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Abstract. 
Center conditions and the bifurcation of limit cycles for a seven-degree polynomial differential system in which the origin is a nilpotent critical point are studied. Using the computer algebra system Mathematica, the first 14 quasi-Lyapunov constants of the origin are obtained, and then the conditions for the origin to be a center and the 14th-order fine focus are derived, respectively. Finally, we prove that the system has 14 limit cycles bifurcated from the origin under a small perturbation. As far as we know, this is the first example of a seven-degree system with 14 limit cycles bifurcated from a nilpotent critical point.


1. Introduction
In the qualitative theory of planar differential equations, the center-focus problem and bifurcation of limit cycles for nilpotent system
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					are known as a difficult problem. Some advance of this problem can be dated back to [1–3]. In recent years, due to the improvement of research method and development of computer symbolic computation, the problem has attracted more and more scholars’ attention and has received a lot of results. For instance, in [4, 5], the center conditions of the nilpotent critical points were obtained for several systems. In [6] the center conditions and the bifurcations of limit cycles were investigated for a quintic and a nine-degree nilpotent systems. The center and the limit cycles problems of a quintic nilpotent system were also solved in [7]. And in [8], the authors gave a recursive method to calculate quasi-Lyapunov constants of the nilpotent critical point. The nilpotent center problem and limit cycles bifurcations were performed also in [9]. It is interesting how many limit cycles can be bifurcated from the nilpotent critical point. Let 
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				)
			

		
	
 be the maximum possible number of limit cycles bifurcated from a nilpotent critical point of system (1) when 
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 and 
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 are of degree at most 
	
		
			

				𝑛
			

		
	
. The known results of 
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				(
				𝑛
				)
			

		
	
 are:  Andreev et al. given have 
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				(
				3
				)
				≥
				2
			

		
	
, 
	
		
			
				𝑁
				(
				5
				)
				≥
				5
			

		
	
, 
	
		
			
				𝑁
				(
				7
				)
				≥
				9
			

		
	
, see [5]. Y. Liu and J. Li showed 
	
		
			
				𝑁
				(
				3
				)
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				4
			

		
	
, 
	
		
			
				𝑁
				(
				3
				)
				≥
				7
			

		
	
, 
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				(
				3
				)
				≥
				8
			

		
	
, see [8, 10–12].  Li et al.  found 
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				7
				)
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				1
				2
			

		
	
 in [13]. Recently,  Li et al.  [14] obtained 
	
		
			
				𝑁
				(
				7
				)
				≥
				1
				3
			

		
	
.
In this paper, we study the bifurcation of limit cycles for a seven-degree nilpotent system with the following form:
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					By the computation of the quasi-Lyapunov constants, we prove that its perturbed system has 14 small-amplitude limit cycles bifurcated from the origin, namely, 
	
		
			
				𝑁
				(
				7
				)
				≥
				1
				4
			

		
	
 which improves the result in [14].
In Section 2, we give some preliminary knowledge concerning the nilpotent critical point. In Section 3, we obtain the first 14 quasi-Lyapunov constants and derive the sufficient and necessary conditions of the origin to be a center and a 14th-order fine focus. At the end, it is proved that there exist 14 limit cycles in the neighborhood of the origin of the system.
2. Focal Values and Quasi-Lyapunov Constants 
In order to discuss limit cycles of the system, we state some preliminary results given by [8].
According to [2], the origin of system is a 3th-order monodromic critical point and a center or a focus if and only if 
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.
Under the substitutions 
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By the transformation of the generalized polar coordinates, 
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					system (4) is transformed into 
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For sufficiently small 
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					be a solution of (6) satisfying the initial value condition 
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Because for all sufficiently small 
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, there is 
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				𝑡
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, in a small neighborhood; we obtain the Poincaré return map of (6) in a small neighborhood of the origin as follows: 
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Lemma 1.  For any positive integer 
	
		
			

				𝑚
			

		
	
, 
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				(
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						where 
	
		
			

				𝜁
			

			
				𝑚
				(
				𝑘
				)
			

		
	
 is a polynomial of 
	
		
			

				𝜈
			

			

				𝑖
			

			
				(
				𝜋
				)
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				𝑖
			

			
				(
				2
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				)
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				𝜈
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				(
				−
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				𝜋
				)
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				(
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				=
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				,
				…
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				)
			

		
	
 with rational coefficients.
Definition 2. 
	
		
			
				(
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 For any positive integer 
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				2
				𝑚
			

			
				(
				−
				2
				𝜋
				)
			

		
	
 is called the 
	
		
			

				𝑚
			

		
	
th-order focal value of system (4) at the origin; 
	
		
			
				(
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				)
			

		
	
 if 
	
		
			

				𝜈
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				(
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				𝜋
				)
				≠
				0
			

		
	
, the origin of system (4) is called an 1th-order weak focus; if there is an integer 
	
		
			
				𝑚
				>
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				)
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				)
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				2
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				(
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				(
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th-order weak focus; 
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, the origin of system (4) is called a center. 
Lemma 3.  For system (4), one can derive successively the formal series 
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Lemma 4.  If there exists a natural number 
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				t
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				𝑑
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						In (15), 
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 is the symbol of algebraic equivalence, meaning that there exists 
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				𝑚
				(
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				)
			

			
				(
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				2
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				−
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Definition 5. In Lemma 4, 
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				𝑚
			

		
	
 is called the 
	
		
			

				𝑚
			

		
	
th-order quasi-Lyapunov constant of the origin of system (4). 
Lemma 6.  For system (4), one can derive successively the formal series 
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				𝑐
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						such that 
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				+
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, 
	
		
			

				𝑐
			

			
				𝛼
				𝛽
			

		
	
, and 
	
		
			

				𝜔
			

			

				𝑚
			

			
				(
				𝑠
				,
				𝜇
				)
			

		
	
 are determined by the following recursive formulas: 
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			

				𝑐
			

			
				𝛼
				𝛽
			

			
				=
				1
			

			
				
			
			
				
				𝐴
				(
				𝑠
				+
				1
				)
				𝛼
			

			
				𝛼
				−
				1
				,
				𝛽
				+
				1
			

			
				+
				𝐵
			

			
				𝛼
				−
				1
				,
				𝛽
				+
				1
			

			
				
				,
				𝜔
			

			

				𝑚
			

			
				(
				𝑠
				,
				𝜇
				)
				=
				𝐴
			

			
				𝑚
				,
				0
			

			
				+
				𝐵
			

			
				𝑚
				,
				0
			

			

				,
			

		
	

						where 
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			

				𝐴
			

			
				𝛼
				𝛽
			

			

				=
			

			
				𝛼
				+
				𝛽
				−
				1
			

			

				
			

			
				𝑘
				+
				𝑗
				=
				2
			

			
				[
				]
				𝑎
				𝑘
				−
				(
				𝑠
				+
				1
				)
				(
				𝛼
				−
				𝑘
				+
				1
				)
			

			
				𝑘
				𝑗
			

			

				𝑐
			

			
				𝛼
				−
				𝑘
				+
				1
				,
				𝛽
				−
				𝑗
			

			
				,
				𝐵
			

			
				𝛼
				𝛽
			

			

				=
			

			
				𝛼
				+
				𝛽
				−
				1
			

			

				
			

			
				𝑘
				+
				𝑗
				=
				2
			

			
				[
				]
				𝑏
				𝑗
				−
				(
				𝑠
				+
				1
				)
				(
				𝛽
				−
				𝑗
				+
				1
				)
			

			
				𝑘
				𝑗
			

			

				𝑐
			

			
				𝛼
				−
				𝑘
				,
				𝛽
				−
				𝑗
				+
				1
			

			

				.
			

		
	

						By choosing 
	
		
			
				{
				𝑐
			

			
				0
				𝛽
			

			

				}
			

		
	
 such that 
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			

				𝜔
			

			
				2
				𝑘
				+
				1
			

			
				(
				𝑠
				,
				𝜇
				)
				=
				0
				,
				𝑘
				=
				1
				,
				2
				,
				…
				,
			

		
	

						one has
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			

				𝜆
			

			

				𝑚
			

			
				=
				𝜔
			

			
				2
				𝑚
				+
				4
			

			
				(
				𝑠
				,
				𝜇
				)
			

			
				
			
			
				.
				2
				𝑚
				−
				4
				𝑠
				−
				1
			

		
	

One considers the perturbed system of system (4) 
						
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				𝑑
				𝑥
			

			
				
			
			
				𝑑
				𝑡
				=
				𝛿
				𝑥
				+
				𝑦
				+
				𝜇
				𝑥
			

			

				2
			

			

				+
			

			

				∞
			

			

				
			

			
				𝑘
				+
				2
				𝑗
				=
				3
			

			

				𝑎
			

			
				𝑘
				𝑗
			

			

				𝑥
			

			

				𝑘
			

			

				𝑦
			

			

				𝑗
			

			
				,
				𝑑
				𝑦
			

			
				
			
			
				𝑑
				𝑡
				=
				2
				𝛿
				𝑦
				−
				2
				𝑥
			

			

				3
			

			
				+
				2
				𝜇
				𝑥
				𝑦
				+
			

			

				∞
			

			

				
			

			
				𝑘
				+
				2
				𝑗
				=
				4
			

			

				𝑏
			

			
				𝑘
				𝑗
			

			

				𝑥
			

			

				𝑘
			

			

				𝑦
			

			

				𝑗
			

			

				.
			

		
	

For system (24)
	
		
			

				|
			

			
				𝛿
				=
				0
			

		
	
, from Lemma 4, we know that the first nonvanishing quasi-Lyapunov constant 
	
		
			

				𝜆
			

			

				𝑚
			

		
	
 is positive constant  times as much as the first nonvanishing focal value, so the former shows the same effect as the latter in the study of bifurcation of limit cycles. From [10, Theorem 4.7], we have the following.
Theorem 7.  For the system (27)
	
		
			

				|
			

			
				𝛿
				=
				0
			

		
	
, assume that the quasi-Lyapunov constants of the origin 
	
		
			

				𝜆
			

			

				𝑖
			

			
				(
				𝑖
				=
				1
				,
				2
				,
				…
				)
			

		
	
 have 
	
		
			

				𝑘
			

		
	
 independent parameters 
	
		
			
				𝛾
				=
				(
				𝛾
			

			

				1
			

			
				,
				𝛾
			

			

				2
			

			
				,
				…
				,
				𝛾
			

			

				𝑘
			

			

				)
			

		
	
; that is, 
	
		
			

				𝜆
			

			

				𝑖
			

			
				=
				𝜆
			

			

				𝑖
			

			
				(
				𝛾
			

			

				1
			

			
				,
				𝛾
			

			

				2
			

			
				,
				…
				,
				𝛾
			

			

				𝑘
			

			

				)
			

		
	
. If 
	
		
			
				𝛾
				=
				𝛾
			

			

				0
			

		
	
, the origin of the system (4) is an 
	
		
			

				𝑚
			

		
	
th-order weak focus (
	
		
			
				𝑚
				≤
				𝑘
			

		
	
),  and the Jacobian determinant  
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			
				𝜕
				
				𝜆
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				,
				…
				,
				𝜆
			

			
				𝑚
				−
				1
			

			

				
			

			
				
			
			
				𝜕
				
				𝛾
			

			

				1
			

			
				,
				𝛾
			

			

				2
			

			
				,
				…
				,
				𝛾
			

			
				𝑚
				−
				1
			

			
				
				|
				|
				|
				|
			

			
				𝛾
				=
				𝛾
			

			

				0
			

			
				≠
				0
				,
			

		
	

						then, the perturbed system (24) exists 
	
		
			

				𝑚
			

		
	
 small amplitude limit cycles bifurcated from the origin.   
3. Criterion of Center Focus and Bifurcation of Limit Cycles 
Applying the recursive formulas in Lemma 6, we compute the quasi-Lyapunov constants of the origin of system (2)
	
		
			

				|
			

			
				𝛿
				=
				0
			

		
	
 with the computer algebra system Mathematica and obtain the following result. 
Theorem 8.  For system (2)
	
		
			

				|
			

			
				𝛿
				=
				0
			

		
	
, the first 14 quasi-Lyapunov constants are as follows:
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			

				𝜆
			

			

				1
			

			
				=
				𝑎
			

			
				3
				0
			

			
				,
				𝜆
			

			

				2
			

			
				=
				2
			

			
				
			
			
				5
				𝑎
			

			
				1
				2
			

			
				,
				𝜆
			

			

				3
			

			
				=
				2
			

			
				
			
			
				7
				𝑎
			

			
				3
				2
			

			
				,
				𝜆
			

			

				4
			

			
				=
				4
			

			
				
			
			
				𝑎
				1
				5
			

			
				1
				4
			

			
				,
				𝜆
			

			

				5
			

			
				=
				1
				2
			

			
				
			
			
				𝑎
				7
				7
			

			
				3
				4
			

			
				,
				𝜆
			

			

				6
			

			
				=
				2
			

			
				
			
			
				
				1
				9
				5
				2
				0
				𝑎
			

			
				1
				6
			

			
				+
				3
				𝑎
			

			
				5
				1
			

			

				𝑏
			

			
				3
				3
			

			
				
				,
				𝜆
			

			

				7
			

			
				=
				1
			

			
				
			
			
				𝑏
				3
				8
				5
			

			
				3
				3
			

			
				
				3
				5
				𝑎
			

			
				5
				1
			

			
				−
				8
				𝑎
			

			
				3
				3
			

			
				
				,
				𝜆
			

			

				8
			

			
				=
				7
			

			
				
			
			
				𝑏
				1
				3
				2
				6
				0
			

			
				3
				3
			

			
				
				1
				2
				8
				𝑎
			

			
				1
				5
			

			
				−
				3
				5
				5
				𝑎
			

			
				5
				1
			

			
				
				,
				𝜆
			

			

				9
			

			
				=
				3
			

			
				
			
			
				𝑏
				3
				3
				4
				4
				0
			

			
				3
				3
			

			

				𝑎
			

			
				5
				1
			

			
				
				1
				3
				8
				5
				+
				6
				4
				𝑎
			

			
				6
				1
			

			
				
				,
				𝜆
			

			
				1
				0
			

			
				=
				1
			

			
				
			
			
				𝑏
				2
				7
				8
				4
				6
				0
			

			
				3
				3
			

			

				𝑎
			

			
				5
				1
			

			
				×
				
				−
				1
				9
				2
				4
				9
				5
				+
				1
				2
				3
				2
				0
				𝑎
			

			
				0
				5
			

			
				+
				1
				9
				0
				4
				𝑎
			

			
				4
				3
			

			
				
				,
				𝜆
			

			
				1
				1
			

			
				=
				9
			

			
				
			
			
				𝑏
				1
				1
				8
				4
				4
				4
				4
				8
				0
				0
			

			
				3
				3
			

			

				𝑎
			

			
				5
				1
			

			
				×
				
				3
				1
				7
				7
				6
				3
				4
				5
				5
				+
				1
				6
				8
				8
				0
				6
				4
				𝑎
			

			
				4
				3
			

			
				+
				1
				1
				5
				8
				0
				8
				0
				𝑎
			

			
				2
				5
				1
			

			
				
				,
				𝜆
			

			
				1
				2
			

			
				=
				1
			

			
				
			
			
				𝑏
				5
				0
				5
				5
				0
				4
				6
				1
				4
				5
				2
				1
				0
				8
				8
				0
				0
				0
			

			
				3
				3
			

			

				𝑎
			

			
				5
				1
			

			
				×
				
				4
				2
				4
				8
				7
				0
				7
				3
				5
				0
				7
				9
				6
				7
				5
				7
				7
				5
				−
				8
				4
				8
				0
				4
				6
				1
				0
				6
				3
				9
				7
				6
				5
				1
				8
				𝑎
			

			
				2
				5
				1
			

			
				−
				1
				6
				4
				9
				5
				5
				4
				5
				6
				2
				5
				8
				8
				1
				6
				𝑏
			

			
				2
				3
				3
			

			
				
				,
				𝜆
			

			
				1
				3
			

			
				=
				1
			

			
				
			
			
				2
				4
				9
				7
				7
				5
				9
				2
				2
				3
				8
				2
				8
				8
				0
				4
				8
				1
				2
				8
				0
				0
				×
				𝑏
			

			
				3
				3
			

			

				𝑎
			

			
				5
				1
			

			
				
				1
				1
				5
				4
				5
				5
				7
				2
				0
				5
				7
				8
				2
				6
				7
				1
				3
				5
				4
				1
				9
				2
				1
				7
				5
				−
				2
				5
				2
				8
				7
				0
				5
				0
				0
				3
				7
				9
				6
				5
				3
				0
				1
				8
				4
				7
				7
				4
				4
				𝑎
			

			
				2
				5
				1
			

			
				
				,
				𝜆
			

			
				1
				4
			

			
				1
				=
				−
			

			
				
			
			
				𝑏
				1
				9
				2
				6
				8
				4
				6
				3
				1
				4
				7
				7
				9
				6
				1
				4
				1
				0
				2
				4
				4
				4
				8
				1
				0
				2
				4
				0
				0
				0
				0
			

			
				3
				3
			

			

				𝑎
			

			
				5
				1
			

			
				×
				
				1
				9
				1
				3
				8
				3
				9
				7
				7
				4
				9
				9
				1
				4
				4
				7
				3
				1
				2
				4
				8
				7
				0
				2
				0
				9
				0
				9
				9
				6
				4
				6
				2
				5
				−
				3
				8
				6
				1
				6
				0
				4
				3
				7
				7
				6
				9
				5
				5
				2
				6
				0
				2
				2
				7
				7
				4
				6
				2
				0
				2
				0
				0
				6
				8
				4
				8
				𝑎
			

			
				2
				5
				1
			

			
				+
				4
				5
				7
				9
				7
				4
				5
				1
				1
				1
				4
				4
				7
				3
				5
				2
				8
				7
				0
				4
				8
				1
				9
				2
				0
				0
				0
				𝑎
			

			
				4
				5
				1
			

			
				
				.
			

		
	

						Here, every 
	
		
			

				𝜆
			

			

				𝑘
			

		
	
 (
	
		
			
				𝑘
				=
				1
				,
				2
				,
				…
				,
				1
				4
			

		
	
) was computed under the assumption 
	
		
			

				𝜆
			

			

				1
			

			
				=
				𝜆
			

			

				2
			

			
				=
				⋯
				=
				𝜆
			

			
				𝑘
				−
				1
			

			
				=
				0
			

		
	
. It is easy to obtain the following Theorem.
Theorem 9.  For system (2)
	
		
			

				|
			

			
				𝛿
				=
				0
			

		
	
, the first 14 quasi-Lyapunov constants at the origin are all zero if and only if the following condition is satisfied: 
							
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			

				𝑎
			

			
				3
				0
			

			
				=
				𝑎
			

			
				1
				2
			

			
				=
				𝑎
			

			
				3
				2
			

			
				=
				𝑎
			

			
				1
				4
			

			
				=
				𝑎
			

			
				3
				4
			

			
				=
				𝑎
			

			
				5
				1
			

			
				=
				𝑎
			

			
				3
				3
			

			
				=
				𝑎
			

			
				1
				5
			

			
				=
				𝑎
			

			
				1
				6
			

			
				=
				0
				.
			

		
	
 If 
	
		
			
				𝛿
				=
				0
			

		
	
 and the condition (27) holds, system (2) becomes 
							
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			
				𝑑
				𝑥
			

			
				
			
			
				𝑑
				𝑡
				=
				𝑦
				+
				𝑎
			

			
				0
				5
			

			

				𝑦
			

			

				5
			

			
				+
				𝑎
			

			
				0
				6
			

			

				𝑦
			

			

				6
			

			
				+
				𝑎
			

			
				2
				4
			

			

				𝑥
			

			

				2
			

			

				𝑦
			

			

				4
			

			
				+
				𝑎
			

			
				0
				7
			

			

				𝑦
			

			

				7
			

			
				+
				𝑎
			

			
				2
				5
			

			

				𝑥
			

			

				2
			

			

				𝑦
			

			

				5
			

			
				+
				𝑎
			

			
				4
				3
			

			

				𝑥
			

			

				4
			

			

				𝑦
			

			

				3
			

			
				+
				𝑎
			

			
				6
				1
			

			

				𝑥
			

			

				6
			

			
				𝑦
				,
				𝑑
				𝑦
			

			
				
			
			
				𝑑
				𝑡
				=
				−
				2
				𝑥
			

			

				3
			

			
				+
				𝑥
				𝑦
			

			

				2
			

			
				+
				𝑏
			

			
				3
				3
			

			

				𝑥
			

			

				3
			

			

				𝑦
			

			

				3
			

			

				,
			

		
	

						which is symmetric with respect to the 
	
		
			

				𝑦
			

		
	
-axis, one has the following.
Theorem 10.  The origin of system (2) is a center if and only if 
	
		
			
				𝛿
				=
				0
			

		
	
 and (27) holds. By 
	
		
			

				𝜆
			

			

				1
			

			
				=
				𝜆
			

			

				2
			

			
				=
				⋯
				=
				𝜆
			

			
				1
				3
			

			
				=
				0
			

		
	
, 
	
		
			

				𝜆
			

			
				1
				4
			

			
				≠
				0
			

		
	
, one has the following.
Theorem 11.  The origin of system (2) is a 14th-order weak focus if and only if 
							
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			
				𝛿
				=
				𝑎
			

			
				3
				0
			

			
				=
				𝑎
			

			
				1
				2
			

			
				=
				𝑎
			

			
				3
				2
			

			
				=
				𝑎
			

			
				1
				4
			

			
				=
				𝑎
			

			
				3
				4
			

			
				𝑎
				=
				0
				,
			

			
				6
				1
			

			
				=
				−
				1
				3
				8
				5
			

			
				
			
			
				,
				𝑎
				6
				4
			

			
				0
				5
			

			
				=
				3
				0
				0
				7
				5
				7
				9
				4
				6
				0
				0
				5
				7
				5
				3
				1
				4
				2
				1
				4
				4
				7
				9
				7
				7
				5
			

			
				
			
			
				,
				𝑎
				6
				0
				6
				8
				8
				9
				2
				0
				0
				9
				1
				1
				1
				6
				7
				2
				4
				4
				3
				4
				5
				8
				5
				6
			

			
				4
				3
			

			
				=
				−
				6
				6
				6
				2
				5
				6
				9
				6
				6
				2
				5
				4
				4
				4
				5
				2
				0
				0
				6
				8
				8
				1
				1
				7
				8
				5
			

			
				
			
			
				,
				𝑏
				3
				0
				3
				4
				4
				4
				6
				0
				0
				4
				5
				5
				5
				8
				3
				6
				2
				2
				1
				7
				2
				9
				2
				8
			

			
				2
				3
				3
			

			
				=
				1
				0
				9
				1
				3
				9
				9
				4
				7
				1
				6
				3
				4
				7
				2
				2
				5
				8
				4
				7
				2
				4
				7
				0
				0
				3
				7
				2
				5
			

			
				
			
			
				,
				𝑎
				4
				7
				7
				9
				2
				5
				2
				4
				5
				7
				1
				7
				5
				4
				4
				2
				0
				4
				9
				2
				2
				3
				6
				1
				6
			

			
				2
				5
				1
			

			
				=
				1
				1
				5
				4
				5
				5
				7
				2
				0
				5
				7
				8
				2
				6
				7
				1
				3
				5
				4
				1
				9
				2
				1
				7
				5
			

			
				
			
			
				,
				𝑎
				2
				5
				2
				8
				7
				0
				5
				0
				0
				3
				7
				9
				6
				5
				3
				0
				1
				8
				4
				7
				7
				4
				4
			

			
				1
				6
			

			
				3
				=
				−
			

			
				
			
			
				𝑎
				2
				0
			

			
				5
				1
			

			

				𝑏
			

			
				3
				3
			

			
				,
				𝑎
			

			
				3
				3
			

			
				=
				3
				5
			

			
				
			
			
				8
				𝑎
			

			
				5
				1
			

			
				,
				𝑎
			

			
				1
				5
			

			
				=
				3
				5
				5
			

			
				
			
			
				𝑎
				1
				2
				8
			

			
				5
				1
			

			

				.
			

		
	

By computing carefully, we obtain that the Jacobian determinant
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			
				𝜕
				(
				𝜆
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				,
				𝜆
			

			

				3
			

			
				,
				𝜆
			

			

				4
			

			
				,
				𝜆
			

			

				5
			

			
				,
				𝜆
			

			

				6
			

			
				,
				𝜆
			

			

				7
			

			
				,
				𝜆
			

			

				8
			

			
				,
				𝜆
			

			

				9
			

			
				,
				𝜆
			

			
				1
				0
			

			
				,
				𝜆
			

			
				1
				1
			

			
				,
				𝜆
			

			
				1
				2
			

			
				,
				𝜆
			

			
				1
				3
			

			

				)
			

			
				
			
			
				𝜕
				(
				𝑎
			

			
				3
				0
			

			
				,
				𝑎
			

			
				1
				2
			

			
				,
				𝑎
			

			
				3
				2
			

			
				,
				𝑎
			

			
				1
				4
			

			
				,
				𝑎
			

			
				3
				4
			

			
				,
				𝑎
			

			
				1
				6
			

			
				,
				𝑎
			

			
				3
				3
			

			
				,
				𝑎
			

			
				1
				5
			

			
				,
				𝑎
			

			
				6
				1
			

			
				,
				𝑎
			

			
				0
				5
			

			
				,
				𝑎
			

			
				4
				3
			

			
				,
				𝑎
			

			
				5
				1
			

			
				,
				𝑏
			

			
				3
				3
			

			
				)
				|
				|
				|
				|
			

			
				(
				2
				9
				)
			

			
				=
				−
				1
				1
				2
				5
				9
				1
				3
				1
				1
				5
				8
				4
				9
				7
				3
				3
				7
				7
				5
				6
				1
				6
				4
				7
				9
				5
				8
				8
				3
				6
				8
				6
				0
				3
				5
				1
				9
				5
				3
				1
				0
				0
				9
				7
				9
				9
				9
				2
				0
				1
				6
				1
				3
				6
				2
				7
				4
				9
				1
				3
				8
				1
				8
				1
				4
				2
				7
				2
				𝑎
			

			
				4
				5
				1
			

			

				𝑏
			

			
				6
				3
				3
			

			
				
			
			
				1
				1
				0
				6
				3
				6
				6
				3
				4
				5
				2
				5
				2
				6
				5
				6
				3
				9
				3
				8
				3
				2
				8
				2
				3
				1
				7
				9
				7
				8
				3
				2
				7
				9
				2
				0
				6
				8
				4
				8
				6
				5
				6
				3
				9
				2
				9
				6
				8
				0
				8
				3
				5
				3
				1
				3
				6
				7
				5
				7
				4
				5
				2
				7
				5
				4
				0
				0
				3
				6
				1
				5
				2
				3
				4
				3
				7
				5
				≈
				−
				2
				5
				2
				6
				.
				4
				5
				6
				3
				5
				1
				4
				1
				3
				4
				≠
				0
				.
			

		
	


				From (30) and Theorem 7, one has the following. 
Theorem 12.  For system (2), under the condition (29), by small perturbations of the parameter group 
	
		
			
				(
				𝛿
				,
				𝑎
			

			
				3
				0
			

			
				,
				𝑎
			

			
				1
				2
			

			
				,
				𝑎
			

			
				3
				2
			

			
				,
				𝑎
			

			
				1
				4
			

			
				,
				𝑎
			

			
				3
				4
			

			
				,
				𝑎
			

			
				1
				6
			

			
				,
				𝑎
			

			
				3
				3
			

			
				,
				𝑎
			

			
				1
				5
			

			
				,
				𝑎
			

			
				6
				1
			

			
				,
				𝑎
			

			
				0
				5
			

			
				,
				𝑎
			

			
				4
				3
			

			
				,
				𝑎
			

			
				5
				1
			

			
				,
				𝑏
			

			
				3
				3
			

			

				)
			

		
	
, then there are 14 small amplitude limit cycles bifurcated from the origin.
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