Research Article

Weak Convergence Theorem for Finding Fixed Points and Solution of Split Feasibility and Systems of Equilibrium Problems

Kamonrat Sombut and Somyot Plubtieng

Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand

Correspondence should be addressed to Somyot Plubtieng; somyotp@nu.ac.th

Received 15 October 2012; Accepted 13 December 2012

Academic Editor: Allan Peterson

Copyright © 2013 K. Sombut and S. Plubtieng. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The purpose of this paper is to introduce an iterative algorithm for finding a common element of the set of fixed points of quasi-nonexpansive mappings and the solution of split feasibility problems (SFP) and systems of equilibrium problems (SEP) in Hilbert spaces. We prove that the sequences generated by the proposed algorithm converge weakly to a common element of the fixed points set of quasi-nonexpansive mappings and the solution of split feasibility problems and systems of equilibrium problems under mild conditions. Our main result improves and extends the recent ones announced by Ceng et al. (2012) and many others.

1. Introduction

Let $C$ be a nonempty closed convex subset of a real Hilbert space $H$. A mapping $T : C \rightarrow C$ is said to be nonexpansive if $\|Tx - Ty\| \leq \|x - y\|$ for all $x, y \in C$. Denote the set of fixed points of $T$ by $F(T)$. On the other hand, a mapping $T : C \rightarrow C$ is said to be quasi-nonexpansive if $F(T) \neq \emptyset$ and $\|Tx - q\| \leq \|x - q\|$ for all $x \in C$ and $q \in F(T)$. If $T : C \rightarrow C$ is nonexpansive and the set $F(T)$ of fixed points of $T$ is nonempty, then $T$ is quasi-nonexpansive. Fixed point iterations process for nonexpansive mappings and quasi-nonexpansive mappings in Banach spaces including Mann and Ishikawa iterations process have been studied extensively by many authors to solve the nonlinear operator equations (see [1–4]).

Let $F$ be a bifunction of $C \times C$ into $\mathbb{R}$, where $\mathbb{R}$ is the set of real numbers. The equilibrium problem for $F : C \times C \rightarrow \mathbb{R}$ is to find $x \in C$ such that

$$F(x, y) \geq 0 \quad \forall y \in C. \quad (1)$$

The set of solutions of (1) is denoted by $EP(F)$. Numerous problems in physics, optimization, and economics reduce to find a solution of (1) in Hilbert spaces; see, for instance, Blum and Oettli [5], Flam and Antipin [6], and Moudafi [7]. Moreover, Flam and Antipin [6] introduced an iterative scheme of finding the best approximation to the solution of equilibrium problem, when $EP(F)$ is nonempty, and proved a strong convergence theorem (see also in [8–11]). Let $F_1, F_2 : C \times C \rightarrow \mathbb{R}$ be two-monotone bifunction and $\lambda > 0$ is a constant. Recently, Moudafi [12] considered the following of a system of equilibrium problem, denoting the set of solution of SEP by $\Omega$, for finding $(x^*, y^*) \in C \times C$ such that

$$\lambda F_1(x^*, z) + \langle y^* - x^*, x^* - z \rangle \geq 0, \quad \forall z \in C,$$

$$\lambda F_2(y^*, z) + \langle x^* - y^*, y^* - z \rangle \geq 0, \quad \forall z \in C. \quad (2)$$

He also proved the weak convergence theorem of this problem (some related work can be found in [13, 14]).

The split feasibility problem (SFP) in Hilbert spaces for modeling inverse problems which arise from phase retrievals and in medical image reconstruction was first introduced by Censor and Elfving [15] (see, e.g., [16, 17]). It has been found that the SFP can also be used to model the intensity-modulated radiation therapy (see [18, 19]). In this work, the SFP is formulated as finding a point $x^*$ with the property

$$x^* \in C, \quad Ax^* \in Q. \quad (3)$$
where $C$ and $Q$ are the nonempty closed convex subsets of the infinite-dimensional real Hilbert spaces $H_1$ and $H_2$, respectively, and $A \in B(H_1, H_2)$ (i.e., $A$ is a bounded linear operator from $H_1$ to $H_2$). Very recently, there are related works which we can find in [16, 18, 20–26] and the references therein.

A special case of the SFP is called the convex constrained linear inverse problem (see [27]), that is, the problem to finding an element $x$ such that

$$x \in C, \ Ax = b \in Q. \quad (4)$$

In fact, it has been extensively investigated in the literature using the projected Landweber iterative method [27, 28]. Throughout this paper, we assume that the solution set $\Gamma$ of the SFP is nonempty.

Motivated and inspired by the regularization method and extragradient method due to Ceng et al. [29], we introduce an extragradient method with regularization for finding a common element of the fixed points set of quasi-nonexpansive mappings and the solution of split feasibility problems (SFP) and systems of equilibrium problems (SEP) in Hilbert spaces. Our results represent the improvement, extension, and development of the corresponding results in [14, 29].

2. Preliminaries

Let $H$ be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\| \cdot \|$, and let $C$ be a closed convex subset of $H$. We write $x_n \rightharpoonup x$ to indicate that the sequence $\{x_n\}$ converges weakly to $x$ and $x_n \rightarrow x$ to indicate that the sequence $\{x_n\}$ converges strongly to $x$. For every point $x \in H$, there exists a unique nearest point in $C$, denoted by $P_C x$, such that

$$\|x - P_C x\| = \inf_{y \in C} \|x - y\| \quad \forall y \in C. \quad (5)$$

$P_C$ is called the metric projection of $H$ onto $C$.

Some important properties of projections are gathered in the following proposition.

**Proposition 1** (see [29]). For given $x \in H$ and $z \in C$:

(i) $z = P_C x$ if and only if $\langle x - z, y - z \rangle \leq 0$, for all $y \in C$;

(ii) $z = P_C x$ if and only if $\|x - z\| ^2 \leq \|x - y\| ^2 - \|y - z\| ^2$, for all $y \in C$.

**Definition 2** (see [30, 31]). Let $T$ be a nonlinear operator with domain $D(T) \subseteq H$ and range $R(T) \subseteq H$, and let $\beta > 0$ and $\nu > 0$ be given constants. The operator $T$ is called

(a) monotone if

$$\langle x - y, Tx - Ty \rangle \geq 0, \quad \forall x, y \in D(T); \quad (6)$$

(b) $\beta$-strongly monotone if

$$\langle x - y, Tx - Ty \rangle \geq \beta \|x - y\| ^2, \quad \forall x, y \in D(T); \quad (7)$$

(c) $\nu$-inverse strongly monotone ($\nu$-ism) if

$$\langle x - y, Tx - Ty \rangle \geq \nu \|Tx - Ty\| ^2, \quad \forall x, y \in D(T). \quad (8)$$

We can easily see that if $S$ is nonexpansive, then $I - S$ is monotone. It is also easy to see that a projection $P_C$ is a $1$-ism.

**Definition 3** (see [29]). A mapping $T : H \rightarrow H$ is said to be an averaged mapping if it can be written as the average of the identity $I$ and a nonexpansive mapping, that is,

$$T \equiv (1 - \alpha) I + \alpha S, \quad (9)$$

where $\alpha \in (0, 1)$ and $S : H \rightarrow H$ is nonexpansive. More precisely, when (9) holds, we say that $T$ is $\alpha$-averaged. It is easy to see that if $T$ is an averaged mapping, then $T$ is nonexpansive.

**Proposition 4** (see [20]). Let $T : H \rightarrow H$ be a given mapping. Then consider the following.

(i) $T$ is nonexpansive if and only if the complement $I - T$ is $(1/2)$-ism.

(ii) $T$ is averaged if and only if the complement $I - T$ is $\nu$-ism for some $\nu > 1/2$. Indeed, for $\alpha \in (0, 1)$, $T$ is $\alpha$-averaged if and only if $I - T$ is $(1/2\alpha)$-ism.

(iii) The composite of finitely many averaged mappings is averaged. That is, if each of the mappings $\{T_i\} _{i=1} ^{n}$ is averaged, then so is the composite $T_1 \circ T_2 \circ \cdots \circ T_n$. In particular, if $T_1 = \alpha_1$-averaged and $T_2$ is $\alpha_2$-averaged, where $\alpha_1, \alpha_2 \in (0, 1)$, then the composite $T_1 \circ T_2$ is $\alpha_2$-averaged, where $\alpha = \alpha_1 + \alpha_2 - \alpha_1 \alpha_2$.

In this paper, we use an equilibrium bifunction $F : C \times C \rightarrow \mathbb{R}$ for solving the equilibrium problems, let us assume that $F$ satisfies the following conditions:

(A1) $F(x, x) = 0$ for all $x \in C$;

(A2) $F$ is monotone, that is, $F(x, y) + F(y, x) \leq 0$ for all $x, y \in C$;

(A3) for each $y \in C, x \mapsto F(x, y)$ is weakly upper semicontinuous;

(A4) for each $x \in C, y \mapsto F(x, y)$ is convex; semicontinuous.

**Lemma 5** (see [6]). Assume that $F : C \times C \rightarrow \mathbb{R}$ satisfies (A1)–(A4). For $r > 0$ and $x \in H$, define a mapping $T_r : H \rightarrow C$ as follows:

$$T_r (x) = \left\{ z \in C : F(z, y) + \frac{1}{r} \langle y - z, z - x \rangle \geq 0, \quad \forall y \in C \right\}, \quad (10)$$

for all $z \in H$. Then, the following hold:

(i) $T_r$ is single-valued;

(ii) $T_r$ is firmly nonexpansive, that is, for any $x, y \in H, \|T_r x - T_r y\| ^2 \leq (T_r x - T_r y, x - y)$;
(iii) \( F(T_r) = EP(F) \);
(iv) \( EP(F) \) is closed and convex.

**Lemma 6** (see [32]). Let \( C \) be a closed convex subset of a real Hilbert space \( H \). Let \( F_1 \) and \( F_2 \) be two mappings from \( C \times C \to R \) satisfying \( (A1) - (A4) \) and let \( T_{1,\lambda} \) and \( T_{2,\mu} \) be defined as in Lemma 5 associated to \( F_1 \) and \( F_2 \), respectively. For given \( x^*, y^* \in C \), \((x^*, y^*)\) is a solution of problem (2) if and only if \( x^* \) is a fixed point of the mapping \( G : C \to C \) defined by
\[
G(x) = T_{1,\lambda} \left( T_{2,\mu} x \right), \quad \forall x \in C,
\]
where \( y^* = T_{2,\mu} x^* \).

**Lemma 7** (see [33]). Let \( \{a_n^{\infty} \}_{n=1}^{\infty}, \{b_n^{\infty} \}_{n=1}^{\infty} \) and \( \{\delta_n^{\infty} \}_{n=1}^{\infty} \) be sequences of nonnegative real numbers satisfying the inequality
\[
a_{n+1} \leq (1 + \delta_n) a_n + b_n, \quad \forall n \geq 1.
\]
If \( \sum_{n=1}^{\infty} \delta_n < \infty \) and \( \sum_{n=1}^{\infty} b_n < \infty \), then \( \lim_{n \to \infty} a_n \) exists. If, in addition, \( \{a_n^{\infty} \}_{n=1}^{\infty} \) has a subsequence which converges to zero, then \( \lim_{n \to \infty} a_n = 0 \).

### 3. Weak Convergence Theorem

In this section, we prove a weak convergence theorem by an extrapolation method for finding a common element of the fixed points set of quasi-nonexpansive mappings and the solution of split feasibility problems and systems of equilibrium problems in Hilbert spaces. The function \( f : H \to R \) is a continuous differentiable function with the minimization problem given by
\[
\min_{x \in C} f(x) := \frac{1}{2} \|Ax - P_QAx\|^2.
\]
In 2010, Xu [17] considered the following Tikhonov regularized problem:
\[
\min_{x \in C} f_\alpha(x) := \frac{1}{2} \|Ax - P_QAx\|^2 + \frac{1}{2} \alpha \|x\|^2,
\]
where \( \alpha > 0 \) is the regularization parameter. The gradient given by
\[
\nabla f_\alpha(x) = \nabla f(x) + \alpha I = A^* (I - P_Q) A + \alpha I
\]
is \((\alpha + \|A\|^2)\) -Lipschitz continuous and \( \alpha \)-strongly monotone (see [29] for the details).

**Lemma 8** (see [17, 29]). The following hold:
(i) \( \Gamma = F(P_C(I - \lambda \nabla f)) = V(C, \nabla f) \) for any \( \lambda > 0 \), where \( F(P_C(I - \lambda \nabla f)) \) and \( V(C, \nabla f) \) denote the set of fixed points of \( P_C(I - \lambda \nabla f) \) and the solution set of VIP;
(ii) \( P_C(I - \lambda \nabla f_\alpha) \) is \( \xi \)-averaged for each \( \lambda \in (0, 2/(\alpha + \|A\|^2)) \), where \( \xi = (2 + \lambda(\alpha + \|A\|^2))/4 \).

**Theorem 9.** Let \( C \) be a nonempty closed convex subset of a real Hilbert space \( H \). Let \( \mu > 0 \), \( F_1 \) and \( F_2 \) be two bifunctions from \( C \times C \to R \) satisfying \( (A1) - (A4) \). Let \( S \) be a quasi-nonexpansive mapping of \( C \) into itself such that \( I - S \) be demiclosed at zero, that is, if \( \{w_n\} \subset C, w_n \to w \) and \( (I - S)w_n \to 0 \), then \( w \in F(S) \), with \( F(S) \cap \Gamma \neq \emptyset \). Let \( \{x_n\}, \{y_n\}, \{z_n\}, \) and \( \{w_n\} \) be the sequence in \( C \) generated by the following extragradient algorithm:
\[
x_0 = x \in C, \quad w_n \in C; \quad F_2(w_n, z) + \varphi(z) - \varphi(w_n) + \frac{1}{\mu} \langle z - w_n, w_n - x_n \rangle \geq 0, \quad \forall z \in C,
\]
\[
z_n \in C; \quad F_1(z_n, z) + \varphi(z) - \varphi(z_n) + \frac{1}{\mu} \langle z - z_n, z_n - w_n \rangle \geq 0, \quad \forall z \in C,
\]
\[
y_n = P_C \left( I - \lambda \nabla f_{\alpha_n} \right) z_n,
\]
\[
x_{n+1} = \beta_n x_n + (1 - \beta_n) P_{SPC_C}(x_n - \lambda \nabla f_{\alpha_n} y_n),
\]
where \( \sum_{n=0}^{\infty} \alpha_n < \infty \), \( \{\lambda_n\} \subset [a, b] \) for some \( a, b \in (0, 1/\|A\|^2) \) and \( \{\beta_n\} \subset [c, d] \) for some \( c, d \in (0, 1) \). Then, the sequences \( \{x_n\} \) and \( \{y_n\} \) converge weakly to an element \( \bar{x} \in F(S) \cap \Gamma \cap \Omega \).

**Proof.** By Lemma 8, we have that \( P_C(I - \lambda \nabla f_{\alpha_n}) \) is \( \xi \)-averaged for each \( \lambda \in (0, 2/(\alpha + \|A\|^2)) \), where \( \xi = (2 + \lambda(\alpha + \|A\|^2))/4 \). Hence, by Proposition 2.4, \( P_C(I - \lambda \nabla f_{\alpha_n}) \) is nonexpansive. From \( \{\lambda_n\} \subset [a, b] \) and \( a, b \in (0, 1/\|A\|^2) \), we have \( \alpha \leq \inf_{n \geq 0} \lambda_n \leq \sup_{n \geq 0} \lambda_n \leq b < 1/\|A\|^2 = \lim_{n \to \infty} 1/(\alpha_n + \|A\|^2) \). Without loss of generality, we assume that \( \alpha \leq \inf_{n \geq 0} \lambda_n \leq \sup_{n \geq 0} \lambda_n \leq b < 1/(\alpha_n + \|A\|^2) \), for all \( n \geq 0 \). Hence, for each \( n \geq 0 \), \( P_C(I - \lambda_n \nabla f_{\alpha_n}) \) is \( \xi_n \)-averaged with
\[
\xi_n = \frac{1}{2} + \lambda_n \left( \alpha_n + \|A\|^2 \right) - \frac{1}{2} \cdot \frac{\lambda_n \left( \alpha_n + \|A\|^2 \right)}{2} = \frac{2 + \lambda_n \left( \alpha_n + \|A\|^2 \right)}{4} \in (0, 1).
\]
This implies that \( P_C(I - \lambda_n \nabla f_{\alpha_n}) \) is nonexpansive for all \( n \geq 0 \).

Next, we show that the sequence \( \{x_n\} \) is bounded. Indeed, take a fixed \( p \in F(S) \cap \Gamma \cap \Omega \) arbitrarily. Let \( T_{1,\mu} \) and \( T_{2,\mu} \) be defined as in Lemma 5 associated to \( F_1 \) and \( F_2 \), respectively. Thus, we get \( p = P_{SPC}(p) \), for all \( n \geq 0 \), \( p = P_C(I - \lambda \nabla f_{\alpha_n} p) \) for all \( \lambda \in (0, 2/\|A\|^2) \) and \( p = T_{1,\mu}(T_{2,\mu} p) \), for all \( \mu > 0 \). Put \( y^* = T_{2,\mu} p, z_n = T_{1,\mu} w_n \) and \( w_n = T_{2,\mu} x_n \). From (29), we have
\[
\|y_n - p\| = \|P_C(I - \lambda_n \nabla f_{\alpha_n}) z_n - P_C(I - \lambda_n \nabla f_{\alpha_n}) p\|
\leq \|P_C(I - \lambda_n \nabla f_{\alpha_n}) z_n - P_C(I - \lambda_n \nabla f_{\alpha_n}) p\|
\]

Abstract and Applied Analysis

+ \|PC(I - \lambda_n \nabla f_{\alpha_n}) p - PC(I - \lambda_n \nabla f)p\|
\leq \|z_n - p\| + \|PC(I - \lambda_n \nabla f_{\alpha_n}) p - (I - \lambda_n \nabla f)p\|
= \|z_n - p\| + \|\lambda_n p(\nabla f - \nabla f_{\alpha_n})\|
= \|z_n - p\| + \|\lambda_n \alpha_n \| p .

(18)

This implies that \(\|z_n - p\| = \|T_{2,\mu}w_n - T_{1,\mu}y^n\| \leq \|w_n - y^n\| = \|T_{2,\mu}x_n - T_{2,\mu}p\| \leq \|x_n - p\|\). Thus, we obtain \(\|y_n - p\| \leq \|x_n - p\| + \lambda_n \alpha_n \|p\|.\) Put \(I_n = PC(x_n - \lambda_n \nabla f_{\alpha_n}(y_n))\) for each \(n \geq 0\). Then, by Proposition 1(ii), we have

\[
\|x_n - p\|^2 \leq \|x_n - \lambda_n \nabla f_{\alpha_n}(y_n) - p\|^2
- \|x_n - \lambda_n \nabla f_{\alpha_n}(y_n) - l_n\|^2
+ \lambda_n \|\nabla f_{\alpha_n}(y_n)\|^2
\leq \|x_n - p\|^2 - \|x_n - l_n\|^2
- \lambda_n \alpha_n \|p\|^2
\]
\[
\leq \|x_n - p\|^2 - \|x_n - y_n\|^2
- \lambda_n \alpha_n \|p\|^2
\]
(19)

Hence, by Proposition 1(i), we have

\[
\langle x_n - \lambda_n \nabla f_{\alpha_n}(y_n) - y_n, l_n - y_n \rangle
= \langle x_n - \lambda_n \nabla f_{\alpha_n}(y_n) - y_n, l_n - y_n \rangle
+ \lambda_n \nabla f_{\alpha_n}(x_n) - \lambda_n \nabla f_{\alpha_n}(y_n), l_n - y_n \rangle
\leq \langle \lambda_n \nabla f_{\alpha_n}(x_n) - \lambda_n \nabla f_{\alpha_n}(y_n), l_n - y_n \rangle
\leq \lambda_n \|\nabla f_{\alpha_n}(x_n) - \lambda_n \nabla f_{\alpha_n}(y_n)\|^2
\leq \lambda_n (\alpha_n + \|A\|^2) \|x_n - y_n\| \|l_n - y_n\| .
\]
(20)

So, we have

\[
\|x_n - p\|^2 \leq \|x_n - p\|^2 - \|x_n - y_n\|^2 - \|y_n - l_n\|^2
+ 2 \lambda_n (\alpha_n + \|A\|^2) \|x_n - y_n\| \|l_n - y_n\|
+ 2 \lambda_n \alpha_n \|p\| \|p - y_n\|
\leq \|x_n - p\|^2 - \|x_n - y_n\|^2 - \|y_n - l_n\|^2
+ \lambda_n^2 (\alpha_n + \|A\|^2)^2 \|x_n - y_n\|^2 + \|l_n - y_n\|^2
+ 2 \lambda_n \alpha_n \|p\| \|p - y_n\|
= \|x_n - p\|^2 + 2 \lambda_n \alpha_n \|p\| \|p - y_n\|
+ \left[\lambda_n^2 (\alpha_n + \|A\|^2)^2 - 1\right] \|x_n - y_n\|^2
\leq \|x_n - p\|^2 + 2 \lambda_n \alpha_n \|p\| \|p - y_n\|
\leq \|x_n - p\|^2 + 2 \lambda_n \alpha_n \|p\| \|p - y_n\|
\leq \|x_n - p\|^2 + 2 \lambda_n \alpha_n \|p\| \|p - y_n\| .
\]
(21)

Then, from the last inequality we conclude that

\[
\|x_{n+1} - p\|^2
= \|\beta_n x_n + (1 - \beta_n) S(l_n) - p\|^2
\leq \beta_n \|x_n - p\|^2 + (1 - \beta_n) \|S(l_n) - p\|^2
- \beta_n (1 - \beta_n) \|x_n - S(l_n)\|^2
\leq \beta_n \|x_n - p\|^2 + (1 - \beta_n) \|l_n - p\|^2
- \beta_n (1 - \beta_n) \|x_n - S(l_n)\|^2
\leq \beta_n \|x_n - p\|^2 + (1 - \beta_n) \|x_n - p\|^2
+ \left[\lambda_n^2 (\alpha_n + \|A\|^2)^2 - 1\right] \|x_n - y_n\|^2
- \beta_n (1 - \beta_n) \|x_n - S(l_n)\|^2
\leq \|x_n - p\|^2 + 2 \lambda_n \alpha_n \|p\| \|p - y_n\|
+ (1 - \beta_n) \left[\|x_n - p\|^2 + 2 \lambda_n \alpha_n \|p\| \|p - y_n\|
- \beta_n (1 - \beta_n) \|x_n - S(l_n)\|^2
\leq \|x_n - p\|^2 + 2 \lambda_n \alpha_n \|p\| \|p - y_n\|
+ (1 - \beta_n) \left[\|x_n - p\|^2 + 2 \lambda_n \alpha_n \|p\| \|p - y_n\|
- \beta_n (1 - \beta_n) \|x_n - S(l_n)\|^2
\leq \|x_n - p\|^2 + 2 \lambda_n \alpha_n \|p\| \|p - y_n\|
+ (1 - \beta_n) \left[\|x_n - p\|^2 + 2 \lambda_n \alpha_n \|p\| \|p - y_n\|
- \beta_n (1 - \beta_n) \|x_n - S(l_n)\|^2
\leq \|x_n - p\|^2 + 2 \lambda_n \alpha_n \|p\| \|p - y_n\|
+ (1 - \beta_n) \left[\|x_n - p\|^2 + 2 \lambda_n \alpha_n \|p\| \|p - y_n\|
- \beta_n (1 - \beta_n) \|x_n - S(l_n)\|^2
\leq \|x_n - p\|^2 + 2 \lambda_n \alpha_n \|p\| \|p - y_n\|
+ (1 - \beta_n) \left[\|x_n - p\|^2 + 2 \lambda_n \alpha_n \|p\| \|p - y_n\|
- \beta_n (1 - \beta_n) \|x_n - S(l_n)\|^2
\leq \|x_n - p\|^2 + 2 \lambda_n \alpha_n \|p\| \|p - y_n\|
+ (1 - \beta_n) \left[\|x_n - p\|^2 + 2 \lambda_n \alpha_n \|p\| \|p - y_n\|
- \beta_n (1 - \beta_n) \|x_n - S(l_n)\|^2
\leq \|x_n - p\|^2 + 2 \lambda_n \alpha_n \|p\| \|p - y_n\|
+ (1 - \beta_n) \left[\|x_n - p\|^2 + 2 \lambda_n \alpha_n \|p\| \|p - y_n\|
- \beta_n (1 - \beta_n) \|x_n - S(l_n)\|^2
where $\delta_n = 2\alpha_n$ and $b_n = \alpha_n\lambda_n^2\|p\|^2(1 + 2\alpha_n^2)$. Since $\sum_{n=0}^{\infty} \alpha_n < \infty$ and $\{\lambda_n\} \subset [a, b]$ for some $a, b \in (0, 1/\|A\|^2)$, we conclude that $\sum_{n=0}^{\infty} \delta_n < \infty$ and $\sum_{n=0}^{\infty} b_n < \infty$. Therefore, by Lemma 7, we note that $\lim_{n \to \infty} \|x_n - p\|$ exists for each $p \in F(S) \cap \Gamma \cap \Omega$ and hence the sequences $\{x_n\}, \{I_n\}, \{y_n\}, \{z_n\}$, and $\{w_n\}$ are bounded. From (22), we also obtain

\[
(1 - d) \left(1 - b^2(\alpha_n + \|A\|^2)^2\right) \|x_n - y_n\|^2 + c(1 - d) \|x_n - S(I_n)\|^2 \\
\leq (1 - \beta_n) \left(1 - \lambda_n^2(\alpha_n + \|A\|^2)^2\right) \|x_n - y_n\|^2 \\
+ \beta_n (1 - \beta_n) \|x_n - S(I_n)\|^2 \\
\leq (1 + 2\alpha_n) \|x_n - p\|^2 - \|x_{n+1} - p\|^2 \\
+ \alpha_n \lambda_n^2 \|p\|^2 (1 + 2\alpha_n^2),
\]

where $\{\lambda_n\} \subset [a, b]$ and $\{\beta_n\} \subset [c, d]$. Since $\lim_{n \to \infty} \|x_n - p\|$ exists and $\alpha_n \to 0$, it follows that

\[
\lim_{n \to \infty} \|x_n - y_n\| = \lim_{n \to \infty} \|x_n - S(I_n)\| \\
\leq \lim_{n \to \infty} \left(\|x_n - p\| + \|p - S(I_n)\|\right) \\
\leq \lim_{n \to \infty} \left(\|x_n - p\| + \|p - l_n\|\right) = 0.
\]
only if \( v \in VI(C, \nabla f) \). Let \((v, w) \in G(T)\). Then we have \( w \in TV = \nabla f(v) + N_C C \) and hence \( w - \nabla f(v) \in N_C C \). So, we obtain \( \langle v - u, w - \nabla f(v) \rangle \geq 0 \), for all \( u \in C \). On the other hand, from \( l_n = P_C(x_n - \lambda_n \nabla f_a_n(y_n)) \) and \( v \in C \), we have

\[
\langle x_n - l_n, l_n - v \rangle \geq 0, \quad (30)
\]

and hence

\[
\langle v - l_n, \frac{l_n - x_n}{\lambda_n} + \nabla f_{a_n}(y_n) \rangle \geq 0. \quad (31)
\]

Therefore, from \( w - \nabla f(v) \in N_C C \) and \( l_n \in C \), we get

\[
\langle v - l_n, w \rangle \\
\geq \langle v - l_n, \nabla f(v) \rangle \\
\geq \langle v - l_n, \nabla f(v) \rangle \\
- \left( - \frac{l_n - x_n}{\lambda_n} + \nabla f_{a_n}(y_n) \right) \\
= \left( v - l_n, \nabla f(v) \right) \\
- \left( - \frac{l_n - x_n}{\lambda_n} + \nabla f(y_n) \right) \\
- \alpha_n \langle v - l_n, y_n \rangle \\
= \left( v - l_n, \nabla f(v) - \nabla f(l_n) \right) \\
+ \left( v - l_n, \nabla f(l_n) - \nabla f(y_n) \right) \\
- \left( - \frac{l_n - x_n}{\lambda_n} \right) - \alpha_n \langle v - l_n, y_n \rangle \\
\geq \left( v - l_n, \nabla f(l_n) - \nabla f(y_n) \right) \\
- \left( - \frac{l_n - x_n}{\lambda_n} \right) - \alpha_n \langle v - l_n, y_n \rangle.
\]

By taking \( i \to \infty \), we obtain \( \langle v - \bar{x}, w \rangle \geq 0 \). Since \( T \) is maximal monotone, it follows that \( \bar{x} \in T^{-1}0 \) and hence \( \bar{x} \in VI(C, \nabla f) \). Therefore, by Lemma 6, \( \bar{x} \in \Gamma \).

Next, we show that \( \bar{x} \in F(S) \). Since \( l_n \to \bar{x} \) and \( \|l_n - S(l_n)\| \to 0 \), it follows by the demiclosed principle that \( \bar{x} \in F(S) \). Hence, we have \( \bar{x} \in F(S) \cap \Gamma \).

Next, we show that \( \bar{x} \in \Omega \). Let \( G \) be a mapping which is defined as in Lemma 6, thus we have

\[
\|z_n - G(z_n)\| = \|T_{1,\mu}T_{2,\mu}x_n - G(z_n)\| \\
= \|G(x_n) - G(z_n)\| \leq \|x_n - z_n\|,
\]

and hence

\[
\|x_n - G(x_n)\| \leq \|x_n - z_n\| + \|z_n - G(z_n)\| \\
+ \|G(z_n) - G(x_n)\| \\
\leq \|x_n - z_n\| + \|z_n - z_n\| + \|z_n - x_n\| \\
= \|x_n - x_n\|.
\]

By taking \( n \to \infty \), we have \( \|x_n - G(x_n)\| \to 0 \). From \( \lim_{n \to \infty} \|x_n - z_n\| = 0 \) and \( z_n \to \bar{x} \), we obtain \( x_n \to \bar{x} \).

According to demiclosedness and Lemma 6, we have \( \bar{x} \in \Omega \).

Therefore, we have \( \bar{x} \in F(S) \cap \Gamma \cap \Omega \). Let \( \{x_n\} \) be another subsequence of \( \{x_n\} \) such that \( x_n \to \bar{x} \). We show that \( \bar{x} = \bar{x} \).

Since \( \lim_{n \to \infty} \|x_n - \bar{x}\| \) exists for all \( \bar{x} \in F(S) \cap \Gamma \cap \Omega \), it follows by the Opial's condition that

\[
\lim\inf_{n \to \infty} \|x_n - \bar{x}\| = \lim\inf_{i \to \infty} \|x_i - \bar{x}\| < \lim\inf_{j \to \infty} \|x_j - \bar{x}\| = \lim\inf_{j \to \infty} \|x_j - \bar{x}\| < \lim\inf_{j \to \infty} \|x_j - \bar{x}\| = \lim\inf_{j \to \infty} \|x_j - \bar{x}\|.
\]

It is a contradiction. Thus, we have \( \bar{x} = \bar{x} \) and so \( x_n \to \bar{x} \in F(S) \cap \Gamma \cap \Omega \). Further, from \( \|x_n - y_n\| \to 0 \), it follows that \( y_n \to \bar{x} \) and hence \( z_n, w_n \). This completes the proof.

Theorem 9 extends the extragradient method according to Nadezhkina and Takahashi [35].

**Corollary 10.** Let \( C \) be a nonempty closed convex subset in a real Hilbert space \( H \). Let \( F_1 \) and \( F_2 \) be two bifunctions from \( C \times C \to \mathbb{R} \) satisfying (A1)–(A4). Let \( \mu > 0 \) and let \( T_{1,\mu} \) and \( T_{2,\mu} \) be defined as in Lemma 5 associated to \( F_1 \) and \( F_2 \), respectively. Let \( S \) be a quasi-nonexpansive mapping of \( C \) into itself such that \( F(S) \cap \Gamma \cap \Omega \neq \emptyset \). Let \( \{x_n\}, \{y_n\}, \{z_n\}, \) and \( \{w_n\} \) be the sequence in \( C \) generated by the following extragradient algorithm:

\[
x_0 = x \in C, \quad w_n \in C; \quad F_2(w_n, z) + \frac{1}{\mu} \langle z - w_n, \nu_1 \rangle \geq 0, \quad \forall z \in C, \quad z_n \in C; \quad F_1(z_n, \bar{x}) + \frac{1}{\mu} \langle \bar{x} - z_n, \nu_2 \rangle \geq 0, \quad \forall z \in C, \quad y_n = P_C \left( I - \lambda_n \nabla f \right) z_n, \\
x_{n+1} = \beta_n x_n + (1 - \beta_n) SP_C \left( x_n - \lambda_n \nabla f \right),
\]

(36)

where \( \sum_{n=0}^{\infty} \alpha_n < \infty \), \( \lambda_n \in [a, b] \) for some \( a, b \in (0, 1/\|A\|^2) \), and \( \beta_n \in [c, d] \) for some \( c, d \in (0, 1) \). Then, the sequences \( \{x_n\} \) and \( \{y_n\} \) converge weakly to an element \( \bar{x} \in F(S) \cap \Gamma \cap \Omega \).

**Corollary 11.** Let \( C \) be a nonempty closed convex subset in a real Hilbert space \( H \). Let \( F_1 \) and \( F_2 \) be two bifunctions from \( C \times C \to \mathbb{R} \) satisfying (A1)–(A4). Let \( \mu > 0 \) and let \( T_{1,\mu} \) and \( T_{2,\mu} \) be defined as in Lemma 5 associated to \( F_1 \) and \( F_2 \), respectively. Let \( S \) be a quasi-nonexpansive mapping of \( C \) into itself such that \( F(S) \cap \Gamma \cap \Omega \neq \emptyset \). Let \( \{x_n\}, \{y_n\}, \{z_n\}, \) and \( \{w_n\} \) be the sequence in \( C \) generated by the following extragradient algorithm:

\[
x_0 = x \in C, \quad w_n \in C; \quad F_2(w_n, z) + \frac{1}{\mu} \langle z - w_n, \nu_1 \rangle \geq 0, \quad \forall z \in C, \quad z_n \in C; \quad F_1(z_n, \bar{x}) + \frac{1}{\mu} \langle \bar{x} - z_n, \nu_2 \rangle \geq 0, \quad \forall z \in C, \quad y_n = P_C \left( I - \lambda_n \nabla f \right) z_n, \\
x_{n+1} = \beta_n x_n + (1 - \beta_n) SP_C \left( x_n - \lambda_n \nabla f \right),
\]

(36)

where \( \sum_{n=0}^{\infty} \alpha_n < \infty \), \( \lambda_n \in [a, b] \) for some \( a, b \in (0, 1/\|A\|^2) \), and \( \beta_n \in [c, d] \) for some \( c, d \in (0, 1) \). Then, the sequences \( \{x_n\} \) and \( \{y_n\} \) converge weakly to an element \( \bar{x} \in F(S) \cap \Gamma \cap \Omega \).
C → ℜ satisfying (A1)–(A4). Let μ > 0 and let T1,μ and T2,μ be defined as in Lemma 5 associated to F1 and F2, respectively. Let S be a quasi-nonexpansive mapping of C into itself such that F(S) ∩ Γ ∩ Ω ≠ ∅. Let \(x_n, y_n,\) and \(z_n\) be the sequence in C generated by the following extragradient algorithm:

\[
x_0 = x \in C, \\
z_n \in C; \\
F_1(z_n, z) + \varphi(z) - \varphi(z_n) + \frac{1}{\mu}(z - z_n, z_n - x_n) \geq 0, \quad \forall z \in C, \tag{37}
\]

\[
y_n = P_C \left( I - \lambda_n \nabla f_{a_n} \right) z_n, \\
x_{n+1} = \beta_n x_n + (1 - \beta_n) SP_C \left( x_n - \lambda_n \nabla f_{a_n} (y_n) \right),
\]

where \(\sum_{n=0}^{\infty} \alpha_n < \infty\), \(\{\lambda_n\} \subset [a, b]\) for some \(a, b \in (0, 1/\|A\|^2)\) and \(\{a_n\} \subset [c, d]\) for some \(c, d \in (0, 1)\). Then, the sequences \(\{x_n\}\) and \(\{y_n\}\) converge weakly to an element \(x \in F(S) \cap \Gamma \cap \Omega\).

**Proof.** Setting \(F_2 = 0\) in Theorem 9, we obtain the desired result. □

**Corollary 12.** Let C be a nonempty closed convex subset in a real Hilbert space H. Let S be a quasi-nonexpansive mapping of C into itself such that \(F(S) \cap \Gamma \cap \Omega \neq \emptyset\). Let \(\{x_n\}\), \(\{y_n\}\), and \(\{z_n\}\) be the sequence in C generated by the following extragradient algorithm:

\[
x_0 = x \in C, \\
y_n = P_C \left( I - \lambda_n \nabla f_{a_n} \right) x_n, \tag{38}
\]

\[
x_{n+1} = \beta_n x_n + (1 - \beta_n) SP_C \left( x_n - \lambda_n \nabla f_{a_n} (y_n) \right),
\]

where \(\sum_{n=0}^{\infty} \alpha_n < \infty\), \(\{\lambda_n\} \subset [a, b]\) for some \(a, b \in (0, 1/\|A\|^2)\) and \(\{a_n\} \subset [c, d]\) for some \(c, d \in (0, 1)\). Then, the sequences \(\{x_n\}\) and \(\{y_n\}\) converge weakly to an element \(x \in F(S) \cap \Gamma\).

**Proof.** Setting \(F_1 = F_2 = 0\) in Theorem 9, we obtain the desired result. □

**Acknowledgments**

The authors would like to thank The Commission on Higher Education for financial support. Moreover, K. Sombut is also supported by The Strategic Scholarships Fellowships Frontier Research Networks under Grant CHE-Ph.D-THA-SUP/86/2550, Thailand.

**References**


[20] C. Byrne, “A unified treatment of some iterative algorithms in
signal processing and image reconstruction,” *Inverse Problems*,

feasibility problem,” *Inverse Problems*, vol. 21, no. 5, pp. 1655–
1665, 2005.

[22] H.-K. Xu, “A variable Krasnosel’skiMann algorithm and the
multiple-set split feasibility problem,” *Inverse Problems*, vol. 22,

[23] Q. Yang, “The relaxed CQ algorithm solving the split feasibility

feasibility problem,” *Inverse Problems*, vol. 21, no. 5, pp. 1791–
1799, 2005.

fixed-point and optimization methods to the multiple-set split
feasibility problem,” *Journal of Applied Mathematics*, vol. 2012,

for solving the split feasibility problem,” *Optimization Letters*,

problems in Hilbert space,” *Numerical Functional Analysis and

equations of the first kind,” *American Journal of Mathematics*,
vol. 73, pp. 615–624, 1951.

method for solving split feasibility and fixed point problems,”
*Computers & Mathematics with Applications*, vol. 64, no. 4, pp.

tational inequalities with application to the traffic assignment
problem,” *Mathematical Programming Study*, no. 17, pp. 139–159,
1982.

problems: a descent method for co-coercive variational inequal-
ities,” *European Journal of Operational Research*, vol. 159, no. 3,

for generalized mixed equilibrium problems, fixed point prob-
lems and variational inequality problems,” *Taiwanese Journal of

points of asymptotically demi-contractive mappings in arbitrary
Banach spaces,” *Panamerican Mathematical Journal*, vol. 12, no.

monotone operators,” *Transactions of the American Mathematical

by an extragradient method for nonexpansive mappings and
monotone mappings,” *Journal of Optimization Theory and