
				𝜎
				/
				2
			

			

				,
			

		
	

						and 
	
		
			
				𝐵
				(
				𝑇
			

			

				+
			

			
				,
				𝜖
				/
				𝐸
				)
				⊂
				𝑀
			

			

				+
			

		
	
. Moreover, one has 
							
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			
				|
				|
				𝑁
			

			

				+
			

			
				|
				|
				≤
				(
				𝑝
				)
				8
				𝜖
			

			
				
			
			
				𝐸
				,
				∀
				𝑝
				∈
				𝑀
			

			

				+
			

			

				.
			

		
	

Proof. Let 
	
		
			

				𝑀
			

			

				+
			

			
				=
				𝐵
				(
				𝑇
				,
				3
				𝜖
				/
				𝐸
				)
				∩
				(
				𝐼
			

			
				𝜎
				/
				2
				+
				𝜖
				/
				𝐸
			

			
				×
				ℂ
				)
			

		
	
. Since 
	
		
			
				𝜖
				/
				𝐸
				≤
				𝜖
			

			

				−
			

			
				/
				4
				𝐸
			

			

				−
			

		
	
 and 
	
		
			
				𝜎
				≤
				𝜎
			

			

				−
			

		
	
, by 
	
		
			
				𝐵
				(
				𝑇
				,
				𝜖
			

			

				−
			

			
				/
				𝐸
			

			

				−
			

			
				)
				⊂
				𝑀
			

		
	
 it follows easily that 
	
		
			

				𝑀
			

			

				+
			

			
				⊂
				𝑀
			

		
	
 and 
	
		
			
				d
				i
				s
				t
				(
				𝑀
			

			

				+
			

			
				,
				𝜕
				𝑀
				)
				≥
				𝜖
			

			

				−
			

			
				/
				4
				𝐸
			

			

				−
			

		
	
. Using Cauchy’s estimate we have 
							
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			
				‖
				‖
				𝒟
			

			

				𝑝
			

			
				
				ℎ
				‖
				‖
			

			

				𝑀
			

			

				+
			

			
				≤
				4
				𝜖
				𝐸
			

			

				−
			

			
				
			
			

				𝜖
			

			

				−
			

			

				.
			

		
	

						By condition (29), the equation 
							
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			

				𝑁
			

			

				+
			

			
				[
				𝑎
				]
				(
				𝑝
				)
				=
				(
				𝐴
				+
				𝜖
				)
				𝜉
			

			
				2
				𝑛
				+
				1
			

			
				−
				𝜆
				+
				ℎ
			

			

				+
			

			
				(
				𝑝
				)
				=
				0
			

		
	

						determines implicitly an analytic curve on 
	
		
			

				𝑀
			

			

				+
			

		
	
, 
							
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			

				𝑇
			

			

				+
			

			
				∶
				𝜆
				=
				𝜆
			

			

				+
			

			
				(
				𝜉
				)
				,
				𝜉
				∈
				𝐼
			

			
				𝜎
				/
				2
			

			

				.
			

		
	

						It follows that 
							
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			
				|
				|
				𝜆
			

			

				+
			

			
				|
				|
				=
				|
				|
				|
				ℎ
				
				(
				𝜉
				)
				−
				𝜆
				(
				𝜉
				)
				𝜉
				,
				𝜆
			

			

				+
			

			
				
				
				ℎ
				
				−
				ℎ
				(
				𝜉
				,
				𝜆
				)
				+
				𝜉
				,
				𝜆
			

			

				+
			

			
				
				|
				|
				|
				,
			

		
	

						so
							
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			
				|
				|
				𝜆
			

			

				+
			

			
				|
				|
				(
				𝜉
				)
				−
				𝜆
				(
				𝜉
				)
				≤
				2
				𝜖
				,
				𝜉
				∈
				𝐼
			

			
				𝜎
				/
				2
			

			

				.
			

		
	

						Thus, 
	
		
			
				𝐵
				(
				𝑇
			

			

				+
			

			
				,
				𝜖
				/
				𝐸
				)
				⊂
				𝑀
			

			

				+
			

		
	
. Let 
	
		
			
				𝐸
				≤
				1
				/
				2
			

		
	
. For each 
	
		
			
				𝑝
				=
				(
				𝜉
				,
				𝜆
				)
				∈
				𝑀
			

			

				+
			

		
	
, we have 
							
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			
				|
				|
				𝜆
				−
				𝜆
			

			

				+
			

			
				|
				|
				≤
				|
				|
				|
				|
				+
				|
				|
				(
				𝜉
				)
				𝜆
				−
				𝜆
				(
				𝜉
				)
				𝜆
				(
				𝜉
				)
				−
				𝜆
			

			

				+
			

			
				|
				|
				≤
				(
				𝜉
				)
				3
				𝜖
			

			
				
			
			
				𝐸
				+
				2
				𝜖
				≤
				4
				𝜖
			

			
				
			
			
				𝐸
				.
			

		
	

						Noting that 
	
		
			
				|
				𝑁
			

			
				+
				𝜆
			

			
				(
				𝑝
				)
				|
				≤
				2
			

		
	
, for all 
	
		
			
				𝑝
				∈
				𝑀
			

			

				+
			

		
	
, and 
	
		
			

				𝑁
			

			

				+
			

			
				(
				𝑝
				)
				=
				0
			

		
	
, for all 
	
		
			
				𝑝
				=
				(
				𝜉
				,
				𝜆
			

			

				+
			

			
				(
				𝜉
				)
				)
			

		
	
, we have 
							
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			
				|
				|
				𝑁
			

			

				+
			

			
				|
				|
				≤
				(
				𝑝
				)
				8
				𝜖
			

			
				
			
			
				𝐸
				,
				∀
				𝑝
				∈
				𝑀
			

			

				+
			

			

				.
			

		
	

						Thus we prove Lemma 11. 
Lemma 12.  Assume that 
	
		
			

				𝑅
			

			

				0
			

			
				∑
				(
				𝑡
				)
				=
			

			
				Λ
				∈
				𝜏
			

			

				𝑅
			

			
				0
				Λ
			

			
				(
				𝑡
				)
			

		
	
 is an analytic almost-periodic function with respect to 
	
		
			

				𝑡
			

		
	
 with the frequency 
	
		
			
				𝜔
				=
				(
				𝜔
			

			

				1
			

			
				,
				𝜔
			

			

				2
			

			
				,
				…
				)
			

		
	
; it has the finite spatial structure 
	
		
			
				(
				𝜏
				,
				[
				⋅
				]
				)
			

		
	
, and 
							
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				|
				𝑅
			

			

				0
			

			
				|
				|
				|
				|
				|
				|
				(
				𝑡
				)
			

			
				𝑚
				,
				𝑠
			

			
				<
				+
				∞
				,
				𝑚
				>
				0
				,
				𝑠
				>
				0
				.
			

		
	

						If 
							
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				≥
				𝛼
				𝑖
				⟨
				𝑘
				,
				𝜔
				⟩
			

			
				
			
			

				Δ
			

			

				4
			

			
				
				|
				|
				𝑘
				|
				|
				
				Δ
			

			

				4
			

			
				(
				[
				𝑘
				]
				)
				,
				∀
				𝑘
				∈
				ℤ
			

			

				∞
			

			
				⧵
				{
				0
				}
				,
			

		
	

						then there exists an almost-periodic function 
	
		
			
				𝑢
				(
				𝑡
				)
			

		
	
 with the same spatial structure as 
	
		
			

				𝑅
			

			

				0
			

			
				(
				𝑡
				)
			

		
	
, which satisfies 
							
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			

				𝜕
			

			

				𝜔
			

			
				𝑢
				=
				𝐴
				Ω
				𝑢
				+
				𝑅
			

			
				𝐾
				0
			

			
				−
				
				𝑅
			

			

				0
			

			
				
				,
			

		
	

						where 
	
		
			

				𝜕
			

			

				𝜔
			

			
				𝑢
				=
				⟨
				𝜔
				,
				∇
			

			

				𝜃
			

			
				𝑢
				⟩
			

		
	
 is the direction derivative of 
	
		
			

				𝑢
			

		
	
 along with 
	
		
			

				𝜔
			

		
	
  
	
		
			
				(
				𝜃
				=
				𝜔
				𝑡
				)
			

		
	
.   
	
		
			

				𝑅
			

			
				𝐾
				0
			

		
	
 is the truncation of 
	
		
			

				𝑅
			

			

				0
			

		
	
 with order 
	
		
			

				𝐾
			

		
	
. Moreover, for 
	
		
			
				0
				<
			

			
				
			
			
				𝑚
				<
				𝑚
			

		
	
, 
	
		
			
				0
				<
			

			
				
			
			
				𝑠
				<
				𝑠
			

		
	
, 
							
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				𝑢
				(
				𝑡
				)
			

			
				𝑚
				−
			

			
				
			
			
				𝑚
				,
				𝑠
				−
			

			
				
			
			

				𝑠
			

			
				≤
				Γ
				
			

			
				
			
			
				𝑚
				
				Γ
				
			

			
				
			
			
				𝑠
				
			

			
				
			
			
				𝛼
				|
				|
				|
				|
				|
				|
				𝑅
			

			

				0
			

			
				|
				|
				|
				|
				|
				|
				(
				𝑡
				)
			

			
				𝑚
				,
				𝑠
			

			

				.
			

		
	

Proof. We assume 
							
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			

				𝑅
			

			
				𝐾
				0
				Λ
			

			
				
				(
				𝑡
				)
				=
			

			
				|
				|
				𝑘
				|
				|
				s
				u
				p
				p
				𝑘
				⊂
				Λ
				,
				≤
				𝐾
			

			

				𝑅
			

			
				0
				Λ
				𝑘
			

			

				𝑒
			

			
				𝑖
				⟨
				𝑘
				,
				𝜔
				𝑡
				⟩
			

			
				,
				𝑢
			

			

				Λ
			

			
				
				(
				𝑡
				)
				=
			

			
				s
				u
				p
				p
				𝑘
				⊂
				Λ
			

			

				𝑢
			

			
				Λ
				𝑘
			

			

				𝑒
			

			
				𝑖
				⟨
				𝑘
				,
				𝜔
				𝑡
				⟩
			

			

				.
			

		
	

						Insert the above formulas into the equation 
	
		
			

				𝜕
			

			

				𝜔
			

			
				𝑢
				=
				𝐴
				Ω
				𝑢
				+
				𝑅
			

			
				𝐾
				0
			

			
				−
				[
				𝑅
			

			

				0
			

			

				]
			

		
	
, and compare the coefficients on both sides, thus we can find
							
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			

				𝑢
			

			
				Λ
				𝑘
			

			
				=
				𝑅
			

			
				0
				Λ
				𝑘
			

			
				
			
			
				|
				|
				𝑘
				|
				|
				𝑖
				⟨
				𝑘
				,
				𝜔
				⟩
				−
				𝐴
				Ω
				,
				0
				<
				≤
				𝐾
				,
				s
				u
				p
				p
				𝑘
				⊂
				Λ
				.
			

		
	

						Then 
							
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			
				‖
				‖
				𝑢
			

			

				Λ
			

			
				(
				‖
				‖
				𝑡
				)
			

			

				𝕋
			

			
				𝑠
				−
			

			
				
			
			

				𝑠
			

			
				≤
				
			

			
				|
				|
				𝑘
				|
				|
				s
				u
				p
				p
				𝑘
				⊂
				Λ
				,
				0
				≤
				≤
				𝐾
			

			

				Δ
			

			

				4
			

			
				
				|
				|
				𝑘
				|
				|
				
				𝑒
			

			

				−
			

			
				
			
			
				𝑠
				|
				𝑘
				|
			

			
				
			
			
				𝛼
				Δ
			

			

				4
			

			
				(
				[
				𝑘
				]
				)
				|
				|
				𝑅
			

			
				0
				Λ
				𝑘
			

			
				|
				|
				𝑒
			

			
				𝑠
				|
				𝑘
				|
			

			
				≤
				Γ
				
			

			
				
			
			
				𝑠
				
				Δ
			

			

				4
			

			
				(
				[
				Λ
				]
				)
			

			
				
			
			
				𝛼
				‖
				‖
				𝑅
			

			
				0
				Λ
			

			
				‖
				‖
			

			

				𝕋
			

			

				𝑠
			

			

				.
			

		
	

						From Definition 7, 
							
	
 		
 			
				(
				4
				6
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				𝑢
				(
				𝑡
				)
			

			
				𝑚
				−
			

			
				
			
			
				𝑚
				,
				𝑠
				−
			

			
				
			
			

				𝑠
			

			
				=
				
			

			
				Λ
				∈
				𝜏
			

			
				‖
				‖
				𝑢
			

			

				Λ
			

			
				‖
				‖
			

			
				𝕋
				𝑠
				−
			

			
				
			
			

				𝑠
			

			

				𝑒
			

			
				(
				𝑚
				−
			

			
				
			
			
				𝑚
				)
				[
				Λ
				]
			

			
				≤
				
			

			
				Λ
				∈
				𝜏
			

			
				Γ
				
			

			
				
			
			
				𝑠
				
				Δ
			

			

				4
			

			
				(
				[
				Λ
				]
				)
			

			
				
			
			
				𝛼
				‖
				‖
				𝑅
			

			
				0
				Λ
			

			
				‖
				‖
			

			

				𝕋
			

			

				𝑠
			

			
				≤
				Γ
				
			

			
				
			
			
				𝑚
				
				Γ
				
			

			
				
			
			
				𝑠
				
			

			
				
			
			
				𝛼
				
			

			
				Λ
				∈
				𝜏
			

			
				‖
				‖
				𝑅
			

			
				0
				Λ
			

			
				‖
				‖
			

			

				𝕋
			

			

				𝑠
			

			

				𝑒
			

			
				𝑚
				[
				Λ
				]
			

			
				=
				Γ
				
			

			
				
			
			
				𝑚
				
				Γ
				
			

			
				
			
			
				𝑠
				
			

			
				
			
			
				𝛼
				|
				|
				|
				|
				|
				|
				𝑅
			

			

				0
			

			
				(
				|
				|
				|
				|
				|
				|
				𝑡
				)
			

			
				𝑚
				,
				𝑠
			

			

				.
			

		
	

						Thus, 
	
		
			
				∑
				𝑢
				(
				𝑡
				)
				=
			

			
				Λ
				∈
				𝜏
			

			

				𝑢
			

			

				Λ
			

			
				(
				𝑡
				)
			

		
	
 is convergent in the smaller domain 
	
		
			

				𝐷
			

			
				𝑠
				−
			

			
				
			
			

				𝑠
			

		
	
 with the norm 
	
		
			
				|
				|
				|
				⋅
				|
				|
				|
			

			
				𝑚
				−
			

			
				
			
			
				𝑚
				,
				𝑠
				−
			

			
				
			
			

				𝑠
			

		
	
.Now we consider the following real analytic almost-periodic differential equation with parameters
							
	
 		
 			
				(
				4
				7
				)
			
 		
	

	
		
			
				̇
				𝑥
				=
				𝑁
				(
				𝑝
				)
				+
				𝐴
				Ω
				(
				𝑝
				)
				𝑥
				+
				𝜖
				𝑆
				(
				𝑡
				,
				𝑝
				)
				𝑥
				+
				𝑃
				(
				𝑥
				,
				𝑡
				,
				𝑝
				)
			

		
	

						with 
	
		
			
				𝑆
				(
				𝑡
				,
				𝑝
				)
				=
				𝑎
				(
				𝑡
				)
				Ω
				(
				𝑝
				)
			

		
	
.
Lemma 13.  Consider the above equation, where 
	
		
			
				𝑁
				(
				𝑝
				)
				=
				(
				𝐴
				+
				𝜖
				[
				𝑎
				]
				)
				𝜉
			

			
				2
				𝑛
				+
				1
			

			
				−
				𝜆
				+
				ℎ
				(
				𝑝
				)
			

		
	
. Let 
	
		
			
				
				ℎ
				=
				[
				𝑃
				|
			

			
				𝑥
				=
				0
			

			

				]
			

		
	
 and 
	
		
			
				
				Ω
				=
				(
				𝑃
			

			

				𝑥
			

			

				|
			

			
				𝑥
				=
				0
			

			

				)
			

			

				𝐾
			

		
	
. Let 
	
		
			

				ℎ
			

			

				+
			

			
				
				ℎ
				=
				ℎ
				+
			

		
	
, 
	
		
			

				Ω
			

			

				+
			

			
				
				Ω
				=
				𝐴
				Ω
				+
			

		
	
 and 
	
		
			

				𝑁
			

			

				+
			

			
				(
				𝑝
				)
				=
				(
				𝐴
				+
				𝜖
				[
				𝑎
				]
				)
				𝜉
			

			
				2
				𝑛
				+
				1
			

			
				−
				𝜆
				+
				ℎ
			

			

				+
			

			
				(
				𝑝
				)
			

		
	
. Assume the following hold. (1)
	
		
			

				𝑃
			

		
	
 is real analytic on 
	
		
			

				Δ
			

			
				𝑟
				,
				𝑠
			

			
				×
				𝑀
			

		
	
 and satisfies 
										
	
 		
 			
				(
				4
				8
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				|
				𝑃
				|
				|
				|
				|
				|
				|
			

			
				𝑚
				,
				Δ
			

			
				𝑟
				,
				𝑠
			

			
				×
				𝑀
			

			
				≤
				𝜖
				=
				𝛼
				𝑟
				𝐸
			

			
				
			
			
				Γ
				(
				𝑚
				/
				2
				)
				Γ
				(
				𝜌
				)
			

		
	
 with 
	
		
			
				0
				≤
				𝐸
				<
				1
				/
				2
			

		
	
, 
	
		
			
				0
				<
				𝜌
				<
				𝑠
				/
				2
			

		
	
, and 
	
		
			
				𝐸
				=
				𝑒
			

			
				−
				𝜌
				𝐾
			

		
	
. (2)
	
		
			
				4
				𝜖
				/
				𝐸
				≤
				𝜎
			

		
	
. 								(3)
	
		
			

				𝑁
			

		
	
, 
	
		
			
				
				ℎ
			

		
	
, and 
	
		
			

				ℎ
			

			

				+
			

		
	
 are real analytic on 
	
		
			
				𝑀
				⊂
				𝐶
			

			

				2
			

		
	
 and all the assumptions of Lemma 11 hold. Let 
	
		
			

				𝑀
			

			

				+
			

			
				⊂
				𝑀
			

		
	
 be the domain defined in Lemma 11.  Then, for any 
	
		
			
				𝑝
				∈
				𝑀
			

			

				+
			

		
	
, there exists an affine analytic almost-periodic transformation 
							
	
 		
 			
				(
				4
				9
				)
			
 		
	

	
		
			
				Φ
				(
				⋅
				,
				𝑡
				;
				𝑝
				)
				∶
				𝑥
			

			

				+
			

			
				
				∈
				𝐷
				0
				,
				𝑟
			

			

				+
			

			
				
				⟶
				𝑥
				=
				(
				1
				+
				𝜖
				𝑄
				)
				𝑥
			

			

				+
			

			
				+
				𝑢
				(
				𝑡
				;
				𝑝
				)
				∈
				𝐷
				(
				0
				,
				𝑟
				)
				,
			

		
	

						where 
	
		
			

				Φ
			

		
	
 is real analytic on 
	
		
			
				𝐷
				(
				𝑟
			

			

				+
			

			
				,
				𝑠
			

			

				+
			

			
				)
				×
				𝑀
			

			

				+
			

		
	
, such that the above differential equation is transformed to 
							
	
 		
 			
				(
				5
				0
				)
			
 		
	

	
		
			
				̇
				𝑥
			

			

				+
			

			
				=
				𝑁
			

			

				+
			

			
				(
				𝑝
				)
				+
				Ω
			

			

				+
			

			
				(
				𝑝
				)
				𝑥
			

			

				+
			

			
				+
				𝜖
			

			

				2
			

			

				𝑆
			

			

				+
			

			
				(
				𝑡
				,
				𝑝
				)
				𝑥
			

			

				+
			

			
				+
				𝑃
			

			

				+
			

			
				
				𝑥
			

			

				+
			

			
				
				,
				,
				𝑡
				,
				𝑝
			

		
	

						where 
	
		
			

				𝑆
			

			

				+
			

		
	
 and 
	
		
			

				𝑃
			

			

				+
			

		
	
 will be get in the proof. Moreover, one has 
							
	
 		
 			
				(
				5
				1
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				Φ
				−
				𝑖
				𝑑
			

			
				𝑚
				,
				Δ
			

			
				𝑟
				,
				𝑠
				−
				2
				𝜌
			

			
				×
				𝑀
			

			

				+
			

			
				
				≤
				𝑐
				𝑟
				+
				𝑟
			

			

				2
			

			
				
				|
				|
				|
				|
				|
				|
				𝐷
				𝐸
				,
			

			

				𝑥
			

			
				|
				|
				|
				|
				|
				|
				Φ
				−
				1
			

			
				𝑚
				,
				Δ
			

			
				𝑟
				,
				𝑠
				−
				2
				𝜌
			

			
				×
				𝑀
			

			

				+
			

			
				≤
				𝑐
				𝑟
				𝐸
				.
			

		
	
 The new perturbation term 
	
		
			

				𝑃
			

			

				+
			

		
	
 satisfies 
							
	
 		
 			
				(
				5
				2
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				|
				𝑃
			

			

				+
			

			
				|
				|
				|
				|
				|
				|
			

			

				𝑚
			

			

				+
			

			
				,
				Δ
			

			
				𝑟
				+
				+
				,
				𝑠
			

			
				×
				𝑀
			

			

				+
			

			
				≤
				𝜖
			

			

				+
			

			
				=
				𝛼
				𝑟
			

			

				+
			

			

				𝐸
			

			

				+
			

			
				
			
			
				Γ
				
				𝑚
			

			

				+
			

			
				
				Γ
				
				𝜌
				/
				2
			

			

				+
			

			

				
			

		
	
 with
							
	
 		
 			
				(
				5
				3
				)
			
 		
	

	
		
			

				𝑠
			

			

				+
			

			
				=
				𝑠
				−
				2
				𝜌
				,
				𝜂
				=
				𝐸
			

			
				1
				/
				2
			

			
				,
				𝜌
			

			

				+
			

			
				=
				1
			

			
				
			
			
				2
				𝜌
				,
				𝑟
			

			

				+
			

			
				𝐸
				=
				𝜂
				𝜌
				,
			

			

				+
			

			
				=
				𝑐
				𝐸
			

			
				3
				/
				2
			

			
				,
				𝑚
			

			

				+
			

			
				=
				1
			

			
				
			
			
				2
				𝑚
				.
			

		
	

Proof. The proof is the standard KAM step and we divide it into several parts.(A) Truncation. Let 
	
		
			
				𝑅
				=
				𝑅
			

			

				0
			

			
				+
				𝑅
			

			

				1
			

			

				𝑥
			

		
	
 with 
	
		
			

				𝑅
			

			

				0
			

			
				=
				𝑃
				|
			

			
				𝑥
				=
				0
			

		
	
 and 
	
		
			

				𝑅
			

			

				1
			

			
				=
				𝑃
			

			

				𝑥
			

			

				|
			

			
				𝑥
				=
				0
			

		
	
. It follows easily that 
							
	
 		
 			
				(
				5
				4
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				|
				𝑅
			

			

				0
			

			
				|
				|
				|
				|
				|
				|
			

			
				𝑚
				,
				Δ
			

			
				𝑟
				,
				𝑠
			

			
				×
				𝑀
			

			
				|
				|
				|
				|
				|
				|
				𝑅
				≤
				𝜖
				,
			

			

				1
			

			
				|
				|
				|
				|
				|
				|
			

			
				𝑚
				,
				Δ
			

			
				𝑟
				,
				𝑠
			

			
				×
				𝑀
			

			
				≤
				𝜖
			

			
				
			
			
				𝑟
				.
			

		
	

						Hence 
	
		
			
				|
				|
				|
				𝑅
				|
				|
				|
			

			
				𝑚
				,
				Δ
			

			
				𝑟
				,
				𝑠
			

			
				×
				𝑀
			

			
				≤
				2
				𝜖
			

		
	
. Let 
							
	
 		
 			
				(
				5
				5
				)
			
 		
	

	
		
			
				
				𝑅
				=
			

			
				Λ
				∈
				𝜏
				,
				s
				u
				p
				p
				𝑘
				⊂
				Λ
				,
				𝑘
				∈
				𝑍
			

			

				∞
			

			

				𝑅
			

			

				𝑘
			

			
				(
				𝑥
				;
				𝑝
				)
				𝑒
			

			
				𝑖
				⟨
				𝑘
				,
				𝜔
				𝑡
				⟩
			

			
				,
				𝑅
			

			

				𝐾
			

			
				=
				
			

			
				|
				|
				𝑘
				|
				|
				Λ
				∈
				𝜏
				,
				s
				u
				p
				p
				𝑘
				⊂
				Λ
				,
				≤
				𝐾
			

			

				𝑅
			

			

				𝑘
			

			
				(
				𝑥
				;
				𝑝
				)
				𝑒
			

			
				𝑖
				⟨
				𝑘
				,
				𝜔
				𝑡
				⟩
			

			

				.
			

		
	

						By definition, we have 
							
	
 		
 			
				(
				5
				6
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				|
				𝑅
				−
				𝑅
			

			

				𝐾
			

			
				|
				|
				|
				|
				|
				|
			

			
				𝑚
				,
				Δ
			

			
				𝑟
				,
				𝑠
				−
				𝜌
			

			
				×
				𝑀
			

			
				≤
				2
				𝜖
				𝑒
			

			
				−
				𝐾
				𝜌
			

			

				.
			

		
	
(B) Construnction of the Transformation. Define the transformation 
	
		
			

				𝜙
			

			

				1
			

			
				∶
				𝑥
				=
				𝑢
				(
				𝑡
				)
				+
				𝑦
			

		
	
, where 
	
		
			

				𝑢
			

		
	
 satisfies 
							
	
 		
 			
				(
				5
				7
				)
			
 		
	

	
		
			

				𝜕
			

			

				𝜔
			

			
				𝑢
				=
				𝐴
				Ω
				𝑢
				+
				𝑅
			

			
				𝐾
				0
			

			
				−
				
				𝑅
			

			

				0
			

			
				
				.
			

		
	

						From Lemma 12, we have
							
	
 		
 			
				(
				5
				8
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				𝑢
				(
				𝑡
				)
			

			
				𝑚
				−
				(
				𝑚
				/
				2
				)
				,
				𝑠
				−
				2
				𝜌
			

			
				≤
				Γ
				(
				𝑚
				/
				2
				)
				Γ
				(
				2
				𝜌
				)
			

			
				
			
			
				𝛼
				|
				|
				|
				|
				|
				|
				𝑅
			

			

				0
			

			
				|
				|
				|
				|
				|
				|
				(
				𝑡
				)
			

			
				𝑚
				,
				𝑠
			

			
				≤
				Γ
				(
				𝑚
				/
				2
				)
				Γ
				(
				2
				𝜌
				)
			

			
				
			
			
				𝛼
				𝜖
				<
				𝑐
				𝑟
				𝐸
				.
			

		
	

						By the transformation 
	
		
			

				𝜙
			

			

				1
			

		
	
, the equation becomes 
							
	
 		
 			
				(
				5
				9
				)
			
 			
				(
				6
				0
				)
			
 		
	

	
		
			
				
				𝑅
				̇
				𝑢
				+
				̇
				𝑦
				=
				𝑁
				(
				𝑝
				)
				+
				𝐴
				Ω
				(
				𝑝
				)
				(
				𝑢
				+
				𝑦
				)
				+
				𝜖
				𝑎
				(
				𝑡
				)
				Ω
				(
				𝑝
				)
				(
				𝑢
				+
				𝑦
				)
				+
				𝑃
				(
				𝑢
				+
				𝑦
				,
				𝑡
				,
				𝑝
				)
				,
				̇
				𝑦
				=
				𝑁
				(
				𝑝
				)
				+
			

			

				0
			

			
				
				+
				
				𝐴
				Ω
				(
				𝑝
				)
				+
				𝑅
			

			
				𝐾
				1
			

			
				
				𝑦
				+
				𝜖
				𝑎
				(
				𝑡
				)
				Ω
				(
				𝑝
				)
				𝑦
				+
				𝑅
				(
				𝑢
				+
				𝑦
				,
				𝑡
				)
				−
				𝑅
			

			

				𝐾
			

			
				(
				𝑢
				+
				𝑦
				,
				𝑡
				)
				+
				𝑅
			

			
				𝐾
				1
			

			
				𝑢
				+
				𝜖
				𝑎
				(
				𝑡
				)
				Ω
				(
				𝑝
				)
				𝑢
				+
				𝑃
				(
				𝑢
				+
				𝑦
				,
				𝑡
				)
				−
				𝑅
				(
				𝑢
				+
				𝑦
				,
				𝑡
				)
				;
			

		
	

						then 
							
	
 		
 			
				(
				6
				1
				)
			
 		
	

	
		
			
				̇
				𝑦
				=
				𝑁
			

			

				+
			

			
				
				(
				𝑝
				)
				+
				𝐴
				Ω
				(
				𝑝
				)
				+
				𝑅
			

			
				𝐾
				1
			

			
				
				𝑦
				+
				𝜖
				𝑎
				(
				𝑡
				)
				Ω
				(
				𝑝
				)
				𝑦
				+
				𝑅
				(
				𝑢
				+
				𝑦
				,
				𝑡
				)
				−
				𝑅
			

			

				𝐾
			

			
				(
				𝑢
				+
				𝑦
				,
				𝑡
				)
				+
				𝑅
			

			
				𝐾
				1
			

			
				𝑢
				+
				𝜖
				𝑎
				(
				𝑡
				)
				Ω
				(
				𝑝
				)
				𝑢
				+
				𝑃
				(
				𝑢
				+
				𝑦
				,
				𝑡
				)
				−
				𝑅
				(
				𝑢
				+
				𝑦
				,
				𝑡
				)
				.
			

		
	
Define the transformation 
	
		
			

				𝜙
			

			

				2
			

			
				∶
				𝑦
				=
				(
				1
				+
				𝜖
				𝑄
				)
				𝑥
			

			

				+
			

		
	
; 
	
		
			

				𝑄
			

		
	
 satisfies 
							
	
 		
 			
				(
				6
				2
				)
			
 		
	

	
		
			
				̇
				𝑄
				=
				𝑎
				(
				𝑡
				)
				Ω
				(
				𝑝
				)
				.
			

		
	

						We assume 
							
	
 		
 			
				(
				6
				3
				)
			
 		
	

	
		
			
				
				𝑄
				(
				𝑡
				)
				=
			

			
				Λ
				∈
				𝜏
			

			

				𝑄
			

			

				Λ
			

			
				(
				𝑡
				)
				,
				𝑄
			

			

				Λ
			

			
				
				(
				𝑡
				)
				=
			

			
				s
				u
				p
				p
				𝑘
				⊂
				Λ
				,
			

			

				𝑄
			

			
				Λ
				𝑘
			

			

				𝑒
			

			
				𝑖
				⟨
				𝑘
				,
				𝜔
				𝑡
				⟩
			

			
				,
				
				𝑎
				(
				𝑡
				)
				=
			

			
				Λ
				∈
				𝜏
			

			

				𝑎
			

			

				Λ
			

			
				(
				𝑡
				)
				,
				𝑎
			

			

				Λ
			

			
				
				(
				𝑡
				)
				=
			

			
				s
				u
				p
				p
				𝑘
				⊂
				Λ
				,
			

			

				𝑎
			

			
				Λ
				𝑘
			

			

				𝑒
			

			
				𝑖
				⟨
				𝑘
				,
				𝜔
				𝑡
				⟩
			

			

				.
			

		
	
Then 
							
	
 		
 			
				(
				6
				4
				)
			
 		
	

	
		
			

				𝑄
			

			
				Λ
				𝑘
			

			
				=
				⎧
				⎪
				⎨
				⎪
				⎩
				|
				|
				𝑘
				|
				|
				𝑎
				0
				,
				=
				0
				,
				s
				u
				p
				p
				𝑘
				⊂
				Λ
				,
			

			
				Λ
				𝑘
			

			

				Ω
			

			
				
			
			
				,
				|
				|
				𝑘
				|
				|
				𝑖
				⟨
				𝑘
				,
				𝜔
				⟩
				>
				0
				,
				s
				u
				p
				p
				𝑘
				⊂
				Λ
				.
			

		
	

						Similar to Lemma 12, we have 
							
	
 		
 			
				(
				6
				5
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				𝑄
				(
				𝑡
				)
			

			
				𝑚
				−
				(
				𝑚
				/
				2
				)
				,
				𝑠
				−
				2
				𝜌
			

			
				≤
				Γ
				(
				𝑚
				/
				2
				)
				Γ
				(
				2
				𝜌
				)
			

			
				
			
			
				𝛼
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				𝑎
				(
				𝑡
				)
			

			
				𝑚
				,
				𝑠
			

			
				|
				|
				Ω
				|
				|
				≤
				𝑐
				Γ
				(
				𝑚
				/
				2
				)
				Γ
				(
				2
				𝜌
				)
			

			
				
			
			
				𝛼
				,
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				𝜖
				𝑄
				(
				𝑡
				)
			

			
				𝑚
				−
				(
				𝑚
				/
				2
				)
				,
				𝑠
				−
				2
				𝜌
			

			
				≤
				𝑐
				𝑟
				𝐸
				.
			

		
	
By the transformation 
	
		
			

				𝜙
			

			

				2
			

		
	
, the equation becomes
							
	
 		
 			
				(
				6
				6
				)
			
 		
	

	
		
			
				(
				1
				+
				𝜖
				𝑄
				)
				̇
				𝑥
			

			

				+
			

			
				̇
				+
				𝜖
				𝑄
				𝑥
			

			

				+
			

			
				=
				𝑁
			

			

				+
			

			
				
				(
				𝑝
				)
				+
				𝐴
				Ω
				(
				𝑝
				)
				+
				𝑅
			

			
				𝐾
				1
			

			
				
				(
				1
				+
				𝜖
				𝑄
				)
				𝑥
			

			

				+
			

			
				+
				𝜖
				𝑎
				(
				𝑡
				)
				Ω
				(
				𝑝
				)
				(
				1
				+
				𝜖
				𝑄
				)
				𝑥
			

			

				+
			

			
				
				+
				𝑅
				𝑢
				+
				(
				1
				+
				𝜖
				𝑄
				)
				𝑥
			

			

				+
			

			
				
				,
				𝑡
				−
				𝑅
			

			

				𝐾
			

			
				
				𝑢
				+
				(
				1
				+
				𝜖
				𝑄
				)
				𝑥
			

			

				+
			

			
				
				,
				𝑡
				+
				𝑅
			

			
				𝐾
				1
			

			
				
				𝑢
				+
				𝜖
				𝑎
				(
				𝑡
				)
				Ω
				(
				𝑝
				)
				𝑢
				+
				𝑃
				𝑢
				+
				(
				1
				+
				𝜖
				𝑄
				)
				𝑥
			

			

				+
			

			
				
				
				,
				𝑡
				−
				𝑅
				𝑢
				+
				(
				1
				+
				𝜖
				𝑄
				)
				𝑥
			

			

				+
			

			
				
				;
				,
				𝑡
			

		
	

						then
							
	
 		
 			
				(
				6
				7
				)
			
 		
	

	
		
			
				̇
				𝑥
			

			

				+
			

			
				=
				𝑁
			

			

				+
			

			
				
				(
				𝑝
				)
				+
				𝐴
				Ω
				(
				𝑝
				)
				+
				𝑅
			

			
				𝐾
				1
			

			
				
				𝑥
			

			

				+
			

			
				+
				𝜖
			

			

				2
			

			
				𝑎
				(
				𝑡
				)
				Ω
				(
				𝑝
				)
				𝑄
			

			
				
			
			
				𝑥
				1
				+
				𝜖
				𝑄
			

			

				+
			

			
				+
				
				1
			

			
				
			
			
				
				𝑁
				1
				+
				𝜖
				𝑄
				−
				1
			

			

				+
			

			
				+
				1
			

			
				
			
			
				𝑅
				
				1
				+
				𝜖
				𝑄
				𝑢
				+
				(
				1
				+
				𝜖
				𝑄
				)
				𝑥
			

			

				+
			

			
				
				−
				1
				,
				𝑡
			

			
				
			
			
				𝑅
				1
				+
				𝜖
				𝑄
			

			

				𝐾
			

			
				
				𝑢
				+
				(
				1
				+
				𝜖
				𝑄
				)
				𝑥
			

			

				+
			

			
				
				+
				1
				,
				𝑡
			

			
				
			
			
				𝑅
				1
				+
				𝜖
				𝑄
			

			
				𝐾
				1
			

			
				𝑢
				+
				𝜖
				𝑎
				(
				𝑡
				)
				Ω
				(
				𝑝
				)
				𝑢
			

			
				
			
			
				+
				1
				1
				+
				𝜖
				𝑄
			

			
				
			
			
				𝑃
				
				1
				+
				𝜖
				𝑄
				𝑢
				+
				(
				1
				+
				𝜖
				𝑄
				)
				𝑥
			

			

				+
			

			
				
				−
				1
				,
				𝑡
			

			
				
			
			
				𝑅
				
				1
				+
				𝜖
				𝑄
				𝑢
				+
				(
				1
				+
				𝜖
				𝑄
				)
				𝑥
			

			

				+
			

			
				
				.
				,
				𝑡
			

		
	
Thus, by the transformation 
	
		
			
				Φ
				=
				𝜙
			

			

				1
			

			
				∘
				𝜙
			

			

				2
			

			
				∶
				𝑥
				=
				𝑢
				+
				(
				1
				+
				𝜖
				𝑄
				)
				𝑥
			

			

				+
			

		
	
, the equation is transformed to 
							
	
 		
 			
				(
				6
				8
				)
			
 		
	

	
		
			
				̇
				𝑥
			

			

				+
			

			
				=
				𝑁
			

			

				+
			

			
				+
				Ω
			

			

				+
			

			

				𝑥
			

			

				+
			

			
				+
				𝜖
			

			

				2
			

			

				𝑆
			

			

				+
			

			

				𝑥
			

			

				+
			

			
				+
				𝑃
			

			

				+
			

			
				
				𝑥
			

			

				+
			

			
				
				,
				,
				𝑡
				;
				𝑝
			

		
	

						where 
							
	
 		
 			
				(
				6
				9
				)
			
 		
	

	
		
			

				𝑃
			

			

				+
			

			
				=
				
				1
			

			
				
			
			
				
				𝑁
				1
				+
				𝜖
				𝑄
				−
				1
			

			

				+
			

			
				+
				1
			

			
				
			
			
				𝑅
				
				1
				+
				𝜖
				𝑄
				𝑢
				+
				(
				1
				+
				𝜖
				𝑄
				)
				𝑥
			

			

				+
			

			
				
				−
				1
				,
				𝑡
			

			
				
			
			
				𝑅
				1
				+
				𝜖
				𝑄
			

			

				𝐾
			

			
				
				𝑢
				+
				(
				1
				+
				𝜖
				𝑄
				)
				𝑥
			

			

				+
			

			
				
				+
				1
				,
				𝑡
			

			
				
			
			
				𝑅
				1
				+
				𝜖
				𝑄
			

			
				𝐾
				1
			

			
				𝑢
				+
				𝜖
				𝑎
				(
				𝑡
				)
				Ω
				(
				𝑝
				)
				𝑢
			

			
				
			
			
				+
				1
				1
				+
				𝜖
				𝑄
			

			
				
			
			
				𝑃
				
				1
				+
				𝜖
				𝑄
				𝑢
				+
				(
				1
				+
				𝜖
				𝑄
				)
				𝑥
			

			

				+
			

			
				
				−
				1
				,
				𝑡
			

			
				
			
			
				𝑅
				
				1
				+
				𝜖
				𝑄
				𝑢
				+
				(
				1
				+
				𝜖
				𝑄
				)
				𝑥
			

			

				+
			

			
				
				,
				𝑆
				,
				𝑡
			

			

				+
			

			
				=
				𝑎
				(
				𝑡
				)
				Ω
				(
				𝑝
				)
				𝑄
			

			
				
			
			
				.
				1
				+
				𝜖
				𝑄
			

		
	

						With the estimates of 
	
		
			

				𝑢
			

		
	
 and 
	
		
			

				𝑄
			

		
	
, we have
							
	
 		
 			
				(
				7
				0
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				Φ
				−
				𝑖
				𝑑
			

			
				𝑚
				,
				Δ
			

			
				𝑟
				,
				𝑠
				−
				2
				𝜌
			

			
				×
				𝑀
			

			

				+
			

			
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				≤
				𝑟
				𝜖
				𝑄
			

			
				𝑚
				,
				Δ
			

			
				𝑟
				,
				𝑠
				−
				2
				𝜌
			

			
				×
				𝑀
			

			

				+
			

			
				+
				|
				|
				|
				|
				|
				|
				|
				|
				|
				𝑢
				|
			

			
				𝑚
				,
				Δ
			

			
				𝑟
				,
				𝑠
				−
				2
				𝜌
			

			
				×
				𝑀
			

			

				+
			

			
				
				≤
				𝑐
				𝑟
				+
				𝑟
			

			

				2
			

			
				
				|
				|
				|
				|
				|
				|
				𝐷
				𝐸
				,
			

			

				𝑥
			

			
				|
				|
				|
				|
				|
				|
				Φ
				−
				1
			

			
				𝑚
				,
				Δ
			

			
				𝑟
				,
				𝑠
				−
				2
				𝜌
			

			
				×
				𝑀
			

			

				+
			

			
				≤
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				𝜖
				𝑄
			

			
				𝑚
				,
				Δ
			

			
				𝑟
				,
				𝑠
				−
				2
				𝜌
			

			
				×
				𝑀
			

			

				+
			

			
				≤
				𝑐
				𝑟
				𝐸
				.
			

		
	
Let 
	
		
			
				𝜂
				=
				𝐸
			

			
				1
				/
				2
			

			
				≤
				1
				/
				4
			

		
	
, 
	
		
			

				𝑠
			

			

				+
			

			
				=
				𝑠
				−
				2
				𝜌
			

		
	
, and 
	
		
			

				𝑟
			

			

				+
			

			
				=
				𝜂
				𝑟
			

		
	
. Then the transformation 
	
		
			
				Φ
				∶
				𝑥
			

			

				+
			

			
				∈
				𝐷
				(
				0
				,
				𝑟
			

			

				+
			

			
				)
				→
				𝐷
				(
				0
				,
				2
				𝑟
			

			

				+
			

			

				)
			

		
	
 is analytic almost-periodic on 
	
		
			

				𝕋
			

			

				𝑠
			

			

				+
			

		
	
 with respect to 
	
		
			

				𝑡
			

		
	
 and affine in 
	
		
			

				𝑥
			

			

				+
			

		
	
.(C) Estimates of Error Terms. Because 
	
		
			
				|
				|
				|
				𝜖
				𝑄
				|
				|
				|
			

			

				𝑚
			

			

				+
			

			
				,
				Δ
			

			
				𝑟
				+
				+
				,
				𝑠
			

			
				×
				𝑀
			

			

				+
			

			
				<
				1
			

		
	
, then 
	
		
			
				1
				/
				(
				1
				+
				𝜖
				𝑄
				)
				=
				1
				−
				𝜖
				𝑄
				+
				(
				𝜖
				𝑄
				)
			

			

				2
			

			
				−
				(
				𝜖
				𝑄
				)
			

			

				3
			

			
				+
				⋯
				+
				(
				−
				𝜖
				𝑄
				)
			

			

				𝑛
			

			
				+
				⋯
			

		
	
. Thus, 
							
	
 		
 			
				(
				7
				1
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				|
				|
				|
				|
				1
			

			
				
			
			
				|
				|
				|
				|
				|
				|
				|
				|
				|
				1
				+
				𝜖
				𝑄
			

			

				𝑚
			

			

				+
			

			
				,
				Δ
			

			
				𝑟
				+
				+
				,
				𝑠
			

			
				×
				𝑀
			

			

				+
			

			
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				≤
				1
				+
				𝜖
				𝑄
			

			

				𝑚
			

			

				+
			

			
				,
				Δ
			

			
				𝑟
				+
				+
				,
				𝑠
			

			
				×
				𝑀
			

			

				+
			

			
				+
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				𝜖
				𝑄
			

			
				2
				𝑚
			

			

				+
			

			
				,
				Δ
			

			
				𝑟
				+
				+
				,
				𝑠
			

			
				×
				𝑀
			

			

				+
			

			
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				+
				⋯
				+
				𝜖
				𝑄
			

			
				𝑛
				𝑚
			

			

				+
			

			
				,
				Δ
			

			
				𝑟
				+
				+
				,
				𝑠
			

			
				×
				𝑀
			

			

				+
			

			
				+
				⋯
				≤
				2
				.
			

		
	

						Let 
	
		
			
				𝜂
				=
				𝐸
			

			
				1
				/
				2
			

		
	
. Then, it follows that 
							
	
 		
 			
				(
				7
				2
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				
				1
			

			
				
			
			
				
				𝑁
				1
				+
				𝜖
				𝑄
				−
				1
			

			

				+
			

			
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
			

			

				𝑚
			

			

				+
			

			
				,
				Δ
			

			
				𝑟
				+
				+
				,
				𝑠
			

			
				×
				𝑀
			

			

				+
			

			
				≤
				‖
				‖
				|
				|
				𝜖
				𝑄
				𝑁
			

			

				+
			

			
				|
				|
				‖
				‖
			

			

				𝑚
			

			

				+
			

			
				,
				Δ
			

			
				𝑟
				+
				+
				,
				𝑠
			

			
				×
				𝑀
			

			

				+
			

			
				|
				|
				|
				|
				|
				|
				|
				|
				|
				1
				≤
				𝑐
				𝜖
				𝐸
				,
			

			
				
			
			
				
				1
				+
				𝜖
				𝑄
				𝑅
				∘
				Φ
				−
				𝑅
			

			

				𝐾
			

			
				
				|
				|
				|
				|
				|
				|
				|
				|
				|
				∘
				Φ
			

			

				𝑚
			

			

				+
			

			
				,
				Δ
			

			
				𝑟
				+
				+
				,
				𝑠
			

			
				×
				𝑀
			

			

				+
			

			
				≤
				𝑐
				𝜖
				𝑒
			

			
				−
				𝐾
				𝜌
			

			
				,
				|
				|
				|
				|
				|
				|
				|
				|
				|
				1
			

			
				
			
			
				𝑅
				1
				+
				𝜖
				𝑄
			

			
				𝐾
				1
			

			
				𝑢
				|
				|
				|
				|
				|
				|
				|
				|
				|
			

			

				𝑚
			

			

				+
			

			
				,
				Δ
			

			
				𝑟
				+
				+
				,
				𝑠
			

			
				×
				𝑀
			

			

				+
			

			
				𝜖
				≤
				2
			

			
				
			
			
				𝑟
				|
				|
				|
				|
				|
				|
				|
				|
				|
				𝑐
				𝑟
				𝐸
				≤
				𝑐
				𝜖
				𝐸
				,
				𝜖
				𝑎
				(
				𝑡
				)
				Ω
				𝑢
			

			
				
			
			
				|
				|
				|
				|
				|
				|
				|
				|
				|
				1
				+
				𝜖
				𝑄
			

			

				𝑚
			

			

				+
			

			
				,
				Δ
			

			
				𝑟
				+
				+
				,
				𝑠
			

			
				×
				𝑀
			

			

				+
			

			
				|
				|
				|
				|
				|
				|
				|
				|
				|
				1
				≤
				𝑐
				𝜖
				𝐸
				,
			

			
				
			
			
				|
				|
				|
				|
				|
				|
				|
				|
				|
				1
				+
				𝜖
				𝑄
				(
				𝑃
				∘
				Φ
				−
				𝑅
				∘
				Φ
				)
			

			

				𝑚
			

			

				+
			

			
				,
				Δ
			

			
				𝑟
				+
				+
				,
				𝑠
			

			
				×
				𝑀
			

			

				+
			

			
				𝜖
				≤
				𝑐
			

			
				
			
			

				𝑟
			

			

				2
			

			

				𝑟
			

			

				2
			

			

				𝜂
			

			

				2
			

			
				=
				𝑐
				𝜂
			

			

				2
			

			
				𝜖
				.
			

		
	

						So 
							
	
 		
 			
				(
				7
				3
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				|
				𝑃
			

			

				+
			

			
				|
				|
				|
				|
				|
				|
			

			

				𝑚
			

			

				+
			

			
				,
				Δ
			

			
				𝑟
				+
				+
				,
				𝑠
			

			
				×
				𝑀
			

			

				+
			

			
				≤
				𝑐
				𝜖
				𝐸
				+
				𝑐
				𝜖
				𝑒
			

			
				−
				𝐾
				𝜌
			

			
				+
				𝑐
				𝜂
			

			

				2
			

			
				=
				𝜖
				=
				𝑐
				𝜖
				𝐸
				𝛼
				𝑟
			

			

				+
			

			

				𝐸
			

			

				+
			

			
				
			
			
				Γ
				
				𝑚
			

			

				+
			

			
				
				Γ
				
				𝜌
				/
				2
			

			

				+
			

			
				
				=
				𝜖
			

			

				+
			

			

				,
			

		
	

						where 
	
		
			

				𝜌
			

			

				+
			

			
				=
				(
				1
				/
				2
				)
				𝜌
			

		
	
, 
	
		
			

				𝑟
			

			

				+
			

			
				=
				𝜂
				𝑟
			

		
	
, 
	
		
			

				𝐸
			

			

				+
			

			
				=
				𝑐
				𝐸
			

			
				3
				/
				2
			

		
	
, and 
	
		
			

				𝑚
			

			

				+
			

			
				=
				(
				1
				/
				2
				)
				𝑚
			

		
	
. Thus we have proved Lemma 13. Iteration. Now we choose some suitable parameters so that the above KAM step can be iterated infinitely. At the initial step, let 
							
	
 		
 			
				(
				7
				4
				)
			
 		
	

	
		
			

				𝑠
			

			

				0
			

			
				=
				𝑠
				,
				𝑟
			

			

				0
			

			
				=
				𝑟
				,
				𝐸
			

			

				0
			

			
				>
				0
				,
				𝜂
			

			

				0
			

			
				=
				𝐸
			

			
				0
				1
				/
				2
			

			
				,
				𝜌
			

			

				0
			

			
				=
				𝑠
			

			

				0
			

			
				
			
			
				8
				,
				𝜖
			

			

				0
			

			
				=
				𝛼
				𝑟
			

			

				0
			

			

				𝐸
			

			

				0
			

			
				
			
			
				Γ
				
				𝑚
			

			

				0
			

			
				
				Γ
				
				𝜌
				/
				2
			

			

				0
			

			
				
				,
				𝑚
			

			

				0
			

			
				=
				𝑠
			

			

				0
			

			
				
			
			
				8
				.
			

		
	

						Let 
	
		
			

				𝐾
			

			

				0
			

		
	
 satisfy 
	
		
			

				𝐸
			

			

				0
			

			
				=
				𝑒
			

			
				−
				𝐾
			

			

				0
			

			

				𝜌
			

			

				0
			

		
	
 and 
	
		
			

				𝜎
			

			

				0
			

			
				=
				𝛿
			

		
	
. Inductively, we define 
							
	
 		
 			
				(
				7
				5
				)
			
 		
	

	
		
			

				𝑠
			

			

				𝑗
			

			
				=
				𝑠
			

			
				𝑗
				−
				1
			

			
				−
				2
				𝜌
			

			
				𝑗
				−
				1
			

			
				,
				𝜂
			

			

				𝑗
			

			
				=
				𝐸
			

			
				𝑗
				1
				/
				2
			

			
				,
				𝜌
			

			

				𝑗
			

			
				=
				1
			

			
				
			
			
				2
				𝜌
			

			
				𝑗
				−
				1
			

			
				,
				𝑟
			

			

				𝑗
			

			
				=
				𝜂
			

			
				𝑗
				−
				1
			

			

				𝑟
			

			
				𝑗
				−
				1
			

			
				,
				𝐸
			

			

				𝑗
			

			
				=
				𝑐
				𝐸
			

			
				3
				/
				2
				𝑗
				−
				1
			

			
				,
				𝑚
			

			

				𝑗
			

			
				=
				1
			

			
				
			
			
				2
				𝑚
			

			
				𝑗
				−
				1
			

			
				,
				𝜖
			

			

				𝑗
			

			
				=
				𝛼
				𝑟
			

			

				𝑗
			

			

				𝐸
			

			

				𝑗
			

			
				
			
			
				Γ
				
				𝑚
			

			

				𝑗
			

			
				
				Γ
				
				𝜌
				/
				2
			

			

				𝑗
			

			
				
				,
				𝜎
			

			

				𝑗
			

			
				=
				𝜎
			

			
				𝑗
				−
				1
			

			
				
			
			
				4
				.
			

		
	

						And 
	
		
			

				𝐾
			

			

				𝑗
			

		
	
 satisfies 
	
		
			

				𝐸
			

			

				𝑗
			

			
				=
				𝑒
			

			
				−
				𝐾
			

			

				𝑗
			

			

				𝜌
			

			

				𝑗
			

		
	
.By 
	
		
			

				𝐸
			

			

				𝑗
			

			
				=
				𝑐
				𝐸
			

			
				3
				/
				2
				𝑗
				−
				1
			

		
	
, we have 
	
		
			

				𝐸
			

			

				𝑗
			

			
				=
				𝑐
			

			
				−
				2
			

			
				(
				𝑐
			

			

				2
			

			

				𝐸
			

			

				0
			

			

				)
			

			
				(
				3
				/
				2
				)
			

			

				𝑗
			

		
	
. Thus, if 
	
		
			

				𝐸
			

			

				0
			

		
	
 is sufficiently small, we have 
	
		
			
				𝑐
				𝐸
			

			

				𝑗
			

			
				≤
				1
			

		
	
 and 
	
		
			

				𝜂
			

			

				𝑗
			

			
				=
				𝐸
			

			
				𝑗
				1
				/
				2
			

			
				≤
				1
				/
				4
			

		
	
. Moreover, by definition it follows that 
							
	
 		
 			
				(
				7
				6
				)
			
 		
	

	
		
			
				
				𝜖
			

			
				𝑗
				+
				1
			

			
				/
				𝐸
			

			
				𝑗
				+
				1
			

			

				
			

			
				
			
			
				
				𝜖
			

			

				𝑗
			

			
				/
				𝐸
			

			

				𝑗
			

			
				
				=
				Γ
				
				𝑚
			

			

				𝑗
			

			
				
				Γ
				
				𝜌
				/
				2
			

			

				𝑗
			

			

				
			

			
				
			
			
				Γ
				
				𝑚
			

			
				𝑗
				+
				1
			

			
				
				Γ
				
				𝜌
				/
				2
			

			
				𝑗
				+
				1
			

			
				
				𝐸
			

			
				𝑗
				1
				/
				2
			

			
				≤
				𝐸
			

			
				𝑗
				1
				/
				2
			

			
				≤
				1
			

			
				
			
			
				4
				≤
				1
				.
			

		
	

						Thus 
	
		
			

				𝜖
			

			
				𝑗
				+
				1
			

			
				/
				𝐸
			

			
				𝑗
				+
				1
			

			
				≤
				𝜖
			

			

				𝑗
			

			
				/
				𝐸
			

			

				𝑗
			

		
	
, 
	
		
			
				𝑗
				≤
				0
			

		
	
.Now we prove that, for 
	
		
			

				𝐸
			

			

				0
			

		
	
 sufficiently small, 
	
		
			
				4
				𝜖
			

			

				𝑗
			

			
				/
				𝐸
			

			

				𝑗
			

			
				≤
				𝜎
			

			

				𝑗
			

		
	
 hold for all 
	
		
			
				𝑗
				≤
				0
			

		
	
.Let 
	
		
			

				𝐺
			

			

				𝑗
			

			
				=
				4
				𝜖
			

			

				𝑗
			

			
				/
				𝐸
			

			

				𝑗
			

			

				𝜎
			

			

				𝑗
			

		
	
; from (21) we have 
	
		
			

				𝐺
			

			

				0
			

			
				≤
				1
			

		
	
. Moreover, we have 
							
	
 		
 			
				(
				7
				7
				)
			
 		
	

	
		
			

				𝐺
			

			
				𝑗
				+
				1
			

			
				
			
			

				𝐺
			

			

				𝑗
			

			
				=
				𝜎
			

			

				𝑗
			

			

				𝜖
			

			
				𝑗
				+
				1
			

			

				𝐸
			

			

				𝑗
			

			
				
			
			

				𝜎
			

			
				𝑗
				+
				1
			

			

				𝜖
			

			

				𝑗
			

			

				𝐸
			

			
				𝑗
				+
				1
			

			
				=
				4
				𝛼
				𝑟
			

			
				𝑗
				+
				1
			

			

				𝐸
			

			
				𝑗
				+
				1
			

			
				
			
			
				Γ
				
				𝑚
			

			
				𝑗
				+
				1
			

			
				
				Γ
				
				𝜌
				/
				2
			

			
				𝑗
				+
				1
			

			
				
				⋅
				Γ
				
				𝑚
			

			

				𝑗
			

			
				
				Γ
				
				𝜌
				/
				2
			

			

				𝑗
			

			

				
			

			
				
			
			
				𝛼
				𝑟
			

			

				𝑗
			

			

				𝐸
			

			

				𝑗
			

			
				⋅
				𝐸
			

			

				𝑗
			

			
				
			
			

				𝐸
			

			
				𝑗
				+
				1
			

			
				𝜂
				≤
				4
			

			

				𝑗
			

			

				𝐸
			

			
				𝑗
				+
				1
			

			
				
			
			

				𝐸
			

			

				𝑗
			

			
				⋅
				𝐸
			

			

				𝑗
			

			
				
			
			

				𝐸
			

			
				𝑗
				+
				1
			

			
				=
				4
				𝐸
			

			
				𝑗
				1
				/
				2
			

			
				≤
				1
				,
			

		
	

						for all 
	
		
			
				𝑗
				≤
				0
			

		
	
. Thus, 
	
		
			

				𝐺
			

			

				𝑗
			

			
				≤
				𝐺
			

			

				0
			

			
				≤
				1
			

		
	
. So the inequalities in the assumption 2 of Lemma 13 hold for all 
	
		
			
				𝑗
				≤
				0
			

		
	
.Let 
	
		
			

				𝑀
			

			

				0
			

			
				=
				𝑀
			

		
	
, 
	
		
			

				𝑁
			

			

				0
			

			
				=
				(
				𝐴
				+
				𝜖
				[
				𝑎
				]
				)
				𝜉
			

			
				2
				𝑛
				+
				1
			

			
				−
				𝜆
			

		
	
, 
	
		
			

				ℎ
			

			

				0
			

			
				=
				0
			

		
	
, 
	
		
			

				Ω
			

			

				0
			

			
				=
				𝐴
				Ω
			

		
	
, 
	
		
			

				𝑆
			

			

				0
			

			
				=
				𝑎
				Ω
			

		
	
, and 
	
		
			

				𝑃
			

			

				0
			

			
				=
				𝑃
			

		
	
. By Lemmas 11, 12, and 13, we have a sequence of closed domains 
	
		
			

				𝑀
			

			

				𝑗
			

		
	
 with 
	
		
			

				𝑀
			

			
				𝑗
				+
				1
			

			
				⊂
				𝑀
			

			

				𝑗
			

		
	
 and a sequence of affine transformations 
							
	
 		
 			
				(
				7
				8
				)
			
 		
	

	
		
			

				Φ
			

			

				𝑗
			

			
				
				∶
				𝐷
				0
				,
				𝑟
			

			
				𝑗
				+
				1
			

			
				
				
				⟶
				𝐷
				0
				,
				2
				𝑟
			

			
				𝑗
				+
				1
			

			
				
				
				⊂
				𝐷
				0
				,
				𝑟
			

			

				𝑗
			

			
				
				,
				Φ
			

			

				𝑗
			

			
				∶
				𝑥
			

			

				𝑗
			

			
				=
				
				1
				+
				𝜖
			

			

				2
			

			

				𝑗
			

			

				𝑄
			

			

				𝑗
			

			
				
				𝑥
			

			
				𝑗
				+
				1
			

			
				+
				𝑢
			

			

				𝑗
			

			

				.
			

		
	

						We also have 
							
	
 		
 			
				(
				7
				9
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				|
				Φ
			

			

				𝑗
			

			
				|
				|
				|
				|
				|
				|
				−
				𝑖
				𝑑
			

			

				𝑚
			

			
				𝑗
				+
				1
			

			
				,
				Δ
			

			
				𝑟
				𝑗
				+
				1
				,
				𝑠
				𝑗
				+
				1
			

			
				×
				𝑀
			

			
				𝑗
				+
				1
			

			
				
				𝑟
				≤
				𝑐
			

			

				𝑗
			

			
				+
				𝑟
			

			
				2
				𝑗
			

			
				
				𝐸
			

			

				𝑗
			

			
				,
				|
				|
				|
				|
				|
				|
				𝐷
			

			

				𝑥
			

			

				Φ
			

			

				𝑗
			

			
				|
				|
				|
				|
				|
				|
				−
				1
			

			

				𝑚
			

			
				𝑗
				+
				1
			

			
				,
				Δ
			

			
				𝑟
				𝑗
				+
				1
				,
				𝑠
				𝑗
				+
				1
			

			
				×
				𝑀
			

			
				𝑗
				+
				1
			

			
				≤
				𝑐
				𝑟
			

			

				𝑗
			

			

				𝐸
			

			

				𝑗
			

			

				.
			

		
	

						Let 
	
		
			

				Φ
			

			

				𝑗
			

			
				=
				Φ
			

			

				0
			

			
				∘
				Φ
			

			

				1
			

			
				∘
				⋯
				Φ
			

			
				𝑗
				−
				1
			

		
	
 with 
	
		
			

				Φ
			

			

				0
			

			
				=
				𝑖
				𝑑
			

		
	
. Then, after the transformation 
	
		
			

				Φ
			

			

				𝑗
			

		
	
, (19) is changed to 
							
	
 		
 			
				(
				8
				0
				)
			
 		
	

	
		
			
				̇
				𝑥
				=
				𝑁
			

			

				𝑗
			

			
				(
				𝑝
				)
				+
				Ω
			

			

				𝑗
			

			
				(
				𝑝
				)
				𝑥
				+
				𝜖
			

			

				2
			

			

				𝑗
			

			

				𝑆
			

			

				𝑗
			

			
				𝑥
				+
				𝑃
			

			

				𝑗
			

			
				(
				𝑥
				,
				𝑡
				;
				𝑝
				)
				.
			

		
	

						By the inductive assumptions of KAM iteration, we have 
	
		
			
				|
				|
				|
				𝑃
			

			

				𝑗
			

			
				|
				|
				|
			

			

				𝑚
			

			

				𝑗
			

			
				,
				Δ
			

			
				𝑟
				𝑗
				𝑗
				,
				𝑠
			

			
				×
				𝑀
			

			

				𝑗
			

			
				≤
				𝜖
			

			

				𝑗
			

		
	
.
					The correction terms 
	
		
			
				
				ℎ
			

			

				𝑗
			

		
	
 and 
	
		
			
				
				Ω
			

			

				𝑗
			

		
	
 satisfy 
							
	
 		
 			
				(
				8
				1
				)
			
 		
	

	
		
			
				‖
				‖
				
				ℎ
			

			

				𝑗
			

			
				‖
				‖
			

			

				𝑀
			

			

				𝑗
			

			
				≤
				𝜖
			

			

				𝑗
			

			
				,
				‖
				‖
				
				Ω
			

			

				𝑗
			

			
				‖
				‖
			

			

				𝑀
			

			

				𝑗
			

			
				≤
				𝜖
			

			

				𝑗
			

			
				
			
			

				𝑟
			

			

				𝑗
			

			

				.
			

		
	

						By Lemma 11, we have 
	
		
			
				d
				i
				s
				t
				(
				𝑀
			

			
				𝑗
				+
				1
			

			
				,
				𝜕
				𝑀
			

			

				𝑗
			

			
				)
				≥
				𝜖
			

			
				𝑗
				−
				1
			

			
				/
				4
				𝐸
			

			
				𝑗
				−
				1
			

		
	
.  For Cauchy’s estimate we have 
							
	
 		
 			
				(
				8
				2
				)
			
 		
	

	
		
			
				‖
				‖
				𝐷
			

			

				𝑝
			

			
				
				ℎ
			

			

				𝑗
			

			
				‖
				‖
			

			

				𝑀
			

			
				𝑗
				+
				1
			

			
				≤
				4
				𝜖
			

			

				𝑗
			

			

				𝐸
			

			
				𝑗
				−
				1
			

			
				
			
			

				𝜖
			

			
				𝑗
				−
				1
			

			

				.
			

		
	
Noting that 
	
		
			

				𝑀
			

			

				0
			

			
				=
				𝐵
				(
				𝐼
				×
				𝐽
				,
				𝜎
			

			

				0
			

			

				)
			

		
	
 and 
	
		
			

				𝑇
			

			

				0
			

			
				∶
				𝜆
				=
				(
				𝐴
				+
				𝜖
				[
				𝑎
				]
				)
				𝜉
			

			
				2
				𝑛
				+
				1
			

		
	
, 
	
		
			
				|
				𝜉
				|
				≤
				𝛿
				≤
				1
			

		
	
. Since 
	
		
			

				𝜎
			

			

				0
			

			
				≥
				4
				𝜖
			

			

				0
			

			
				/
				𝐸
			

			

				0
			

		
	
 and 
	
		
			

				𝑀
			

			

				1
			

			
				=
				𝐵
				(
				𝑇
			

			

				0
			

			
				,
				3
				𝜖
			

			

				0
			

			
				/
				𝐸
			

			

				0
			

			
				)
				∩
				(
				𝐼
			

			

				𝜎
			

			

				0
			

			
				/
				2
				+
				𝜖
			

			

				0
			

			
				/
				𝐸
			

			

				0
			

			
				×
				ℂ
				)
			

		
	
, it follows that 
	
		
			

				𝑀
			

			

				1
			

			
				⊂
				𝑀
			

			

				0
			

		
	
 and 
	
		
			
				d
				i
				s
				t
				(
				𝑀
			

			

				1
			

			
				,
				𝜕
				𝑀
			

			

				0
			

			
				)
				≥
				𝜎
			

			

				0
			

			
				/
				4
			

		
	
. For Cauchy’s estimate we have 
							
	
 		
 			
				(
				8
				3
				)
			
 		
	

	
		
			
				‖
				‖
				𝐷
			

			

				𝑝
			

			
				
				ℎ
			

			

				0
			

			
				‖
				‖
			

			

				𝑀
			

			

				1
			

			
				≤
				4
				𝜖
			

			

				0
			

			
				
			
			

				𝜎
			

			

				0
			

			

				.
			

		
	
Let 
	
		
			

				𝐹
			

			

				𝑗
			

			
				=
				𝜖
			

			

				𝑗
			

			

				𝐸
			

			
				𝑗
				−
				1
			

			
				/
				𝜖
			

			
				𝑗
				−
				1
			

			

				𝑟
			

			

				𝑗
			

		
	
; then 
							
	
 		
 			
				(
				8
				4
				)
			
 		
	

	
		
			

				𝐹
			

			

				𝑗
			

			
				=
				𝐸
			

			
				𝑗
				−
				1
			

			
				
			
			

				𝑟
			

			

				𝑗
			

			
				⋅
				𝛼
				𝑟
			

			

				𝑗
			

			

				𝐸
			

			

				𝑗
			

			
				Γ
				
				𝑚
			

			
				𝑗
				−
				1
			

			
				
				Γ
				
				𝜌
				/
				2
			

			
				𝑗
				−
				1
			

			

				
			

			
				
			
			
				𝛼
				𝑟
			

			
				𝑗
				−
				1
			

			

				𝐸
			

			
				𝑗
				−
				1
			

			
				Γ
				
				𝑚
			

			

				𝑗
			

			
				
				Γ
				
				𝜌
				/
				2
			

			

				𝑗
			

			
				
				≤
				𝐸
			

			
				𝑗
				−
				1
			

			
				
			
			

				𝑟
			

			

				𝑗
			

			
				⋅
				𝛼
				𝑟
			

			

				𝑗
			

			

				𝐸
			

			

				𝑗
			

			
				
			
			
				𝛼
				𝑟
			

			
				𝑗
				−
				1
			

			

				𝐸
			

			
				𝑗
				−
				1
			

			
				=
				𝑐
				𝐸
			

			
				2
				𝑗
				−
				1
			

			
				
			
			

				𝑟
			

			

				𝑗
			

			
				=
				𝑅
			

			

				𝑗
			

			

				.
			

		
	

						So 
	
		
			

				𝑅
			

			
				𝑗
				+
				1
			

			
				/
				𝑅
			

			

				𝑗
			

			
				=
				𝑐
				𝐸
			

			
				𝑗
				1
				/
				6
			

		
	
. Obviously, we can choose 
	
		
			

				𝐸
			

			

				0
			

		
	
 sufficiently small so that 
	
		
			

				𝑅
			

			
				𝑗
				+
				1
			

			
				/
				𝑅
			

			

				𝑗
			

			
				≤
				1
				/
				2
			

		
	
, 
	
		
			

				𝑅
			

			
				𝑗
				+
				1
			

			
				≤
				(
				1
				/
				2
				)
				𝑅
			

			

				𝑗
			

		
	
. Noting that 
	
		
			

				ℎ
			

			

				0
			

			
				=
				0
			

		
	
 and 
	
		
			

				𝜖
			

			

				0
			

			
				/
				𝑟
			

			

				0
			

			

				𝜎
			

			

				0
			

			
				≤
				1
				/
				1
				6
			

		
	
, we have 
							
	
 		
 			
				(
				8
				5
				)
			
 		
	

	
		
			
				‖
				‖
				𝐷
			

			

				𝑝
			

			

				ℎ
			

			

				𝑗
			

			
				‖
				‖
			

			

				𝑀
			

			
				𝑗
				+
				1
			

			
				≤
				‖
				‖
				𝐷
			

			

				𝑝
			

			
				
				ℎ
			

			

				0
			

			
				‖
				‖
			

			

				𝑀
			

			
				𝑗
				+
				1
			

			

				+
			

			
				𝑗
				−
				1
			

			

				
			

			
				𝑙
				=
				1
			

			
				‖
				‖
				𝐷
			

			

				𝑝
			

			
				
				ℎ
			

			

				𝑙
			

			
				‖
				‖
			

			

				𝑀
			

			
				𝑗
				+
				1
			

			
				≤
				4
				𝜖
			

			

				0
			

			
				
			
			

				𝜎
			

			

				0
			

			

				+
			

			
				𝑗
				−
				1
			

			

				
			

			
				𝑙
				=
				1
			

			
				4
				𝑟
			

			

				𝑗
			

			

				𝑅
			

			

				𝑗
			

			
				≤
				1
			

			
				
			
			
				4
				+
				𝑐
				𝐸
			

			
				2
				0
			

			
				≤
				1
			

			
				
			
			
				2
				.
			

		
	

						So condition (29) holds for all 
	
		
			
				𝑗
				≤
				0
			

		
	
.From Lemma 11, 
	
		
			

				𝑁
			

			

				𝑗
			

			
				(
				𝑝
				)
				=
				(
				𝐴
				+
				𝜖
				[
				𝑎
				]
				)
				𝜉
			

			
				2
				𝑛
				+
				1
			

			
				−
				𝜆
				+
				ℎ
			

			

				𝑗
			

			
				(
				𝑝
				)
				=
				0
			

		
	
 defines implicitly a real analytic curve 
	
		
			

				𝑇
			

			

				𝑗
			

			
				⊂
				𝑀
			

			

				𝑗
			

			
				∶
				𝜆
				=
				𝜆
			

			

				𝑗
			

			
				(
				𝜉
				)
			

		
	
, 
	
		
			
				𝜉
				∈
				𝐼
			

			

				𝜎
			

			

				𝑗
			

			
				/
				2
			

		
	
, satisfying 
							
	
 		
 			
				(
				8
				6
				)
			
 		
	

	
		
			
				|
				|
				𝜆
			

			
				𝑗
				+
				1
			

			
				(
				𝜉
				)
				−
				𝜆
			

			

				𝑗
			

			
				|
				|
				(
				𝜉
				)
				≤
				2
				𝜖
			

			

				𝑗
			

			
				,
				∀
				𝜉
				∈
				𝐼
			

			

				𝜎
			

			

				𝑗
			

			
				/
				2
			

			

				.
			

		
	

						Furthermore, 
	
		
			
				‖
				𝑁
			

			
				𝑗
				+
				1
			

			

				‖
			

			

				𝑀
			

			
				𝑗
				+
				1
			

			
				≤
				8
				𝜖
			

			

				𝑗
			

			
				/
				𝐸
			

			

				𝑗
			

		
	
. Convergence of KAM Iteration. Now we prove the convergence of KAM iteration. By the definition of 
	
		
			

				𝐸
			

			

				𝑗
			

		
	
, if 
	
		
			

				𝐸
			

			

				0
			

		
	
 is sufficiently small, it follows that 
							
	
 		
 			
				(
				8
				7
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				|
				𝐷
			

			

				𝑥
			

			

				Φ
			

			

				𝑗
			

			
				|
				|
				|
				|
				|
				|
			

			

				𝑚
			

			

				𝑗
			

			
				,
				Δ
			

			
				𝑟
				𝑗
				𝑗
				,
				𝑠
			

			
				×
				𝑀
			

			

				𝑗
			

			

				≤
			

			
				𝑗
				−
				1
			

			

				
			

			
				𝑖
				=
				0
			

			
				
				1
				+
				𝑐
				𝑟
			

			

				𝑖
			

			

				𝐸
			

			

				𝑖
			

			
				
				≤
				2
				.
			

		
	

						Therefore, we have 
							
	
 		
 			
				(
				8
				8
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				|
				Φ
			

			

				𝑗
			

			
				−
				Φ
			

			
				𝑗
				−
				1
			

			
				|
				|
				|
				|
				|
				|
			

			

				𝑚
			

			

				𝑗
			

			
				,
				Δ
			

			
				𝑟
				𝑗
				𝑗
				,
				𝑠
			

			
				×
				𝑀
			

			

				𝑗
			

			
				
				𝑟
				≤
				𝑐
			

			
				𝑗
				−
				1
			

			
				+
				𝑟
			

			
				2
				𝑗
				−
				1
			

			
				
				𝐸
			

			
				𝑗
				−
				1
			

			
				,
				|
				|
				|
				|
				|
				|
				𝐷
			

			

				𝑥
			

			
				
				Φ
			

			

				𝑗
			

			
				−
				Φ
			

			
				𝑗
				−
				1
			

			
				
				|
				|
				|
				|
				|
				|
			

			

				𝑚
			

			

				𝑗
			

			
				,
				Δ
			

			
				𝑟
				𝑗
				𝑗
				,
				𝑠
			

			
				×
				𝑀
			

			

				𝑗
			

			
				≤
				𝑐
				𝑟
			

			
				𝑗
				−
				1
			

			

				𝐸
			

			
				𝑗
				−
				1
			

			

				.
			

		
	
Let 
							
	
 		
 			
				(
				8
				9
				)
			
 		
	

	
		
			

				Δ
			

			

				∗
			

			

				=
			

			

				∞
			

			

				
			

			
				𝑗
				=
				0
			

			

				Δ
			

			

				𝑟
			

			

				𝑗
			

			
				,
				𝑠
			

			

				𝑗
			

			
				=
				Δ
			

			
				0
				,
				𝑠
			

			

				0
			

			
				/
				2
			

			
				,
				𝑀
			

			

				∗
			

			
				=
				
			

			
				𝑗
				≥
				0
			

			

				𝑀
			

			

				𝑗
			

			
				,
				Φ
				=
				l
				i
				m
			

			
				𝑗
				→
				∞
			

			

				Φ
			

			

				𝑗
			

			

				.
			

		
	

						We have 
							
	
 		
 			
				(
				9
				0
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				|
				Φ
			

			

				𝑗
			

			
				−
				Φ
			

			

				0
			

			
				|
				|
				|
				|
				|
				|
			

			

				𝑚
			

			

				𝑗
			

			
				,
				Δ
			

			
				𝑟
				𝑗
				𝑗
				,
				𝑠
			

			
				×
				𝑀
			

			

				𝑗
			

			
				≤
				|
				|
				|
				|
				|
				|
				Φ
			

			

				𝑗
			

			
				−
				Φ
			

			
				𝑗
				−
				1
			

			
				|
				|
				|
				|
				|
				|
			

			

				𝑚
			

			

				𝑗
			

			
				,
				Δ
			

			
				𝑟
				𝑗
				𝑗
				,
				𝑠
			

			
				×
				𝑀
			

			

				𝑗
			

			
				+
				|
				|
				|
				|
				|
				|
				Φ
			

			
				𝑗
				−
				1
			

			
				−
				Φ
			

			
				𝑗
				−
				2
			

			
				|
				|
				|
				|
				|
				|
			

			

				𝑚
			

			

				𝑗
			

			
				,
				Δ
			

			
				𝑟
				𝑗
				𝑗
				,
				𝑠
			

			
				×
				𝑀
			

			

				𝑗
			

			
				|
				|
				|
				|
				|
				|
				Φ
				+
				⋯
				+
			

			

				1
			

			
				−
				Φ
			

			

				0
			

			
				|
				|
				|
				|
				|
				|
			

			

				𝑚
			

			

				𝑗
			

			
				,
				Δ
			

			
				𝑟
				𝑗
				𝑗
				,
				𝑠
			

			
				×
				𝑀
			

			

				𝑗
			

			
				
				𝑟
				≤
				𝑐
			

			
				𝑗
				−
				1
			

			
				+
				𝑟
			

			
				2
				𝑗
				−
				1
			

			
				
				𝐸
			

			
				𝑗
				−
				1
			

			
				
				𝑟
				+
				𝑐
			

			
				𝑗
				−
				2
			

			
				+
				𝑟
			

			
				2
				𝑗
				−
				2
			

			
				
				𝐸
			

			
				𝑗
				−
				2
			

			
				
				𝑟
				+
				⋯
				+
				𝑐
			

			

				0
			

			
				+
				𝑟
			

			
				2
				0
			

			
				
				𝐸
			

			

				0
			

			
				
				𝑟
				≤
				𝑐
			

			

				0
			

			
				+
				𝑟
			

			
				2
				0
			

			
				
				𝐸
			

			

				0
			

			

				.
			

		
	
Thus 
							
	
 		
 			
				(
				9
				1
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				Φ
				−
				𝑖
				𝑑
			

			

				𝑚
			

			

				∗
			

			
				,
				Δ
			

			
				𝑟
				∗
				∗
				,
				𝑠
			

			
				×
				𝑀
			

			

				∗
			

			
				
				𝑟
				≤
				𝑐
			

			

				0
			

			
				+
				𝑟
			

			
				2
				0
			

			
				
				𝐸
			

			

				0
			

			
				,
				|
				|
				|
				|
				|
				|
				𝐷
			

			

				𝑥
			

			
				|
				|
				|
				|
				|
				|
				Φ
				−
				𝑖
				𝑑
			

			

				𝑚
			

			

				∗
			

			
				,
				Δ
			

			
				𝑟
				∗
				∗
				,
				𝑠
			

			
				×
				𝑀
			

			

				∗
			

			
				≤
				𝑐
				𝑟
			

			

				0
			

			

				𝐸
			

			

				0
			

			

				.
			

		
	

						So we have the convergence of 
	
		
			

				Φ
			

			

				𝑗
			

		
	
 to 
	
		
			

				Φ
			

		
	
 on 
	
		
			

				Δ
			

			

				𝑟
			

			

				0
			

			
				/
				2
				,
				𝑠
			

			

				0
			

			
				/
				2
			

		
	
.From (86) it is easy to show that 
	
		
			

				𝜆
			

			

				𝑗
			

		
	
 is convergent on 
	
		
			

				𝐼
			

		
	
. In fact, 
	
		
			

				𝜖
			

			
				𝑗
				+
				1
			

			
				/
				𝜖
			

			

				𝑗
			

			
				≤
				𝑐
				𝐸
			

			

				𝑗
			

			
				≤
				1
				/
				2
			

		
	
. For 
	
		
			
				𝑖
				>
				𝑗
			

		
	
, it follows that 
							
	
 		
 			
				(
				9
				2
				)
			
 		
	

	
		
			
				|
				|
				𝜆
			

			

				𝑖
			

			
				(
				𝜉
				)
				−
				𝜆
			

			

				𝑗
			

			
				|
				|
				≤
				(
				𝜉
				)
			

			
				𝑖
				−
				1
			

			

				
			

			
				𝑙
				=
				𝑗
			

			
				2
				𝜖
			

			

				𝑙
			

			
				≤
				4
				𝜖
			

			

				𝑗
			

			
				,
				∀
				𝜉
				∈
				𝐼
			

			
				(
				1
				/
				2
				)
				𝜎
			

			

				𝑗
			

			

				.
			

		
	

						Let 
	
		
			

				𝜆
			

			

				𝑖
			

			
				(
				𝜉
				)
				→
				𝜆
				(
				𝜉
				)
				=
				(
				𝐴
				+
				𝜖
				[
				𝑎
				]
				)
				𝜉
			

			
				2
				𝑛
				+
				1
			

			
				+
				
				𝑁
				(
				𝜉
				)
			

		
	
, 
	
		
			
				𝜉
				∈
				𝐼
			

		
	
. For 
	
		
			

				𝜆
			

			

				0
			

			
				(
				𝜉
				)
				=
				(
				𝐴
				+
				𝜖
				[
				𝑎
				]
				)
				𝜉
			

			
				2
				𝑛
				+
				1
			

		
	
, we have 
							
	
 		
 			
				(
				9
				3
				)
			
 		
	

	
		
			
				|
				|
				𝜆
			

			

				𝑖
			

			
				[
				𝑎
				]
				(
				𝜉
				)
				−
				(
				𝐴
				+
				𝜖
				)
				𝜉
			

			
				2
				𝑛
				+
				1
			

			
				|
				|
				≤
				4
				𝜖
			

			

				0
			

			
				,
				∀
				𝜉
				∈
				𝐼
			

			
				(
				1
				/
				2
				)
				𝜎
			

			

				𝑗
			

			
				,
				|
				|
				
				|
				|
				=
				|
				|
				[
				𝑎
				]
				𝑁
				(
				𝜉
				)
				𝜆
				(
				𝜉
				)
				−
				(
				𝐴
				+
				𝜖
				)
				𝜉
			

			
				2
				𝑛
				+
				1
			

			
				|
				|
				≤
				4
				𝜖
			

			

				0
			

			
				,
				∀
				𝜉
				∈
				𝐼
				.
			

		
	
Moreover, by Cauchy’s estimate we have 
							
	
 		
 			
				(
				9
				4
				)
			
 		
	

	
		
			
				|
				|
				𝜆
			

			
				
				𝑗
				+
				1
			

			
				(
				𝜉
				)
				−
				𝜆
			

			
				
				𝑗
			

			
				|
				|
				≤
				(
				𝜉
				)
				4
				𝜖
			

			

				𝑗
			

			
				
			
			

				𝜎
			

			

				𝑗
			

			
				,
				∀
				𝜉
				∈
				𝐼
				.
			

		
	
Let 
	
		
			

				𝐿
			

			

				𝑗
			

			
				=
				4
				𝜖
			

			

				𝑗
			

			
				/
				𝜎
			

			

				𝑗
			

		
	
; then 
	
		
			

				𝐿
			

			
				𝑗
				+
				1
			

			
				/
				𝐿
			

			

				𝑗
			

			
				≤
				𝑐
				𝐸
			

			

				𝑗
			

		
	
. Thus, it is easy to prove that 
	
		
			
				{
				𝜆
			

			
				
				𝑗
			

			
				(
				𝜉
				)
				}
			

		
	
 is convergent uniformly on 
	
		
			

				𝐼
			

		
	
, and so 
	
		
			
				𝜆
				(
				𝜉
				)
			

		
	
 is differentiable on 
	
		
			

				𝐼
			

		
	
. In fact, in the same way as in [7], we can prove that 
	
		
			
				𝜆
				(
				𝜉
				)
			

		
	
 is 
	
		
			

				𝐶
			

			

				∞
			

		
	
-smooth on 
	
		
			

				𝐼
			

		
	
.Since 
	
		
			

				𝑇
			

			

				𝑖
			

			
				⊂
				𝑀
			

			

				𝑖
			

			
				⊂
				𝑀
			

			

				𝑗
			

		
	
, for all 
	
		
			
				𝑖
				≥
				𝑗
			

		
	
, letting 
	
		
			
				𝑖
				→
				∞
			

		
	
 we have 
	
		
			
				𝑇
				=
				{
				(
				𝜉
				,
				𝜆
				)
				∣
				𝜆
				=
				𝜆
				(
				𝜉
				)
				,
				𝜉
				∈
				𝐼
				⊂
				𝑀
			

			

				𝑗
			

			

				}
			

		
	
 and 
	
		
			
				𝑇
				=
				𝑀
			

			

				∗
			

			
				=
				∩
			

			
				𝑗
				≤
				0
			

			

				𝑀
			

			

				𝑗
			

		
	
. Obviously, 
	
		
			

				𝑁
			

			

				𝑗
			

			
				(
				𝑝
				)
				→
				0
			

		
	
, for 
	
		
			
				𝑝
				∈
				𝑇
			

		
	
. Let 
	
		
			

				Ω
			

			

				𝑗
			

			
				→
				Ω
			

			

				∗
			

		
	
 and let 
	
		
			

				𝑃
			

			

				𝑗
			

			
				→
				𝑃
			

			

				∗
			

		
	
. By Cauchy’s estimate we have 
							
	
 		
 			
				(
				9
				5
				)
			
 		
	

	
		
			
				|
				|
				𝐷
			

			

				𝑥
			

			

				𝑃
			

			

				𝑗
			

			

				|
			

			
				𝑥
				=
				0
			

			
				|
				|
				≤
				𝜖
			

			

				𝑗
			

			
				
			
			

				𝑟
			

			

				𝑗
			

			
				=
				𝛼
				𝐸
			

			

				𝑗
			

			
				
			
			
				Γ
				
				𝑚
			

			

				𝑗
			

			
				
				Γ
				
				𝜌
				/
				2
			

			

				𝑗
			

			
				
				⟶
				0
				.
			

		
	

						Thus 
	
		
			

				𝑃
			

			

				∗
			

			

				|
			

			
				𝑥
				=
				0
			

			
				=
				0
			

		
	
 and 
	
		
			

				𝐷
			

			

				𝑥
			

			

				𝑃
			

			

				∗
			

			

				|
			

			
				𝑥
				=
				0
			

			
				=
				0
			

		
	
. Hence 
	
		
			

				𝑃
			

			

				∗
			

			
				(
				𝑥
				,
				𝑡
				;
				𝑝
				)
				=
				𝑂
				(
				𝑥
			

			

				2
			

			

				)
			

		
	
 for 
	
		
			
				𝑝
				∈
				𝑇
			

		
	
.Noting that 
	
		
			
				‖
				
				Ω
			

			

				𝑗
			

			

				‖
			

			

				𝑀
			

			

				𝑗
			

			
				≤
				𝜖
			

			

				𝑗
			

			
				/
				𝑟
			

			

				𝑗
			

		
	
 and 
	
		
			

				Ω
			

			

				𝑗
			

			
				∑
				=
				𝐴
				Ω
				+
			

			
				𝑗
				−
				1
				𝑖
				=
				1
			

			
				
				Ω
			

			

				𝑗
			

		
	
, we have 
							
	
 		
 			
				(
				9
				6
				)
			
 		
	

	
		
			
				|
				|
				Ω
			

			

				∗
			

			
				|
				|
				≤
				(
				𝑝
				)
				−
				𝐴
				Ω
				(
				𝑝
				)
				2
				𝜖
			

			

				0
			

			
				
			
			

				𝑟
			

			

				0
			

			
				,
				∀
				𝑝
				∈
				Γ
				.
			

		
	

						The proof of Theorem 10 is complete.
3. Proof of Theorem 9
Let 
	
		
			
				𝑥
				=
				𝜉
				+
				𝑦
			

		
	
 with 
	
		
			
				|
				𝜉
				|
				≤
				𝛿
			

		
	
 and 
	
		
			
				|
				𝑦
				|
				≤
				𝑟
			

			

				0
			

			
				≤
				𝛿
			

		
	
. Then (5) becomes 
						
	
 		
 			
				(
				9
				7
				)
			
 		
	

	
		
			
				̇
				𝑦
				=
				(
				𝐴
				+
				𝜖
				𝑎
				(
				𝑡
				)
				)
				(
				𝑦
				+
				𝜉
				)
			

			
				2
				𝑛
				+
				1
			

			
				+
				ℎ
				(
				𝑦
				+
				𝜉
				,
				𝑡
				)
				+
				𝑓
				(
				𝑦
				+
				𝜉
				,
				𝑡
				)
				.
			

		
	

					Let 
						
	
 		
 			
				(
				9
				8
				)
			
 		
	

	
		
			
				(
				𝑦
				+
				𝜉
				)
			

			
				2
				𝑛
				+
				1
			

			
				=
				𝜉
			

			
				2
				𝑛
				+
				1
			

			
				+
				(
				2
				𝑛
				+
				1
				)
				𝜉
			

			
				2
				𝑛
			

			
				𝑦
				+
				𝑔
				(
				𝑦
				,
				𝜉
				)
			

		
	

					with 
						
	
 		
 			
				(
				9
				9
				)
			
 		
	

	
		
			
				𝑔
				(
				𝑦
				,
				𝜉
				)
				=
				(
				2
				𝑛
				+
				1
				)
				2
				𝑛
			

			
				
			
			
				2
				𝜉
			

			
				2
				𝑛
				−
				1
			

			

				𝑦
			

			

				2
			

			
				+
				⋯
				+
				(
				2
				𝑛
				+
				1
				)
				𝜉
				𝑦
			

			
				2
				𝑛
			

			
				+
				𝑦
			

			
				2
				𝑛
				+
				1
			

			

				.
			

		
	

					We write 
	
		
			
				ℎ
				(
				𝑦
				+
				𝜉
				,
				𝑡
				)
				=
				ℎ
				(
				𝑦
				,
				𝑡
				,
				𝜉
				)
			

		
	
 and 
	
		
			
				𝑓
				(
				𝑦
				+
				𝜉
				,
				𝑡
				)
				=
				𝑓
				(
				𝑦
				,
				𝑡
				,
				𝜉
				)
			

		
	
 and decompose 
	
		
			
				𝑎
				(
				𝑡
				)
			

		
	
 as 
	
		
			
				𝑎
				(
				𝑡
				)
				=
				[
				𝑎
				]
				+
			

			

				∼
			

			
				𝑎
				(
				𝑡
				)
			

		
	
, where 
	
		
			
				[
				𝑎
				]
			

		
	
 is the average of 
	
		
			
				𝑎
				(
				𝑡
				)
			

		
	
 and 
	
		
			

				∼
			

			
				𝑎
				(
				𝑡
				)
			

		
	
 has zero mean value. Then the differential equation (5) becomes 
						
	
 		
 			
				(
				1
				0
				0
				)
			
 		
	

	
		
			
				[
				𝑎
				]
				̇
				𝑦
				=
				(
				𝐴
				+
				𝜖
				)
				𝜉
			

			
				2
				𝑛
				+
				1
			

			
				+
				(
				2
				𝑛
				+
				1
				)
				(
				𝐴
				+
				𝜖
				𝑎
				(
				𝑡
				)
				)
				𝜉
			

			
				2
				𝑛
			

			
				𝑦
				+
				𝑃
				(
				𝑦
				,
				𝑡
				,
				𝜉
				)
				,
			

		
	

					where 
	
		
			
				𝑃
				=
				𝜖
			

			

				∼
			

			
				𝑎
				(
				𝑡
				)
				𝜉
			

			
				2
				𝑛
				+
				1
			

			
				+
				(
				𝐴
				+
				𝜖
				𝑎
				(
				𝑡
				)
				)
				𝑔
				+
				ℎ
				+
				𝑓
			

		
	
.
Let 
	
		
			
				𝐼
				=
				[
				−
				𝛿
				,
				𝛿
				]
			

		
	
 and 
	
		
			

				𝐼
			

			

				𝜎
			

			
				=
				{
				𝜉
				∈
				ℂ
				∣
				d
				i
				s
				t
				(
				𝜉
				,
				𝐼
				)
				≤
				𝜎
				}
			

		
	
. By assumption and the choice of 
	
		
			

				𝑟
			

		
	
 and 
	
		
			

				𝛿
			

		
	
, it is easy to see that 
	
		
			

				𝑔
			

		
	
, 
	
		
			

				ℎ
			

		
	
, and 
	
		
			

				𝑓
			

		
	
 are all real analytic on 
	
		
			

				Δ
			

			

				𝑟
			

			

				0
			

			
				,
				𝑠
			

			

				0
			

			
				×
				𝐼
			

			

				𝜎
			

		
	
 with 
	
		
			

				𝑟
			

			

				0
			

			
				≤
				𝛿
			

		
	
, 
	
		
			

				𝜎
			

			

				0
			

			
				≤
				𝛿
			

		
	
 and 
	
		
			

				𝑠
			

			

				0
			

			
				=
				𝑠
			

		
	
. Moreover, we have that 
						
	
 		
 			
				(
				1
				0
				1
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				(
				𝐴
				+
				𝜖
				𝑎
				(
				𝑡
				)
				)
				𝑔
			

			

				𝑚
			

			

				0
			

			
				,
				Δ
			

			
				𝑟
				0
				0
				,
				𝑠
			

			
				×
				𝐼
			

			
				𝜎
				0
			

			
				≤
				𝑐
				𝑟
			

			
				2
				0
			

			
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				𝜖
				𝛿
				,
			

			

				∼
			

			
				𝑎
				(
				𝑡
				)
				𝜉
			

			
				2
				𝑛
				+
				1
			

			
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
			

			

				𝑚
			

			

				0
			

			
				,
				Δ
			

			
				𝑟
				0
				0
				,
				𝑠
			

			
				×
				𝐼
			

			
				𝜎
				0
			

			
				|
				|
				𝛿
				|
				|
				≤
				𝑐
				𝜖
			

			
				2
				𝑛
				+
				1
			

			
				≤
				𝑐
				𝜖
				,
			

		
	

					where 
	
		
			

				𝑐
			

		
	
 is a constant depending on 
	
		
			

				𝑛
			

		
	
. Note that we always use 
	
		
			

				𝑐
			

		
	
 to denote different constants in estimates. Similarly, we have 
	
		
			
				|
				|
				|
				ℎ
				|
				|
				|
			

			

				𝑚
			

			

				0
			

			
				,
				Δ
			

			
				𝑟
				0
				0
				,
				𝑠
			

			
				×
				𝐼
			

			
				𝜎
				0
			

			
				≤
				𝑐
				𝛿
			

			
				2
				𝑛
				+
				2
			

		
	
 and 
	
		
			
				|
				|
				|
				𝑓
				|
				|
				|
			

			

				𝑚
			

			

				0
			

			
				,
				Δ
			

			
				𝑟
				0
				0
				,
				𝑠
			

			
				×
				𝐼
			

			
				𝜎
				0
			

			
				≤
				𝜖
			

		
	
. Let 
	
		
			
				𝛿
				=
				𝜖
			

			
				1
				/
				(
				2
				𝑛
				+
				2
				)
			

		
	
 and let 
	
		
			

				𝑟
			

			

				0
			

			
				=
				𝜖
			

			
				2
				𝑛
				+
				1
				/
				(
				4
				𝑛
				+
				4
				)
			

		
	
. Then 
	
		
			

				𝛿
			

			
				2
				𝑛
				+
				2
			

			
				=
				𝜖
			

		
	
 and 
	
		
			

				𝑟
			

			

				0
			

			
				=
				𝛿
			

			
				2
				𝑛
				+
				1
				/
				2
			

		
	
. Let 
	
		
			

				𝜎
			

			

				0
			

			
				=
				𝛿
			

		
	
. Then it follows that 
						
	
 		
 			
				(
				1
				0
				2
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				|
				𝑃
				|
				|
				|
				|
				|
				|
			

			

				𝑚
			

			

				0
			

			
				,
				Δ
			

			
				𝑟
				0
				0
				,
				𝑠
			

			
				×
				𝐼
			

			
				𝜎
				0
			

			
				≤
				𝑐
				𝑟
			

			
				2
				0
			

			
				𝛿
				+
				𝑐
				𝛿
			

			
				2
				𝑛
				+
				2
			

			
				+
				𝜖
				=
				𝑐
				𝜖
				=
				𝜖
			

			

				0
			

			

				.
			

		
	

					Now (97) is equivalent to the following parameterized differential equation: 
						
	
 		
 			
				(
				1
				0
				3
				)
			
 		
	

	
		
			
				[
				𝑎
				]
				̇
				𝑦
				=
				(
				𝐴
				+
				𝜖
				)
				𝜉
			

			
				2
				𝑛
				+
				1
			

			
				+
				(
				𝐴
				+
				𝜖
				𝑎
				(
				𝑡
				)
				)
				Ω
				(
				𝜉
				)
				𝑦
				+
				𝑃
				(
				𝑦
				,
				𝑡
				,
				𝜉
				)
				,
			

		
	

					where 
	
		
			
				Ω
				(
				𝜉
				)
				=
				(
				2
				𝑛
				+
				1
				)
				𝜉
			

			
				2
				𝑛
			

		
	
.
Now we want to prove that if 
	
		
			

				𝜖
			

		
	
 is sufficiently small, then there exists 
	
		
			

				𝜉
			

			

				∗
			

			
				∈
				𝐼
			

		
	
 such that at 
	
		
			
				𝜉
				=
				𝜉
			

			

				∗
			

		
	
 the differential equation (103) is reducible to a normal form with zero as equilibrium point. We introduce an external parameter and consider the following almost-periodic differential equation: 
						
	
 		
 			
				(
				1
				0
				4
				)
			
 		
	

	
		
			
				[
				𝑎
				]
				̇
				𝑥
				=
				(
				𝐴
				+
				𝜖
				)
				𝜉
			

			
				2
				𝑛
				+
				1
			

			
				−
				𝜆
				+
				(
				𝐴
				+
				𝜖
				𝑎
				(
				𝑡
				)
				)
				Ω
				(
				𝜉
				)
				𝑦
				+
				𝑃
				(
				𝑦
				,
				𝑡
				,
				𝜉
				)
				,
			

		
	

					where 
	
		
			
				𝜆
				∈
				𝐽
				=
				[
				−
				1
				,
				1
				]
			

		
	
 is an external parameter. Obviously, (103) corresponds to (104) with 
	
		
			
				𝜆
				=
				0
			

		
	
.
By Theorem 10, we will prove that there exists a smooth curve 
	
		
			
				𝑇
				∶
				𝜆
				=
				𝜆
				(
				𝜉
				)
			

		
	
, 
	
		
			
				𝜉
				∈
				𝐼
			

		
	
, such that for 
	
		
			
				(
				𝜉
				,
				𝜆
				)
				∈
				𝑇
			

		
	
 the differential equation (104) can be reduced to a normal form with zero equilibrium. Moreover, we can find 
	
		
			

				𝜉
			

			

				∗
			

			
				∈
				𝐼
			

		
	
 such that 
	
		
			
				𝜆
				(
				𝜉
			

			

				∗
			

			
				)
				=
				0
			

		
	
 and then come back to the original equation (103) with 
	
		
			
				𝜉
				=
				𝜉
			

			

				∗
			

		
	
.
To apply Theorem 10 to (104), we verify all the assumptions. Note that 
						
	
 		
 			
				(
				1
				0
				5
				)
			
 		
	

	
		
			
				𝛿
				=
				𝜖
			

			
				1
				/
				2
				𝑛
				+
				2
			

			
				,
				𝑟
			

			

				0
			

			
				=
				𝜖
			

			
				2
				𝑛
				+
				1
				/
				4
				𝑛
				+
				4
			

			
				,
				𝑠
			

			

				0
			

			
				=
				𝑠
				,
				𝜎
			

			

				0
			

			
				=
				𝛿
				,
				𝜖
			

			

				0
			

			
				=
				𝑐
				𝜖
				.
			

		
	

					Let 
						
	
 		
 			
				(
				1
				0
				6
				)
			
 		
	

	
		
			

				𝐸
			

			

				0
			

			
				=
				𝜖
			

			

				0
			

			
				Γ
				
				𝑚
			

			

				0
			

			
				
				Γ
				
				𝜌
				/
				2
			

			

				0
			

			

				
			

			
				
			
			
				𝛼
				𝑟
			

			

				0
			

			
				=
				𝜖
			

			
				2
				𝑛
				+
				3
				/
				4
				𝑛
				+
				4
			

			
				Γ
				
				𝑚
			

			

				0
			

			
				
				Γ
				
				𝜌
				/
				2
			

			

				0
			

			

				
			

			
				
			
			
				𝛼
				.
			

		
	

					Thus when 
	
		
			

				𝜖
			

		
	
 is small enough, 
	
		
			

				𝐸
			

			

				0
			

		
	
 is also small. Moreover, we have
						
	
 		
 			
				(
				1
				0
				7
				)
			
 		
	

	
		
			

				𝜖
			

			

				0
			

			
				
			
			

				𝐸
			

			

				0
			

			

				𝜎
			

			

				0
			

			
				=
				𝛼
				𝜖
			

			
				(
				2
				𝑛
				−
				1
				)
				/
				(
				4
				𝑛
				+
				4
				)
			

			
				
			
			
				Γ
				
				𝑚
			

			

				0
			

			
				
				Γ
				
				𝜌
				/
				2
			

			

				0
			

			
				
				≤
				1
			

			
				
			
			
				4
				,
				𝜖
			

			

				0
			

			
				
			
			

				𝑟
			

			

				0
			

			

				𝜎
			

			

				0
			

			
				=
				𝜖
			

			
				(
				2
				𝑛
				+
				1
				)
				/
				(
				4
				𝑛
				+
				4
				)
			

			
				≤
				1
			

			
				
			
			
				,
				𝐸
				1
				6
			

			

				0
			

			
				
			
			

				𝑟
			

			

				0
			

			
				=
				𝜖
			

			
				1
				/
				2
				𝑛
				+
				2
			

			
				Γ
				
				𝑚
			

			

				0
			

			
				
				Γ
				
				𝜌
				/
				2
			

			

				0
			

			

				
			

			
				
			
			
				𝛼
				≤
				1
				.
			

		
	

					So all the inequalities of (21) hold. Moreover, we have 
						
	
 		
 			
				(
				1
				0
				8
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				|
				𝑃
				|
				|
				|
				|
				|
				|
			

			

				𝑚
			

			

				0
			

			
				,
				Δ
			

			
				𝑟
				0
				0
				,
				𝑠
				0
				×
				𝑀
			

			
				≤
				𝜖
			

			

				0
			

			
				=
				𝛼
				𝑟
			

			

				0
			

			

				𝐸
			

			

				0
			

			
				
			
			
				Γ
				
				𝑚
			

			

				0
			

			
				
				Γ
				
				𝜌
				/
				2
			

			

				0
			

			
				
				.
			

		
	

					Thus Theorem 10 holds for (104).
Since 
	
		
			
				|
				
				𝑁
				(
				±
				𝛿
				)
				|
				≤
				4
				𝜖
			

			

				0
			

			
				≤
				𝑐
				𝛿
			

			
				2
				𝑛
				+
				2
			

		
	
, it follows that 
	
		
			
				𝜆
				(
				±
				𝛿
				)
				=
				±
				(
				𝐴
				+
				𝜖
				[
				𝑎
				]
				)
				𝛿
			

			
				2
				𝑛
				+
				1
			

			
				+
				
				𝑁
				(
				±
				𝛿
				)
			

		
	
 must have a different sign for 
	
		
			
				𝛿
				>
				0
			

		
	
 sufficiently small. Thus there exists a 
	
		
			

				𝜉
			

			

				∗
			

			
				∈
				𝐼
			

		
	
, such that 
	
		
			
				𝜆
				(
				𝜉
			

			

				∗
			

			
				)
				=
				0
			

		
	
. Moreover, we have 
	
		
			
				|
				𝜉
			

			

				∗
			

			
				|
				≤
				𝛿
				=
				𝜖
			

			
				1
				/
				(
				2
				𝑛
				+
				2
				)
			

		
	
 and 
	
		
			

				𝑝
			

			

				∗
			

			
				=
				(
				𝜉
			

			

				∗
			

			
				,
				0
				)
				∈
				𝑇
			

		
	
. Hence, by the transformation 
	
		
			
				𝑥
				=
				Φ
				(
				𝑦
				,
				𝑡
				;
				𝑝
			

			

				∗
			

			

				)
			

		
	
 the differential equation (103) at 
	
		
			
				𝜉
				=
				𝜉
			

			

				∗
			

		
	
 is changed to 
						
	
 		
 			
				(
				1
				0
				9
				)
			
 		
	

	
		
			
				̇
				𝑦
				=
				𝐴
			

			

				∗
			

			

				Ω
			

			

				∗
			

			
				𝑦
				+
				𝑃
			

			

				∗
			

			
				
				𝑦
				,
				𝑡
				,
				𝑝
			

			

				∗
			

			

				
			

		
	

					with 
	
		
			

				𝑃
			

			

				∗
			

			
				(
				𝑦
				,
				𝑡
				,
				𝑝
			

			

				∗
			

			
				)
				=
				𝑂
				(
				𝑦
			

			

				2
			

			

				)
			

		
	
  
	
		
			
				(
				𝑦
				→
				0
				)
			

		
	
. Therefore by the transformation 
	
		
			
				𝑥
				=
				Φ
				(
				𝑦
				+
				𝜉
			

			

				∗
			

			
				,
				𝑡
				;
				𝑝
			

			

				∗
			

			

				)
			

		
	
 the system (5) is changed to the form of (17). Moreover, 
	
		
			
				𝑥
				(
				𝑡
				)
				=
				Φ
				(
				𝜉
			

			

				∗
			

			
				,
				𝑡
				;
				𝑝
			

			

				∗
			

			

				)
			

		
	
 is an almost-periodic solution with the frequency 
	
		
			

				𝜔
			

		
	
.
Since 
	
		
			
				Φ
				(
				𝑦
				+
				𝜉
			

			

				∗
			

			
				,
				𝑡
				;
				𝑝
			

			

				∗
			

			
				)
				=
				𝑦
				+
				𝑢
			

			

				∗
			

			
				(
				𝑡
				;
				𝑝
				)
				+
				𝜉
			

			

				∗
			

		
	
, we have 
	
		
			
				𝑥
				=
				𝑦
				+
				𝑢
				(
				𝑡
				)
			

		
	
 with 
	
		
			
				𝑢
				(
				𝑡
				)
				=
				𝑢
			

			

				∗
			

			
				(
				𝑡
				;
				𝑝
				)
				+
				𝜉
			

			

				∗
			

		
	
. Noting that 
	
		
			
				|
				𝜉
			

			

				∗
			

			
				|
				≤
				𝜖
			

			
				1
				/
				(
				2
				𝑛
				+
				2
				)
			

		
	
, it follows that, for 
	
		
			
				𝑝
				∈
				𝑇
			

		
	
, 
	
		
			
				|
				|
				|
				𝑢
				|
				|
				|
			

			
				0
				,
				𝑠
			

			

				0
			

			
				/
				2
			

			
				=
				𝑂
				(
				𝜖
			

			
				1
				/
				(
				2
				𝑛
				+
				2
				)
			

			

				)
			

		
	
. Thus, Theorem 9 is proved.
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