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Abstract. 
Recently, the stochastic resonance effect has been widely used by the method of discovering and extracting weak periodic signals from strong noise through the stochastic resonance effect. The detection of the single-frequency weak signals by using stochastic resonance effect is widely used. However, the detection methods of the multifrequency weak signals need to be researched. According to the different frequency input signals of a given system, this paper puts forward a detection method of multifrequency signal by using adaptive stochastic resonance, which analyzed the frequency characteristics and the parallel number of the input signals, adjusted system parameters automatically to the low frequency signals in the fixed step size, and then measured the stochastic resonance phenomenon based on the frequency of the periodic signals to select the most appropriate indicators in the middle or high frequency. Finally, the optimized system parameters are founded and the frequency of the given signals is extracted in the frequency domain of the stochastic resonance output signals. Compared with the traditional detection methods, the method in this paper not only improves the work efficiency but also makes it more accurate by using the color noise, the frequency is more accurate being extracted from the measured signal. The consistency between the simulation results and analysis shows that this method is effective and feasible.


1. Introduction
Now, we need to find and extract useful signal through the signal detection in engineering technology and scientific research. The traditional method to detect signal usually uses linear filtering, wavelet analysis [1], and so on to reduce and eliminate noise and finally obtain the useful signal. Although some weak signals are often overwhelmed by strong noise, the weak periodic signal is also reduced in the denoise to a certain extent, which made some weak periodic signal fail to be detected and extracted. In 1981, Benzi et al. proposed the concept of stochastic resonance [2] which provides a new research method for the detection of weak periodic signal. Compared to the traditional signal detection method, stochastic resonance is a kind of nonlinear phenomenon, which adds a certain intensity noise rather than reducs the noise, then uses the synergy among signal frequency, noise intensity, and nonlinear system to drive part of the noise energy into the measuring signal energy, and finally highlights in the output signal.
With the development of the theory of stochastic resonance, the method of finding and extracting weak periodic signals from strong noise by stochastic resonance effect has been widely used in various fields of science such as nerve physiology, intelligence theory, nonlinear optics, signal processing, communication engineering, and sociology [3–11]. Among them, the method of detecting single-frequency weak signals by using stochastic resonance effect has been more mature. Its main method is to analyze the relationship between the characteristics of the measured input signal and the system parameters through the nonlinear bistable system, through adjusting the system parameters [12] or increasing the strength of the noise [13, 14] to realize stochastic resonance. In 1990, Gang et al. [15] put forward the famous idea of adiabatic approximation theory, which proved that stochastic resonance is used to detect small parameter signal. Then the method of stochastic resonance detection to single-frequency signal is gradually perfect. However, in the actual research, we found that the signal submerged by strong noise is unknown weak periodic signal and even unknown high frequency signal. Then, the research on the detection of multiple frequency signals received the widespread attention rapidly. 
It is mainly used to realize stochastic resonance through adjusting system parameters manually or increasing the strength of noise so that we can find and extract the unknown multiple frequency signal. Due to the manual, adjusting has low work efficiency, and cannot achieve continuous search which will omit part of the signal, and it is difficult to find and search the optimal system parameters which will certainly omit part of the signal. This paper combines the theory of stochastic resonance and adaptive algorithm to put forward a kind of adaptive stochastic resonance detection method for multiple-frequency signal, respectively, of the low frequency and high frequency input signals. Based on the traditional single-frequency weak signal detection, selected the SNR to be a measurement index of the generation of stochastic resonance and reducing the range of parameter values by the threshold analysis, this method can find the optimal system parameters effectively and can detect a multiple weak periodic signals. A large number of simulation results show that the output signal of stochastic resonance system will be interfered by some noise which will lead to distortion of waveform slightly. Therefore, this paper makes processing the output signal of stochastic resonance by using the autocorrelation method which only changes the amplitude and phase, without changing the frequency. It can reduce the impact of noise, make the waveform more similar to measured signal, highlight the frequency of the signal cycle component, and enhance the SNR.
The methods to detect the high-frequency signals are sub-sampled, frequency-shifted and rescaling, wavelet analysis [16, 17], and so forth. Its main idea is transforming the high frequency into the low frequency through scale changes to meet the conditions of stochastic resonance then detect and extract the low-frequency signal, and finally achieve recovery. However, the output signal waveform extracted by these methods often exists with some distortion. In 2008, Mao et al. [18] proposed a method, which adds one cycle modulated signal to the stochastic resonance system, and then adjust the frequency of the modulation signal close to the frequency of the signal to be measured and generate the differential frequency which meets the adiabatic approximation theory. Finally, significant changes of the output signal spectrogram occurred in the approximation process. This characteristic can be taken as the basis for signal detection and extraction. But it used ideal Gaussian white noise during the experiment rather than the nonzero color noise which is often encountered in practical engineering applications such as the mechanical fault detection [8], and its frequency is concentrated in a frequency band and can easily be confused with the frequency of signal to be measured. It is considered that the frequency of the multi-frequency signal to be measured may be odd multiples. This paper contemplated to select the reciprocal of the power spectrum in the autocorrelation function of the output signal as measurement index under the interference of the color noise, which can distinguish the color noise with the signal to be measured and extract the high frequency of multiple parallel input signals effectively. This paper made a large number of numerical simulations by MATLAB, and the simulation results show the effectiveness and feasibility of the method and have a good prospect.
2. Bistable System and Its Performance Analysis
This paper uses the bistable system model: Langevin equation. It is actually an overdamped bistable system model driven by cycle, and its mathematical expression is [19]
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As shown in Figure 1, the system has two potential wells and a potential barrier. Stochastic resonance is actually shown the phenomenon that the signal has enough energy to transfer between two potential wells under the synergistic effect of the bistable system. At present, the main method is adjusted system parameters and increased a certain intensity of noise to generate stochastic resonance. However, the characteristic of input signal to be measured with noise is usually unknown in the measurement of the practical engineering. It is difficult to meet the actual demand only by adjusting the system parameters manually. Therefore, this paper integrates the adaptive iterative algorithm into the stochastic resonance detection method to study the adaptive stochastic resonance detection method for multi-frequency signals, seeks the optimal system parameters to generate stochastic resonance, and finally finds and extracts the frequency of unknown weak cycle signal in the frequency domain.








































	
	
	


	
	
	


	


	
		
	
	
		
		
		
	


	
		
	
	
		
		
		
	


	


	
	


	


	
		
	
	
		
		
		
	


	
		
	
	
		
	


	
		
	
	
		
		
		
	


	


	
	
	


	


	
	
	


	

Figure 1: When 
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3. Adaptive Stochastic Resonance Detection for Low-Frequency Signals
3.1. Measurement Index and Iterative Algorithm
Adaptive stochastic resonance signal detection involves two important factors: measurement index and iterative algorithm.
(1) Measurement Index. Selecting the appropriate measurement index to measure the effectiveness of the system output which means whether to generate stochastic resonance. The commonly measurement index in the study of stochastic resonance contains signal-to-noise ratio (SNR), autocorrelation function, cross-correlation function, mutual information, residence time distribution, [20–23] and so on. For the detection of low-frequency signals, this paper is mainly based on the SNR to extract effective signal. SNR is an index of the proportion that the energy of input signal frequency 
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This paper uses the fourth-order Runge-Kutta method to solve the nonlinear systems. Set the sample step 
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(2) Iterative Algorithm. Choose a suitable iterative algorithm to make the system tends to the optimal state, which generates stochastic resonance. In the measurement of the practical engineering, by the limit of the algorithm accuracy requirements and working conditions, many algorithms cannot be applied to the actual detection because of its high complexity. This paper mainly uses adaptive iterative algorithm: fix the step size and adjust the system parameters linearity. The steps of adaptive stochastic resonance detection of low-frequency signal are as follows.(a)Firstly, to set the system parameters, to input the signal to be measured with noise, to fix the step size, and to select the appropriate value range of parameter, increase the step size during this interval gradually to adjust the system parameters 
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 corresponding to the maximum SNR.(d)Finally, to reset nonlinear bistable system based on the optimal parameters to drive the signal to be measured with noise, generate stochastic resonance in this system. The output signal can show the signal to be measured to the greatest extent. The frequency corresponding to the spectrum peak in the spectrum diagram of the output signal is the frequency of the signal to be measured.
3.2. Simulation of Single Weak Signal Detection
Let the input signal to be tested is 
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(d)
Figure 2: (a) The input signal to be measured. (b) The input signal to be measured contains white Gaussian noise. (c) The stochastic resonance output signal. (d) The spectrum figure of the stochastic resonance output signal.
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Figure 3: The variation curve of SNR while adjusting the system parameter 
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However, the frequency of low-frequency signal is prominent by the processing of the stochastic resonance system and is easy to be extracted. Although, as the Figure 2(c) shows that the time domain diagram of output signal is still interfered by part of the noise, there are some glitches. In order to solve this problem, this paper uses the autocorrelation techniques on the postprocessing program. 
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The output signal by autocorrelation processing can be abbreviated as
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Compared to the original noise signal to be measured, the amplitude and phase of the two signals have changed, but the frequency is not changed. It improves the SNR to a certain extent. Therefore, this paper takes advantage of this feature to postprocess the output signal of stochastic resonance (see Figure 7). It not only reduces the influence of the noise but also makes the waveform of the output signal more close to the original signal to be measured in the time domain. With the signal cycle components characteristic frequency is even more pronounced in the spectrogram. We verify the feasibility of this theory through a numerical example. Make autocorrelation processing of the output signal of stochastic resonance as shown in Figure 2(c). As Figure 4 shows that the waveform of the output signal is obviously undistorted in the time-domain diagram, and it is almost unanimous with the waveform of the measured signal. The frequency of the signal to be measured is more prominent under the background of noise.
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(b)
Figure 4: (a) The time-domain diagram of stochastic resonance output signal after correlation processing and (b) the spectrum diagram of stochastic resonance output signal after correlation processing.


3.3. Simulation of Multifrequency Weak Superposition Signal Detection
When the input signal to be measured is the multi-frequency weak signal and parallel input, the multi-frequency input signal to be tested is
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(d)
Figure 5: (a) The multi-frequency input signal to be measured. (b) The multi-frequency input signal to be measured contains white Gaussian noise. (c) The stochastic resonance output signal. (d) The spectrum figure of the stochastic resonance output signal.






















































	


	
	
	
	


	
	
	


	
	
	
	


	
	
	


	
	
	
	


	


	
	
	


	


	


	


	


	


	


	

Figure 6: The variation curve of SNR while adjusting the system parameter 
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(b)
Figure 7: (a) The time-domain diagram of stochastic resonance output signal after correlation processing. (b) The spectrum diagram of stochastic resonance output signal after correlation processing.


4. Adaptive Stochastic Resonance in the High Frequency Signal Detection
According to (1), the power spectrum of the system output signal can be calculated as [23]
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Stochastic resonance of the output signal spectrum is caused by the input signal and noise, as 
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, respectively. Since the output of the noise power spectrum 
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 has Lorentz distribution, the subband which can generate stochastic resonance spectrum peak is generally limited to the low frequency band. Therefore, the bistable system of stochastic resonance is generally suitable for small parameters (
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) of weak signal detection. For the detection of high frequency signals, the current methods are: secondary sampling, frequency shift by varying scale and modem [24, 25], and so on. The main idea is transform the high frequency into the low frequency through the scale change to meet the low frequency of the small parameter conditions, so that it is able to generate stochastic resonance effect. Finally, the frequency of the output signal recover its actual measurement scale, which is the frequency of the signal to be measured. These methods have some inevitably problem of the efficiency and practicality.(i)In the measurement of the actual engineering, such as mechanical failure diagnosis, most of the signal to be measured is the high-frequency signal, and the noise is often colored noise, rather than idealized Gaussian white noise.(ii)In the field of classical stochastic resonance, most theoretical studies only discuss the linear response of single frequency weak signal, and it can be observed clearly that the output signal of stochastic resonance system has some distortion. Compared to the original sinusoidal signal, the output signal is more similar to a rectangular wave. Depending on the nature of the rectangular wave, the Fourier expansion is
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Except for the fact that the 
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 have peaks in the spectrum diagram of the system output signal. Taking into account the influence of noise, the signal to be measured with noise meet is Lorentz distribution through the stochastic resonance system, and the odd multiples of the output signal frequency are not obvious in the spectrum diagram. However, in the detection of actual signals, the measured signal may exist with multi-frequencies, and satisfy the relationship of odd multiple, and it is difficult to determine the frequency which, corresponding to the peak, is the frequency of the output signal or some other weak signals by nonlinear response. Therefore, the method of low-frequency signal detection is not suitable for it and it needs to make some adjustments. A method is proposed for the above problems in this paper, which is approaching constantly the frequency of the signal to be measured by automatically adjusting the modulation signal frequency 
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 of the system externally added, and thereby detecting the frequency of the signal being measured. The main idea is as follows. 
Let the input signal be measured as
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 is color noise distinguished from white Gaussian noise, and color noise is nonzero. Let its frequency mainly concentrate in some band of 0.2 Hz–0.5 Hz in this paper. Adding one cycle of the modulation signal to the system, the input signal to be measured is transformed into:
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It constantly approachs the frequency of the signal being measured 
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. This method avoids the problem of odd multiples mentioned above. The frequency of the color noise is often concentrated in some frequency band. So it is difficult to distinguish the color noise and the frequency of the signal to be measured from the frequency domain. It is no longer applicable to use SNR as the index. This paper selects the reciprocal of the maximum power spectrum peak of the output signal the autocorrelation function as measurement index.
The steps of adaptive stochastic resonance in the high-frequency signal detection are as follows.(a)Set the system parameters, select the appropriate value interval, and fix the step size 
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. 
The flow chart is shown in Figure 10.
4.1. Simulation of the Single High-Frequency Signal Detector
Let the system parameters 
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 Hz. The numerical simulation results comes together with the theoretical analysis, so this method is effective and feasible.


	
		
	
	
		
	
	
		
	
	
		
	
	
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
		
	
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
	
	
	
	
		
	


	
		
	
	
		
		
	
	
		
	
	
		
	
	
		
		
		
	
	
		
	
	
		
		
		
	
	
		
	
	
		
		
		
	
	
		
	
	
		
		
		
	
	
		
	
	
		
		
		
	
	
		
		
		
		
	
	
		
		
		
		
	
	
		
		
		
		
	
	
		
		
		
		
	
	
		
		
	
	
		
		
		
		
		
	
	
		
		
		
		
		
	
	
		
		
		
		
		
	
	
		
		
		
		
		
	
	
		
		
		
		
	
	
		
			
		
		
			
		
		
			
			
			
			
		
	
	
		
			
			
		
		
			
		
		
			
			
		
		
			
		
		
			
			
			
		
	

Figure 8: The change curve about the reciprocal of the stochastic resonance output signal spectrum peak with the adjustment of 
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 in the single high frequency.


4.2. Simulation of the Multiple High-Frequency Signal Detector
Let the input signal be detected with multiple high frequency as follows:
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. The modulation signal frequency range is [2.5, 12.5]. As shown in Figure 9, the frequencies 
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 which is the frequency of the input signal to be measured rather than the odd multiples. It proves that the method is feasible, effective, and suitable for the actual engineering measurement.















































	


	


	


	
	


	
	


	
		
	
	
		
	
	
		
		
		
		
	


	


	


	


	


	


	
		
	
	
		
		
	
	
		
	


	
		
		
	
	
		
	
	
		
		
	
	
		
	
	
		
		
		
	

Figure 9: The change curve about the reciprocal of the stochastic resonance output signal spectrum peak with the adjustment of 
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 in the multiple high frequency.





	
	
	
	
	
	
	
	
	
	
	
	
	
	



	
	
	
	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
	
	
	
	
	
	
	



	
	
	
	
	
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
		
			
		
	


	
		
		
			
		
	


	
		
		
		
		
		
		
		
		
		
	
	
		
	
	
		
	
	
		
		
		
	


	
		
	
	
		
	
	
		
		
		
		
		
		
		
	



Figure 10: The flow chart.


5. Conclusions
In order to meet the needs of practical engineering, this paper combined the adaptive algorithm with stochastic resonance theory. According to the frequency characteristics of the input signal to be tested, it proposed a feasible and effective adaptive stochastic resonance signal detection. Considering the actual situation, it improves work efficiency to a certain extent and has great value and development prospects in the measurement of the actual engineering. This paper chooses the SNR and the power spectrum of the autocorrelation function estimates as the index. The characteristics of the signal to be measured contain a lot of complexity in practical applications. In the actual engineering, we can choose a more precise measurement of indicators to measure the generation of stochastic resonance effect. Among the system parameters, noise intensity and the frequency of the signal being measured, which have a close relationship. We can analyze the degree of association by genetic algorithm to further expand the system of stochastic resonance signal detection.
Acknowledgments
This work was supported by National Natural Science Foundation of China (nos. 61104062 and 61174077), Jiangsu Qing Lan Project, and PAPD.
References
	M. Witzke, “Linear and widely linear filtering applied to iterative detection of generalized MIMO signals,” Annales des Telecommunications, vol. 60, no. 2, pp. 113–117, 2005.
	R. Benzi, A. Sutera, and A. Vulpiani, “The mechanism of stochastic resonance,” Journal of Physics A, vol. 14, no. 11, pp. L453–L457, 1981.
	F. Duan and D. Abbott, “Binary modulated signal detection in a bistable receiver with stochastic resonance,” Physica A, vol. 376, no. 1-2, pp. 173–190, 2007.
	C. Y. Chen, M. H. Ma, B. Zhao, S. F. Xie, and B. R. Xiang, “Stochastic resonance algorithm applied to quantitative analysis for weak liquid chromatographic signal of pyrene in water samples,” International Journal of Environmental Analytical Chemistry, vol. 91, no. 1, pp. 112–119, 2011.
	W. Wei, X. Suyun, and X. Shaofei, “An adaptive single-well stochastic resonance algorithm applied to trace analysis of clenbuterol in human urine,” Molecules, vol. 17, no. 2, pp. 1929–1938, 2012.
	L.-F. Li and J.-Y. Zhu, “Gravitational wave detection: stochastic resonance method with matched filtering,” General Relativity and Gravitation, vol. 43, no. 11, pp. 2991–3000, 2011.
	F. Guo and Y. R. Zhou, “Stochastic resonance in a stochastic bistable system subject to additive white noise and dichotomous noise,” Physica A, vol. 388, no. 17, pp. 3371–3376, 2009.
	H. Yan, W. Tai-yong, W. Jian, and Z. Pan, “Mechanical fault diagnosis based on the cascaded bistable stochastic resonance and multi-fractal,” Journal of Vibration Shock, vol. 31, no. 8, pp. 181–185, 2012.
	P. Ping, Y. Ping, and H. Zhaoxia, “Speaker recognition method based on stochastic resonance,” Telecommunications Science, vol. 26, no. S2, pp. 74–78, 2010.
	J. W. Mo, S. Ouyang, H. L. Xiao, and X. Y. Sun, “High sensitive GPS signal acquisition algorithm based on stochastic resonance,” Systems Engineering and Electronics, vol. 33, no. 4, pp. 838–841, 2011.
	Z. S. Chen and Y. M. Yang, “Stochastic resonance mechanism for wideband and low frequency vibration energy harvesting based on piezoelectric cantilever beams,” Acta Physica Sinica, vol. 60, no. 7, Article ID 074301, pp. 1–7, 2011.
	Y. G. Leng, “Mechanism of parameter-adjusted stochastic resonance based on Kramers rate,” Acta Physica Sinica, vol. 58, no. 8, pp. 5196–5200, 2009.
	G. Q. Zhu, K. Ding, Y. Zhang, and Y. Zhao, “Experimental research of weak signal detection based on the stochastic resonance of nonlinear system,” Acta Physica Sinica, vol. 59, no. 5, pp. 3001–3006, 2010.
	Y. Hasegawa and M. Arita, “Escape process and stochastic resonance under noise intensity fluctuation,” Physics Letters A, vol. 375, no. 39, pp. 336–372, 2011.
	H. Gang, G. Nicolis, and C. Nicolis, “Periodically forced Fokker-Planck equation and stochastic resonance,” Physical Review A, vol. 42, no. 4, pp. 2030–2041, 1990.
	L. Yonggang and W. Tai-yong, “Numerical research of twice sampling stochastic resonance for the detection of a weak signal submerged in a heavy Noise,” Acta Physica Sinica, vol. 52, no. 10, pp. 2432–2437, 2003.
	F. Chunfeng, G. Ke, C. Xin-wu, and G. Jiantao, “Application of frequency-shifted and re-scaling adaptive stochastic resonance in signal detection,” Journal of Xinyang Normal University, vol. 23, no. 3, pp. 415–419, 2010.
	Q. Mao, M. Lin, and Y. Zheng, “Study of weak multi-frequencies signal detection based on stochastic resonance,” Journal of Basic Science and Engineering, vol. 16, no. 1, pp. 86–91, 2008.
	Y. G. Leng, T. Y. Wang, Y. Guo, and Z. Y. Wu, “Study of the property of the parameters of bistable stochastic resonance,” Acta Physica Sinica, vol. 56, no. 1, pp. 30–35, 2007.
	J. F. Wang, F. Liu, J. Y. Wang, G. Chen, and W. Wang, “Frequency characteristics of the input thresholds of stochastic resonant systems,” Acta Physica Sinica, vol. 46, no. 12, pp. 2311–2312, 1997.
	X. Jingsong, Weak Signal Deteetion Based on the theory of Stoehastic Resonance, Lanzhou University Of Information and Communication Engineering, Gansu, China, 2008.
	G. L. Zhang and F. Z. Wang, “Research of multiple signals in stochastic resonance system,” Journal of System Simulation, vol. 21, no. 13, pp. 4190–4193, 2009.
	Y. G. Leng, T. Y. Wang, X. D. Qin, R. X. Li, and Y. Guo, “Power spectrum research of twice sampling stochastic resonance response in a bistable system,” Acta Physica Sinica, vol. 53, no. 3, pp. 717–723, 2004.
	Y. G. Leng, Y. S. Leng, T. Y. Wang, and Y. Guo, “Numerical analysis and engineering application of large parameter stochastic resonance,” Journal of Sound and Vibration, vol. 292, no. 3-5, pp. 788–801, 2006.
	Y. Dingxin, H. Zheng, and Y. Yongmin, “The analysis of stochastic resonance of periodic signal with large parameters,” Acta Physica Sinica, vol. 61, no. 8, Article ID 080501, 2012.


OEBPS/page-template.xpgt
 

   


     
	 
    

     
	 
    


     
	 
    


     
         
             
             
             
        
    

  





OEBPS/pageMap.xml
 
                                 
                                



OEBPS/Fonts/xits-italic.otf


OEBPS/Fonts/xits-bolditalic.otf


OEBPS/Fonts/xits-regular.otf


OEBPS/Fonts/xits-math.otf


