Research Article

Analytical Solutions of the One-Dimensional Heat Equations Arising in Fractal Transient Conduction with Local Fractional Derivative

Ai-Ming Yang,1,2 Carlo Cattani,3 Hossein Jafari,4,5 and Xiao-Jun Yang6

1 College of Science, Hebei United University, Tangshan 063009, China
2 College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
3 Department of Mathematics, University of Salerno, Via Ponte don Melillo, Fisciano, 84084 Salerno, Italy
4 Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran
5 International Institute for Symmetry Analysis and Mathematical Modelling, Department of Mathematical Sciences, North-West University, Mafikeng Campus, Private Bag X 2046, Mmabatho 2735, South Africa
6 Department of Mathematics and Mechanics, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China

Correspondence should be addressed to Ai-Ming Yang; aimin_heut@163.com

Received 26 September 2013; Accepted 17 October 2013

Academic Editor: Abdon Atangana

Copyright © 2013 Ai-Ming Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The one-dimensional heat equations with the heat generation arising in fractal transient conduction associated with local fractional derivative operators are investigated. Analytical solutions are obtained by using the local fractional Adomian decomposition method via local fractional calculus theory. The method in general is easy to implement and yields good results. Illustrative examples are included to demonstrate the validity and applicability of the new technique.

1. Introduction

Fractional calculus [9–12] was applied to model the physical and engineering problems for expressions of stress-strain constitutive relations of different viscoelastic fractional order properties of materials, diffusion processes with fractional order properties, fractional order flows, analytical mechanics of fractional order discrete system vibrations [13–15], and so on. Recently, the application of Adomian decomposition method for solving the linear and nonlinear fractional partial differential equations in the fields of the physics and engineering had been established in [16, 17]. Adomian decomposition method was applied to handle the time-fractional Navier-Stokes equation [18], fractional space diffusion equation [19], fractional KdV-Burgers equation [20], linear and nonlinear fractional diffusion and wave equations [21], KdV-Burgers-Kuramoto equation [22], fractional Burgers’ equation [23], and so on. For more details on some methods for solving fractional differential equations, see [24–28].

Recently, local fractional calculus theory was applied to model some nondifferentiable problems for mathematical physics (see [29–36] and the references therein). The Adomian decomposition method, as one of efficient tools for solving the linear and nonlinear differential equations, was extended to find the solutions for local fractional differential equations [37–40] and nondifferentiable solutions were obtained.
The partial differential equations describing thermal processes of fractal heat conduction were suggested in [30, 38] in the following form:

\[
\frac{\partial^\alpha u(x,t)}{\partial t^\alpha} - \frac{\partial^2 u(x,t)}{\partial x^{2\alpha}} = 0. \tag{1}
\]

The initial and boundary conditions are

\[
\begin{align*}
 u(0,t) &= f(t), \\
 \frac{\partial^\alpha u(0,t)}{\partial x^\alpha} &= g(t),
\end{align*} \tag{2}
\]

where the operator is the local fractional differential operator [29, 30, 34–38], which is applied to model the heat conduction problems in fractal media, fractal materials, fractal fractures mechanics, fractal wave behavior, Navier-Stokes equations on Cantor sets, Schrödinger equation with local fractional derivative, and diffusion equations on cantor space-time.

The one-dimensional heat equations with the heat generation arising in fractal transient conduction were considered in [30] as

\[
\frac{\partial^\alpha u(x,t)}{\partial t^\alpha} - \frac{\partial^2 u(x,t)}{\partial x^{2\alpha}} = \phi(x,t), \tag{3}
\]

where \(\phi(x,t)\) is the heat generation term.

We use initial and boundary conditions as follows:

\[
\begin{align*}
 u(0,t) &= f(t), \\
 \frac{\partial^\alpha u(0,t)}{\partial x^\alpha} &= g(t).
\end{align*} \tag{4}
\]

The aim of this paper is to investigate the one-dimensional heat equations with the heat generation arising in fractal transient conduction by using the local fractional Adomian decomposition method.

This paper is structured as follows. In Section 2, we give the basic notations and definitions of local fractional operators. In Section 3, local fractional Adomian decomposition method for heat generation arising in fractal transient conduction is presented. Three examples are shown in Section 4. Finally, Section 5 presents conclusions.

2. Preliminaries

In this section we present some basic definitions and notations of the local fractional operators which are used further through the paper.

Let us denote local fractional continuity of \(f(x)\) as

\[
f(\xi) \in C_\alpha(a,b). \tag{5}
\]

Definition 1. Local fractional derivative operator of \(f(x)\) at the point \(x_0\) is given by [29, 30, 34–38]:

\[
f^{(\alpha)}(x_0) = \left. \frac{d^\alpha f(x)}{dx^{\alpha}} \right|_{x=x_0} = \lim_{x \to x_0} \frac{\Delta^\alpha f(x) - f(x_0)}{(x - x_0)^\alpha}, \tag{6}
\]

where \(\Delta^\alpha f(x) - f(x_0) \equiv \Gamma(1+\alpha)\Delta(f(x) - f(x_0))\) and \(f(x) \in C_\alpha(a,b)\).

Local fractional derivative of high order and local fractional partial derivative of high order are written in the form [29, 30, 38]

\[
\begin{align*}
 f^{(k\alpha)}(x) &= D^{\frac{k\alpha}{\alpha}} f(x), \\
 \frac{\partial^{k\alpha}}{\partial x^{k\alpha}} f(x, y) &= \frac{\partial^{k\alpha}}{\partial x^{k\alpha}} f(x, y).
\end{align*} \tag{7}
\]

respectively.

As inverse of local fractional differential operator, the local fractional integral operator of \(f(x)\) in the interval \([a, b]\) is defined as [29, 30, 36–38]

\[
\begin{align*}
 a^l_b f(x) &= \frac{1}{\Gamma(1 + \alpha)} \int_a^b f(t)(dt)^\alpha \\
 &= \frac{1}{\Gamma(1 + \alpha)} \lim_{\Delta t \to 0} \sum_{j=0}^{N-1} f(t_j)(\Delta t)^\alpha,
\end{align*} \tag{9}
\]

where a partition of the interval \([a, b]\) is denoted as \(\Delta t_j = t_{j+1} - t_j\), \(\Delta t = \max\{\Delta t_0, \Delta t_1, \Delta t_2, \ldots\}\) and \(j = 0, \ldots, N - 1\), \(t_0 = a\), and \(t_N = b\).

The properties are only presented as follows [29, 30, 37]:

\[
\begin{align*}
 D_x^{\alpha} [f(x) g(x)] &= (D_x^{\alpha} f(x)) g(x) + f(x) (D_x^{\alpha} g(x)), \\
 a^l_x f(x) g^{(\alpha)}(x) &= [f(x) g(x)]_a^x - a^l_x f^{(\alpha)}(x) g(x), \\
 D_x^{\alpha} x^{k\alpha} \Gamma(1 + k\alpha) &= \frac{\Gamma(1 + (k-1)\alpha)}{\Gamma[1 + (k+1)\alpha]}, \quad \alpha^l_x x^{k\alpha} \Gamma(1 + \alpha) \Gamma(1 + k\alpha) = \frac{\Gamma(1 + (k+1)\alpha)}{\Gamma[1 + (k+1)\alpha]}. \tag{10}
\end{align*}
\]

3. Analysis of the Method

Let us rewrite the heat equations with the heat generation arising in fractal transient conduction in the form

\[
L^{(\alpha)}_t u - L^{(2\alpha)}_{xx} u = \phi, \tag{11}
\]

subject to the initial and boundary conditions

\[
\begin{align*}
 u(0,t) &= f(t), \\
 \frac{\partial^\alpha u(0,t)}{\partial x^\alpha} &= g(t),
\end{align*} \tag{12}
\]

where \(\partial^\alpha /\partial t^\alpha\) and \(\partial^\alpha /\partial x^{2\alpha}\) symbolize \(L^{(\alpha)}_t\) and \(L^{(2\alpha)}_{xx}\), respectively.
By defining the twofold local fractional integral operator as \(L_{xx}^{(-2\alpha)} \), we have
\[
L_{xx}^{(-2\alpha)} \left[L_{t}^{(\alpha)} u - \phi \right] = L_{xx}^{(-2\alpha)} f_{xx}^{(2\alpha)} u,
\]
so that
\[
\frac{\partial^\alpha u}{\partial t^\alpha} - \frac{\partial^{2\alpha} u}{\partial x^{2\alpha}} = 1.
\]
Hence, we get
\[
u (x, t) = u_0 (x, t) + L_{xx}^{(-2\alpha)} \left[L_{t}^{(\alpha)} u (x, t) \right],
\]
where
\[
u_0 (x, t) = -L_{xx}^{(-2\alpha)} \phi + \frac{x^\alpha}{\Gamma (1 + \alpha)} g (t) + f (t).
\]
Therefore, the exact solution of (19) can be written as
\[
u (x, t) = \frac{x^{3\alpha}}{\Gamma (1 + 3\alpha)} + \frac{x^\alpha}{\Gamma (1 + \alpha)} \frac{t^\alpha}{\Gamma (1 + \alpha)} + \frac{t^\alpha}{\Gamma (1 + \alpha)}.
\]
From (25) we get
\[
\frac{\partial^\alpha u (x, t)}{\partial t^\alpha} - \frac{\partial^{2\alpha} u (x, t)}{\partial x^{2\alpha}} = 1.
\]
Example 3. When \(\phi(x, t) = 1, f(t) = 0, \) and \(g(t) = t^\alpha / \Gamma(1 + \alpha) \), we get
\[
\frac{\partial^\alpha u(x, t)}{\partial t^\alpha} - \frac{\partial^{2\alpha} u(x, t)}{\partial x^{2\alpha}} = 1.
\] (31)

The initial value condition is presented as follows:
\[
u_0 (x, t) = -\frac{x^{2\alpha}}{\Gamma(1 + 2\alpha)} + \frac{x^\alpha}{\Gamma(1 + \alpha)} \frac{t^\alpha}{\Gamma(1 + \alpha)}.
\] (32)

From (19) the recursive relations follow
\[
u_{n+1} (x, t) = L_x \left[L_t^{(-2\alpha)} \left[L_t^{(\alpha)} \nu_n (x, t) \right] \right].
\] (33)

In view of (27), we get the few terms of the series; namely,
\[
u_0 (x, t) = -\frac{x^{2\alpha}}{\Gamma(1 + 2\alpha)} + \frac{x^\alpha}{\Gamma(1 + \alpha)} \frac{t^\alpha}{\Gamma(1 + \alpha)},
\] (34)
\[
u_1 (x, t) = -\frac{x^{3\alpha}}{\Gamma(1 + 3\alpha)}.
\] (35)

Hence, we get
\[
u_2 (x, t) = \nu_3 (x, t) = \cdots = u_n (x, t) = 0.
\] (36)

So, the exact solution of (19) reads
\[
u (x, t) = \frac{x^{\alpha}}{\Gamma(1 + 3\alpha)} - \frac{x^{2\alpha}}{\Gamma(1 + 2\alpha)} + \frac{x^\alpha}{\Gamma(1 + \alpha)} \frac{t^\alpha}{\Gamma(1 + \alpha)}.
\] (37)

Figure 3 shows the exact solution when \(\alpha = \ln 2 / \ln 3 \).

5. Conclusions

In this work, analytical solutions for the one-dimensional heat equations with the heat generation arising in fractal transient conduction associated with local fractional derivative operators were discussed. The obtained solutions are nondifferentiable functions, which are Cantor functions and they discontinuously depend on the local fractional derivative. It is shown that the local fractional Adomian decomposition method is an efficient and simple tool for solving local fractional differential equations.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

This paper was supported by the National Scientific and Technological Support Projects (no. 2012BAE09B00), the National Natural Science Foundation of China (no. 11126213 and no. 61170317), and the National Natural Science Foundation of the Hebei Province (no. E2013209215).

References

Abstract and Applied Analysis

Submit your manuscripts at http://www.hindawi.com